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ON THE MAXIMUM NUMBER OF LIMIT CYCLES OF A

CLASS OF GENERALIZED LIÉNARD DIFFERENTIAL SYSTEMS

JUSTINO ALAVEZ-RAMÍREZ1, GAMALIEL BLÉ1,

JORGE LÓPEZ-LÓPEZ1 AND JAUME LLIBRE2

Abstract. Applying the averaging theory of first, second and third order to
one class generalized polynomial Liénard differential equations, we improve the
known lower bounds for the maximum number of limit cycles that this class
can exhibit.

1. Introduction and statement of the main results

The generalized polynomial Liénard differential equation

ẍ+ f(x)ẋ+ g(x) = 0,

or equivalently,

(1)
ẋ = y,
ẏ = −f(x)y − g(x),

was introduced in [16]. Here the dot denotes derivative with respect to the indepen-
dent variable t, and f(x) and g(x) are polynomials in the variable x of degrees n and
m respectively. For this subclass of polynomial vector fields we have a simplified
version of the 16th Hilbert’s problem, see [17] and [28].

In 1977 Lins, de Melo and Pugh [17] studied the classical polynomial Liénard
differential equations (1) with g(x) = x and stated the following conjecture: if f(x)
has degree n ≥ 1 and g(x) = x, then (1) has at most [n/2] limit cycles. Here [x]
denotes the integer part function of x ∈ R. They also proved the conjecture for
n = 1, 2, and additionally they showed that there are systems (1) having at least
[n/2] limit cycles. For n ≥ 5 this conjecture is not true as it has been proved
recently by Dumortier, Panazzolo and Roussarie in [6] and by De Maesschalck and
Dumortier in [5]. More recently the conjecture has been proved for n = 3 by
Chengzhi Li and Llibre see [13, 14]. In short the conjecture only remains open for
n = 4.

We note that a classical polynomial Liénard differential equation has a unique
singular point. However it is possible for generalized polynomial Liénard differential
equations to have more than one singular point.

Many of the results on the limit cycles of polynomial differential systems have
been obtained by considering limit cycles which bifurcate from a single degenerate
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singular point, that are so called small amplitud limit cycles, see [20]. We denote

by Ĥ(m,n) the maximum number of small amplitude limit cycles for systems of

the form (1). The values of Ĥ(m,n) give a lower bound for the maximum number
H(m,n) (i.e. the Hilbert number) of limit cycles that the differential equation (1)
with m and n fixed can have. It is unknown the finitude of H(m,n) for every
positive integers m and n. For more information about the Hilbert’s 16th problem
and related topics see [12] and [15].

Now we shall describe briefly the main results about the limit cicles on Liénard
differential systems.

(i) In 1928 Liénard [16] proved that if m = 1 and F (x) =
∫ x

0
f(s)ds is a

continuous odd function, which has a unique root at x = a and is monotone
increasing for x ≥ a, then equation (1) has a unique limit cycle.

(ii) In 1973 Rychkov [27] proved that if m = 1 and F (x) =
∫ x

0
f(s)ds is an odd

polynomial of degree five, then equation (1) has at most two limit cycles.
(iii) In 1977 Lins, de Melo and Pugh [17] proved that H(1, 1) = 0 and H(1, 2) =

1.
(iv) In 1990,1996, Dumortier, Li and Rousseau in [9] and [7] proved thatH(3, 1) =

1.
(v) In 1998 Coppel [4] proved that H(2, 1) = 1.
(vi) In 1997 Dumortier and Chengzhi Li [8] proved that H(2, 2) = 1.
(vii) In 2010 Chengzhi Li and Llibre [13, 14] proved that H(1, 3) = 1.

Up to now and as far as we know only for the five cases (iii)-(vii) the Hilbert
numbers H(m,n) are determined.

Blows, Lloyd and Lynch, [1], [21] and [23] have used inductive arguments in
order to prove the following results.

(I) If g is odd then Ĥ(m,n) = [n/2].

(II) If f is even then Ĥ(m,n) = n, whatever g is.

(III) If f is odd then Ĥ(m, 2n+ 1) = [(m− 2)/2] + n.

(IV) If g(x) = x+ ge(x), where ge is even then Ĥ(2m, 2) = m.

Christopher and Lynch [3], [24], [25], [26] have developed a new algebraic method
for determining the Liapunov quantities of system (1) and proved the following:

(V) Ĥ(m, 2) = [(2m+ 1)/3].

(VI) Ĥ(2, n) = [(2n+ 1)/3].

(VII) Ĥ(m, 3) = 2[(3m+ 2)/8] for all 1 < m ≤ 50.

(VIII) Ĥ(3, n) = 2[(3n+ 2)/8] for all 1 < m ≤ 50.

(IX) Ĥ(4, k) = Ĥ(k, 4), for k = 6, 7, 8, 9 and Ĥ(5, 6) = Ĥ(6, 5).

In 1998 Gasull and Torregrosa [10] obtained upper bounds for Ĥ(7, 6), Ĥ(6, 7),

Ĥ(7, 7) and Ĥ(4, 20).

