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Abstract

It is known that if we apply Newton’s method to the complex function F (z) = P (z)eQ(z),
with deg(Q) > 2, then the immediate basin of attraction of the roots of P has finite area. In
this paper we show that under certain conditions on P , if deg(Q) = 1, then there is at least
one immediate basin of attraction having infinite area.

1 Introduction

Newton’s method (in one variable) is an iterative algorithm for finding the zeros of a holo-
morphic or meromorphic function f(z), or equivalently, for solving the equation f(z) = 0.
Newton’s method applied to f , usually denote by Nf , starts with an initial condition z0 ∈ C
and computes recursively zn+1 as

zn+1 = Nf (zn) := zn −
f (zn)

f ′ (zn)
.

This method works since, if z0 is chosen close enough to a zero ζ of f (that is ζ satisfies
f(ζ) = 0), then

Nf (zn)→ ζ, as n→∞.
One thinks Newton’s method as a dynamical system, this property is equivalent to saying that
all (finite) zeros of f are attracting fixed points of Nf . Moreover, and this is a key point, Nf
has no other finite fixed points.
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From the numerical point of view, Newton’s method is very useful (quadratic convergence to
all simple roots, simplicity, etc) and so it has became the universal method to compute zeroes of
functions. However, it has some limitations. For instance it is known that for certain functions
(even for polynomial) there are open sets in C such that if the initial condition is chosen in those
sets the iterative algorithm does not converge to any of the zeroes of f . Another obstruction
is that, a priori, the method does not tell you where to chose the initial conditions so that you
get all of the roots of f (see [7] where the authors show, among many other interesting results,
how to choose the initial conditions in an efficient way when f is polynomial).

Newton’s method has been applied and studied (as a numerical method and as a dynamical
system) for different kinds of families of functions but the most well known case is the poly-
nomial case, f := P . Indeed the study of Newton’s method applied to degree 2 and degree
3 polynomials was the germ of what we known today as complex dynamics. Notice that NP
is a rational map and, consequently the Newton’s method is a dynamical system defined in
C∞ = C ∪∞. It is an exercise to see that z =∞ is a repelling fixed point for NP .

In this paper, we consider Newton’s method applied to the transcendental entire function
F (z) = P (z)eQ(z) where P and Q are polynomials. Since the exponential map is always different
from zero, we still have the condition that the roots of P correspond to attracting fixed points
of NF and vice versa. Moreover, it is easy to see that even though F is entire, NF is a rational
map. However, one main distinction occurs at infinity since now ∞ is a parabolic fixed point
for NF instead of a repelling fixed point for NP .

The main reason to introducing the transcendental entire ingredient is twofold. On the one
hand we would like to explore if , as a numerical method for finding the roots of P , it presents
some advantages, and on the other hand we want to see its properties as a dynamical system
defined in C∞. A primer answer to those questions is due to M. Haruta, who proved in [5] that
if the degree of the polynomial Q is greater than 2 then the area of the immediate basin of
attraction of all fixed points of NF is finite (see also [2, 3] for an extension to relaxed Newton’s
method). From the numerical point of view this can be understood as a negative result. It was
also shown, as a corollary of the Fatou’s Flower Theorem, that the number of attracting petals
of ∞ coincides with the degree of Q.

The condition deg(Q) ≥ 3 it is essential to show the finiteness of the area, and the arguments
do not apply to Q with lower degree. Indeed, the question of the finiteness of the area of the
immediate basins of attraction of the fixed points of NF when the degree of Q is less than 3, is
still open in the general case (arbitrary P ). As a partial result in this direction, it was shown
in [4] that for F (z) = zez the immediate basin of attraction of z = 0 has infinite area. This
result (added to a strong control on the distribution of the immediate basins of attraction)
strengthens the idea that keeping Q(z) = z instead of using higher degree polynomial is a good
choice from the numerical point of view.