In 2006 the values for Ĥ(m,n) = Ĥ(n,m), for n = 4, m = 10, 11, 12, 13; n = 5,
m = 6, 7, 8, 9; n = 6, m = 5, 6 were given by Yu and Han in [30].

Llibre, Mereu and Teixeira [19] using the averaging theory studied the maximum

number of limit cycles H̃(m,n) which can bifurcate from the periodic orbits of a lin-
ear center perturbed inside the class of generalized polynomial Liénard differential
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equations of degrees m and n of the form

(2)

ẋ = y,

ẏ = −x−
∑

k≥1

εk(fk
n(x)y + gkm(x)),

where for every k the polynomials gkm(x) and fk
n(x) have degree m and n respec-

tively, and ε is a small parameter, i.e. the maximal number of medium amplitude
limit cycles which can bifurcate from the periodic orbits of the linear center ẋ = y,
ẏ = −x, perturbed as in (2).

In fact in [19] the authors computed lower estimations of H̃(m,n). More precisely

they compute the maximum number of limit cycles H̃k(m,n) which bifurcate from
the periodic orbits of the linear center ẋ = y, ẏ = −x, using the averaging theory of
order k for k = 1, 2, 3. Of course H̃k(m,n) ≤ H̃(m,n) ≤ H(m,n). More precisely,
the main result of [19] is: for |ε| sufficiently small, the maximum number of medium
limit cycles of the polynomial Liénard differential systems (2) bifurcating from the
periodic orbits of the linear center ẋ = y, ẏ = −x, using the averaging theory

(a) of first order is H̃1(m,n) =
[n
2

]
;

(b) of second order is H̃2(m,n) = max

{[
n− 1

2

]
+

[m
2

]
,
[n
2

]}
; and

(c) of third order is H̃3(m,n) =

[
n+m− 1

2

]
.

Note that before the work [19] there were no lower estimations for H(m,n) when

(a) m = 4 and n > 13, or m > 20 and n = 4,
(b) m = 5 and n > 9, or m > 9 and n = 5,
(c) m = 6 and n > 7, or m > 7 and n = 6,
(d) m,n > 7.

After the results of [19] we will have lower estimations of H(m,n) for all m,n ≥ 1.

It seems that the numbers Ĥ(m,n) can be symmetric with respect m and n. Some

studies is this direction are made in [22]. We remark that in general H̃k(m,n) 6=
H̃k(n,m) for k = 1, 2, but H̃3(m,n) = H̃3(n,m).

In this work using the averaging theory we study the maximum number of limit
cycles H̃(l,m, n) which can bifurcate from the periodic orbits of a linear center
perturbed inside the class of generalized polynomial Liénard differential equations
of degrees l, m and n of the form

(3)

ẋ = y +
∑

k≥1

εkhk
l (x),

ẏ = −x−
∑

k≥1

εk(fk
n(x)y + gkm(x)),

where for every k the polynomials hk
l (x), g

k
m(x) and fk

n(x) have degree l, m and
n respectively, and ε is a small parameter, i.e. the maximal number of medium
amplitude limit cycles which can bifurcate from the periodic orbits of the linear
center ẋ = y, ẏ = −x, perturbed as in (3). Of course the computation of H̃(l,m, n)
for the differential system (3) is another step in order to estimate the Hilbert number
for this class of polynomial differential systems.
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Let k be a positive integer. We define E(k) as the largest even integer ≤ k, and
O(k) as the largest odd integer ≤ k. Our main result that improve the mentioned
previous results is the following one.

Theorem 1. If for every k = 1, 2 the polynomials hk
l (x), g

k
m(x) and fk

n(x) have
degree l, m and n respectively, with l,m, n ≥ 1, then for |ε| sufficiently small,
the maximum number of medium limit cycles of the polynomial Liénard differential
systems (3) bifurcating from the periodic orbits of the linear center ẋ = y, ẏ = −x,
using the averaging theory

(a) of first order is

H̃1(l,m, n) =

[
max{O(l), O(n+ 1)} − 1

2

]
= max

{[
l − 1

2

]
,
[n
2

]}
,

(b) of second order is

H̃2(l,m, n) =

[
max{E(l) + E(m), O(n) + E(m) + 1, O(l), O(n+ 1)} − 1

2

]
,

(c) of third order is

H̃3(l,m, n) ≥
[
max{O(m+ n), E(l +m)− 1} − 1

2

]
, and

(d) The three upper bounds for H̃(l,m, n) given in statements (a), (b) and (c)
for some values of l, m and n are reached. So they cannot be improved.

Of course if H(l,m, n) is the Hilbert number for our polynomial Liénard differ-

ential systems (3), then H̃k(l,m, n) ≤ H(l,m, n) for k = 1, 2, 3; i.e. the numbers

H̃k(l,m, n) provide lower bounds for the Hilbert numbers of systems (3).

In the proof of statement (c) we shall explain why in this statement we have an
inequality instead of the equality of the previous two statements.