A first step though is to see if this area property is true for a general polynomials. In this
paper we prove the following result:

Theorem A. Let P (z) = zkP1(z), k ≥ 1 be a polynomial of degree m ≥ 2 with real coefficients.
Assume that for all x > 0 we have P1(x) (P1(x) + P ′1(x)) > 0. Let NF (z) to be the Newton’s
method applied to the function F (z) = P (z)ez. Then NF has 0 as an attracting fixed point
whose immediate basin of attraction has infinite area.

As a corollary we have the following result.
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Corollary 1.1. Let F (z) = P (z)ez where P is a polynomial of degree m ≥ 2 with real coeffi-
cients and at least one real root. Denote by x0 its largest real root. Then

(a) The linear change of variables z → z − x0 transforms F (z) into G(z) := F (z + x0) =
zkP1(z)ez for some P1 with real coefficients, and such that P1(x) 6= 0 for all x ≥ 0.

(b) In the notation of (a), if P1(x) (P1(x) + P ′1(x)) > 0 for all x ≥ 0, then NF has x0 as an
attracting fixed point and its immediate basin of attraction has infinite area.

Before proving Theorem A (and the above corollary) in Section 4, we will give in Section 3
some numerical simulations and the corresponding pictures showing the shape and distribution
of the (immediate) basins of attraction associated to the Newton’s method applied to F (z) =
P (z)ez. In Section 2 we give some preliminaries.

We want to thank Jordi Taixés for his help making the pictures of the paper.

2 Preliminaries

A rational map R is a holomorphic function of the Riemann sphere C∞ to itself, and it can be
always expressed as R = H/G, where H and G are complex polynomials without a common
divisor. Its degree is defined by deg(R) = max{deg(H), deg(G)}. We are interested in holo-
morphic dynamical systems that arise by iterating rational maps of degree ≥ 2 on the Riemann
sphere.

A point ζ ∈ C is called a periodic point of period n if Rn(ζ) = ζ and Rk(ζ) 6= ζ for all k < n,
where k, n ∈ N. If n = 1 we say that ζ is a fixed point. The periodic point ζ is called attracting
(respectively repelling) if 0 <| (Rn)′(ζ) |< 1 (respectively | (Rn)′(ζ) |> 1). If (Rn)′(ζ) = 0 we
say that ζ is superattracting. Finally, if (Rn)′(ζ) = e2πit, t ∈ R, we say that ζ is parabolic when
t ∈ Q and irrationally indifferent when t ∈ R \ Q. Even though in rational iteration z = ∞ is
a regular point (it cannot be distinguished from any other point of the plane), to compute the
derivative at ζ = ∞ in the above definitions we need first to conjugate the map by z → 1/z
and then consider ζ = 0.

The Julia set, denoted by J (R), can be defined as the closure of the set of repelling periodic
points of R, and J (R) also coincides with the set of points in C∞ for which the family of iterates
{Rn}n∈N fails to be a normal family (in the sense of Montel). The Fatou set, denote by F(R),
is defined as the complement of J (R) so F(R) = C∞ \ J (R). It is well known that J (R) 6= ∅
and that the Fatou set is the union of open domains of the plane each of which is called a Fatou
component. In particular, if ζ is an attracting fixed point of R, we define its basin of attraction
as A(ζ) := {z ∈ C | Rn(z)→ ζ, n→∞}. Each connected component of this set belongs to the
Fatou set. The one which contains z0 is called the immediate basin of attraction and is denoted
by A?(ζ). (see [1] as a complete reference for rational iteration).

As for Newton’s method applied to a polynomial P , it turns out that Newton’s method
applied to the entire transcendental map F (z) = P (z)ez is also a rational map. More precisely

NF (z) = z − P (z)

P ′(z) + P (z)
=
z (P ′(z) + P (z))− P (z)

P ′(z) + P (z)
. (1)

It is straightforward to see that ζ is a (simple) root of P if and only if ζ is a (super)attracting
fixed point of NF . Since NF is rational, we conclude that ∞ has to be a weakly repelling fixed
point, see for instance Corollary 12.7 in [6]. However, in contrast to Newton’s method applied
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to a polynomial P , the point at infinity is not a repelling fixed point anymore. The following
result is a corollary of Propositions 1 and 2 in [5].

Proposition 2.1. Infinity is a parabolic fixed point (with t = 0) with a unique attracting (and
repelling) petal.

Finally we state an important result proved by M. Shishikura in [8] that holds for any
Newton’s method with a rational expression.

Proposition 2.2. All Fatou components of NF are simply connected.

3 Numerical simulations and examples of Theorem A

In this section we provide some numerical experiments which exemplified the shape and distri-
bution of the basins of attraction of the superattracting fixed points of NF for different poly-
nomials. From those examples we can see some differences between the shape and distribution
of the basins of attraction with respect to the standard Newton’s method NP . The simulations
suggest that the area of all immediate basins of all attracting fixed points of NF will be infinite,
but the arguments we use here to prove Theorem A cannot be extended straightforward.

To do so, we consider three different polynomials of degree 5. Each one will describe different
scenarios in terms of the hypotheses of Theorem A (and Corollary 1.1). Precisely, let

p(z) = 5 + 11z + 7z2 + 2z3 + 2z4 + z5,

q(z) = 2.8125 + 6.3125z + 8z2 + 6.5z3 + 3z4 + z5, and

r(z) = −165.62 + 301.21z − 217.6z2 + 78.2z3 − 14z4 + z5.

The zeros of p are given by z0 ≈ −1.516, z1 = −1 (double), z2 ≈ 0.758− 1.65i and z3 = z2.
So if we apply the linear change of variables z → z + 1 the polynomial p is transformed into
the polynomial

p̃(z) = z2(3 + 4z − 3z2 + z3),

or, equivalently, p̃(z) = z2P1(z) with P1(z) = 3 + 4z − 3z2 + z3. One can check that
P1(x) (P1(x) + P ′1(x)) > 0 for all x > 0. Thus statement (b) of Corollary 1.1 concludes that
the immediate basin of attraction of z1 = −1 (i.e., the largest real root of the polynomial p)
of Newton’s method applied to F (z) = p(z)ez has infinite area. In Figure 1 we illustrate the
shape and distribution of the immediate basins of attraction of the attracting fixed points of
NG, where G(z) = z2P1(z)ez, on the (dynamical) plane as well as on the Riemann sphere.

The zeros of q are given by z0 = −1, z1 = −0.5 + i, z2 = z1, z3 = −0.5 +
√

2i and z4 = z3.
So, if we apply the linear change of variables z → z + 1 the polynomial q is transformed into
the polynomial

q̃(z) = z
(
2.8125− 3.5z + 4.5z2 − 2z3 + z4

)
,

or, equivalently, q̃(z) = zQ1(z), where Q1(z) = 2.8125− 3.5z+ 4.5z2− 2z3 + z4. One can easily
check that Q1(x) > 0 but Q1(x) +Q′1(x) is not strictly positive for all x > 0, so Corollary 1.1
cannot be directly applied. The reason is that, to conclude from Lemma 4.1 that the positive
real line belongs to the immediate basin of attraction of 0 for NG, G(z) = zkP1(z)ez, we use that
P1(x) (P1(x) + P ′1(x)) > 0. However one can easily check for this concrete example that, even
though the condition is not satisfied, the positive real line does belong to the immediate basin
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(a) Dynamical plane.

∞

(b) Riemann sphere.

Figure 1: The pictures show the Newton ’s method applied to G(z) = z2P1(z)ez with P1(z) = 3+4z−3z2+
z3. Each color corresponds to the basin of attraction of each attracting fixed point at w0 = 0, w1 ≈ −0.516,
w2 ≈ 1.756 − 1.65i and w3 = w2. In black we draw the basin of the parabolic fixed point at infinity. The
little decorations of the four immediate basins correspond to their preimatges.

of attraction of 0. Since this is the only step in the proof of Theorem A where this condition
is used we can ensure that the immediate basin of attraction of z1 = −1 of Newton’s method
applied to F (z) = q(z)ez has infinite area (see also Remark 4.1). In Figure 2 we illustrate the
shape and distribution of the immediate basins of attraction of the attracting fixed points of
NG, where G(z) = zQ1(z)ez, on the (dynamical) plane as well as on the Riemann sphere.

To finish this section we deal with the polynomial r. The zeros of r are given by z0 = 2,
z1 ≈ 3 + 0.316i (double) and z2 = z1 (double). So if we apply the linear change of variables
z → z − 2 we get

r̃(z) = z
(
1.21− 4.4z + 6.2z2 − 4z3 + z4

)
,

or equivalently, r̃(z) = zR1(z), where R1(z) = 1.21 − 4.4z + 6.2z2 − 4z3 + z4. One can
check that R1(x) > 0 but R1(x) + R′1(x) is not strictly positive for all x > 0, and moreover
x (R1(x) +R′1(x)) + R1(x) changes sign for some x > 0. As a consequence we can check that
Newton’s method applied to G(z) = zR1(z)ez does not have the positive real line inside any of
the immediate basins of attraction and so the arguments of the proof of the Theorem A will not
be true anymore (see Remark 4.1). However, as we did in the previous two cases we draw in
Figure 3 the shape and distribution of the immediate basins of attraction of the attracting fixed
points of NG, where G(z) = zR1(z)ez, on the (dynamical) plane as well as on the Riemann
sphere.

5



w0q w1q
w2
q
w3q

w4
q

(a) Dynamical plane.

∞

(b) Riemann sphere.

Figure 2: The pictures show the Newton ’s method applied to G(z) = zQ1(z)ez with Q1(z) = 2.8125 −
3.5z + 4.5z2 − 2z3 + z4. Each color corresponds to the basin of attraction of each attracting fixed points at
w0 = 0, w1 = 0.5 +

√
2 i, w2 = w1, w3 = 0.5 + i and w4 = w3. In black we draw the basin of the parabolic

fixed point at infinity. The little decorations of the five immediate basins correspond to their preimatges.

4 Proof of Theorem A

We prove first Theorem A and then we conclude Corollary 1.1.

Lemma 4.1. Assume P and P1 as in Theorem A. Then if F (z) = P (z)ez the real function
NF (x) is such that

(a) NF (0) = 0, N ′F (0) = 1− 1
k .

(b) NF (x) tends to infinity and is asymptotic to x− 1.

(c) 0 < NF (x) < x, with no poles, for all x > 0.

As a consequence, the positive real axis lies in the immediate basin of attraction of z = 0 for
NF .

Proof. Since P (z) = zkP1(z) we have

NF (z) = z − zP1(z)

z (P1(z) + P ′1(z)) + kP1(z)
= z

(
z (P1(z) + P ′1(z)) + (k − 1)P1(z)

z (P1(z) + P ′1(z)) + kP1(z)

)
. (2)

Statement (a) is a straightforward computation. From (2) we have

NF (x) = x

(
x (P1(x) + P ′1(x)) + (k − 1)P1(x)

x (P1(x) + P ′1(x)) + kP1(x)

)
.
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w0q w1q
w2q

(a) Dynamical plane

∞

(b) Riemann sphere

Figure 3: The pictures show the Newton ’s method applied to G(z) = zR1(z)ez with R1(z) = 1.21−4.4z+
6.2z2− 4z3 + z4. Each color corresponds to the basin of attraction of each attracting fixed point at w0 = 0,
w1 ≈ 1 + 0.316 i, and w2 = w1 (w1 as well as w2 are double roots of R1). Notice that the positive real
line is not included in the basin of attraction of w = 0 and so Theorem A does not apply in this case (see
Lemma 4.3 and Remark 4.1), although it seems that the area is infinite as well. In black we draw the basin
of the parabolic fixed point at infinity. The little decorations of the three immediate basins correspond to
their preimatges.

Thus it is easy to verify that

lim
x→∞

NF (x)

x
= 1 and lim

x→∞
x−NF (x) = 1,

and statement (b) is proved. Finally, since P1(x) (P1(x) + P ′1(x)) > 0 for all x > 0, we have
that the factor in parenthesis in the previous expression of NF (x) is between 0 and 1 for all
x > 0, and so 0 < NF (x) < x for all x > 0. Thus (c) follows and the positive real axis lies in
the immediate basin of attraction of z = 0 for NF .

Remark 4.1. The (sufficient) condition P1(x) (P1(x) + P ′1(x)) > 0 for all x > 0 in Theorem A
is only used when proving Lemma 4.1(c). We remark that a better (although still not sharped)
sufficient condition in order to prove Lemma 4.1(c) (and consequently to prove Theorem A)
would be

P1(x) [x (P1(x) + P ′1(x)) + (k − 1)P1(x)] > 0.

Once we know that the positive real line lies in the immediate basin of attraction of z = 0
for NF we will show that there is an ε neighborhood of R+ that also lies inside A?(0). More
precisely, we will show that if we define Aεr = {z = x + iy | x ≥ r, |y| < ε} then Aε0 ⊂ A?(0),
for ε sufficiently small. Since Aε0 has infinite area for all positive ε this will imply Theorem A.
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To simplify the presentation we define

R(z) =
P (z)

P (z) + P ′(z)
(3)

so that equation (1) may be written as

NF (z) = z −R(z). (4)

Lemma 4.2. Let z = x+ yi and p(z) = a0 + a1z + . . . anz
n. Let us write p(x+ yi) = α + βi

and p′(x+ yi) = ζ + δi. Then

α = A0(y) +A1(y)x+ . . .+An−1(y)xn−1 + anx
n,

β = y
[
B0(y) +B1(y)x+ . . .+Bn−2(y)xn−2 + nanx

n−1] ,
ζ = C0(y) + C1(y)x+ . . .+ Cn−2(y)xn−2 + nanx

n−1,

δ = y
[
D0(y) +D1(y)x+ . . .+Dn−3(y)xn−3 + n(n− 1)anx

n−2] ,

(5)

where Ai(y), Bi(y), Ci(y), Di(y) are polynomials in the variable y with coefficients given by the
coefficients of p.

Proof. Substituting z = x+ yi in the expression of p(z) we have

p(x+ yi) = a0 + a1(x+ yi) + a2(x+ yi)2 + . . .+ an(x+ yi)n =

= a0 + a1(x+ yi) +
2∑

k=0

(
2
k

)
x2−k(yi)k + . . .+

n∑

k=0

(
n
k

)
xn−k(yi)k.

Taking real and imaginary part, and expanding in the variable x we get the expressions for α
and β given in (5). In a similar way we deduce the corresponding expressions for ζ and δ.

Lemma 4.3. Let z = x+ yi. The following statements hold

(a) Re(NF (z))= x - Re(R(z)), with

Re (R(z)) =
α (α+ ζ) + β (β + δ)

(α+ ζ)
2

+ (β + δ)
2 (6)

(b) Im(NF (z))= y - Im(R(z)), with

Im (R(z)) =
βζ − αδ

(α+ ζ)
2

+ (β + δ)
2 (7)

Proof. From (3) we deduce that

NF (x+ yi) = (x+ yi)− (α+ βi)

(α+ βi) + (ζ + δi)
,

where α, β, ζ, δ are defined in Lemma 4.2. Doing some computations and taking real and
imaginary part of this equality we end up with the expressions of Re(R(z)) and Im(R(z)) given
by (6) and (7).
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Lemma 4.4. For r > 0 sufficiently large, NF
(
Aεr+2

)
⊂ Aεr for all ε ∈ (0, 1).

Proof. We claim that

lim
x→∞, |y|<1

Re (R(z)) = 1 and lim
x→∞, |y|<1

Im (R(z)) = 0. (8)

The claim follows by noticing that from (5), (6) and (7) we have that

Re (R(z)) =
a2nx

2n + õ(x2n+2)

a2nx
2n + õ(x2n)

and Im (R(z)) = y

[
na2nx

2n−2 + õ(x2n−2)

a2nx
2n + õ(x2n)

]
, (9)

where

lim
x→∞

õ(xk)

xk
= 0, k > 0,

uniformly in y for |y| ≤ 1. On one hand from (8) we can find r1 so that

Re (NF (z)) = Re(z)− Re (R(z)) < Re(z)− 0.5 (10)

for all z ∈ Aεr1 . On the other hand, from (9), we have that

Im (NF (z)) = Im(z)− Im (R(z)) = y

[
1− na2nx

2n−2 + õ(x2n−2)

a2nx
2n + õ(x2n)

]
.

We conclude, as before, that the quotient inside the parenthesis tends to zero when x tends to
+∞, uniformly in y for |y| ≤ 1. Thus we can find r2 such that

0 < Im (NF (z)) < y if 0 < y < ε and

y < Im (NF (z)) < 0 if − ε < y < 0,

for all z ∈ Aεr2 .

All this together implies that if we define r0 := max{r1, r2} then NF
(
Aεr0+2

)
⊂ Aεr0 for all

ε ∈ (0, 1). Of course the result is true for all r ≥ r0.

Proof of Theorem A. Take r := r0 as in the proof of the previous lemma. Since z = 0 is a
superattracting fixed point, there exists 0 < ε0 < 1 such that B(0, ε0) ⊂ A?(0). Moreover
because of the immediate basin of attraction of z = 0 is open and the interval [0, r + 2] is
compact, there exists 0 < ε1 < 1 so that the set Cε1r+2 = {z = x+ iy | 0 ≤ x ≤ r + 2, |y| < ε1}
lies in A?(0).

From Lemma 4.4 we have NF
(
Aε1r+2

)
⊂ Aε1r . Moreover, from (10) we have that for all

z ∈ Aε1r+2 there exist n > 0 such that

(NF )
n

(z) ∈
(
Aε1r \Aε1r+2

)
⊂ Cε1r+2 ⊂ A?(0).

From the previous paragraph it is clear that B(0, ε0) ∪ Cε1r+2 ∪ Aε1r+2 is a connected set
belonging to A?(0) with infinite area.
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Proof of Corollary 1.1. From the hypothesis, it is clear that P (z) = (z − x0)
k
P̃1(z) with k

being the multiplicity of x0 as the (largest) real root of P , and P̃1 being a polynomial of degree
m := n−k with real coefficients, so that P̃1(x) 6= 0 for all x ≥ x0. The linear change of variables
z → z−x0 transforms F (z) = P (z)ez into G(z) := F (z+x0) = zkP1(z)ez where P1 is a degree
m polynomial with real coefficients so that P1(x) 6= 0 for all x ≥ 0. This proves (a).

To prove (b) we claim that NG and NF are conjugated via a linear map (sending z = x0 to
z = 0). Thus, since by Theorem A applied to NG, the immediate basin of attraction of 0 has
infinite area, we will conclude that the immediate basin of attraction of x0 for NF has infinite
area as well.

To see the claim we write ϕ(z) = z − x0 and notice that

ϕ ◦NF (z) ◦ ϕ−1 = ϕ (NF (z + x0)) = NF (z + x0)− x0 = z + x0 −
F (z + x0)

F ′(z + x0)
− x0 =

= z − F (z + x0)

F ′(z + x0)
= z − G(z)

G′(z)
:= NG(z).

Remark 4.2. The relaxed Newton’s method applied to a smooth function ϕ is defined as

Nh
ϕ(z) = z − h ϕ

ϕ′
, h ∈ (0, 1].

Under certain conditions the relaxed Newton’s method may improve the convergence properties
of the numerical method. It is easy to verify that the proof of Theorem A as well as Corollary
1.1 follows similarly if we substitute the Newton’s method by the relaxed Newton’s method.
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