The rest of the paper is structured as follows. In section 2 we present a summary
of the results on the averaging theory that we shall need in this paper. In sections
3, 4, 5 and 6 we prove statements (a), (b), (c) and (d) of Theorem 1 respectively.

2. The averaging theory of first, second and third order

The averaging theory of third order for studying specifically periodic orbits was
developed in [2]. It is summarized as follows.

Consider the differential system

(4) ẋ(t) = εF1(t, x) + ε2F2(t, x) + ε3F3(t, x) + ε4R(t, x, ε),

where F1, F2, F3 : R×D → R, R : R×D× (−εf , εf ) → R are continuous functions,
T–periodic in the first variable, and D is an open subset of Rn. Assume that the
following hypotheses (i) and (ii) hold.

(i) F1(t, ·) ∈ C2(D), F2(t, ·) ∈ C1(D) for all t ∈ R, F1, F2, F3, R, D2
xF1,DxF2

are locally Lipschitz with respect to x, and R is twice differentiable with
respect to ε.
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We define Fk0 : D → R for k = 1, 2, 3 as

F10(z) =
1

T

∫ T

0

F1(s, z)ds,

F20(z) =
1

T

∫ T

0

[DzF1(s, z) · y1(s, z) + F2(s, z)] ds,

F30(z) =
1

T

∫ T

0

[1
2
y1(s, z)

T ∂2F1

∂z2
(s, z)y1(s, z) +

1

2

∂F1

∂z
(s, z)y2(s, z)

+
∂F2

∂z
(s, z)y1(s, z) + F3(s, z)

]
ds,

where

y1(s, z) =

∫ s

0

F1(t, z)dt,

y2(s, z) = 2

∫ s

0

[
∂F1

∂z
(t, z)

∫ t

0

F1(r, z)dr + F2(t, z)

]
dt.

(ii) For V ⊂ D an open and bounded set and for each ε ∈ (−εf , εf ) \ {0},
there exists aε ∈ V such that F10(aε) + εF20(aε) + ε2F30(aε) = 0 and
dB(F10 + εF20 + ε2F30, V, aε) 6= 0.

Then for |ε| > 0 sufficiently small there exists a T–periodic solution ϕ(·, ε) of the
system such that ϕ(0, ε) = aε.

We remark that the 2 which appears in the beginning of the expression of y2(s, z)
does not appear in [2]. This was a misprint in [2].

The expression dB(F10+εF20+ε2F30, V, aε) 6= 0 means that the Brouwer degree
of the function F10εF20 + ε2F30 : V → Rn at the fixed point aε is not zero. A
sufficient condition for the inequality to be true is that the Jacobian of the function
F10 + εF20 + ε2F30 at aε is not zero, if it is defined. In our applications since our
differential Liénard systems are analytic, this Jacobian always is defined.

If F10 is not identically zero, then the zeros of F10+ εF20+ ε2F30 are mainly the
zeros of F10 for ε sufficiently small. In this case the previous result provides the
averaging theory of first order.

If F10 is identically zero and F20 is not identically zero, then the zeros of F10 +
εF20 + ε2F30 are mainly the zeros of F20 for ε sufficiently small. In this case the
previous result provides the averaging theory of second order.

If F10 and F20 are identically zero and F30 is not identically zero, then the zeros
of F10 + εF20 + ε2F30 are mainly the zeros of F30 for ε sufficiently small. In this
case the previous result provides the averaging theory of third order.

3. Proof of statement (a) of Theorem 1

We write

f1
n(x) =

n∑

i=0

aix
i, g1m(x) =

m∑

i=0

bix
i and h1

l (x) =

l∑

i=0

cix
i.
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Then in polar coordinates (r, θ) given by x = r cos θ and y = r sin θ, the differential
system (3) becomes

ṙ = ε

(
l∑

i=0

cir
i cosi+1 θ − r sin2 θ

n∑

i=0

air
i cosi θ − sin θ

m∑

i=0

bir
i cosi θ

)
+O(ε2),

θ̇ = −1− ε

r

(
r cos θ sin θ

n∑

i=0

air
i cosi θ + cos θ

m∑

i=0

bir
i cosi θ + sin θ

l∑

i=0

cir
i cosi θ

)

+O(ε2).

Taking θ as the new independent variable, this system writes

dr

dθ
= −ε

(
l∑

i=0

cir
i cosi+1 θ − r sin2 θ

n∑

i=0

air
i cosi θ − sin θ

m∑

i=0

bir
i cosi θ

)
+O(ε2)

= εF1(θ, r) +O(ε2).

By using the notation introduced in section 2 we have that

F10(r) = − 1

2π

∫ 2π

0

[
l∑

i=0

cir
i cosi+1 θ − r sin2 θ

n∑

i=0

air
i cosi θ − sin θ

m∑

i=0

bir
i cosi θ

]
dθ.

Since ∫ 2π

0

cos2k+1 θdθ = 0,

∫ 2π

0

cos2k θdθ 6= 0,

∫ 2π

0

sin θ cosk θdθ = 0,

for k = 0, 1, . . ., we have that

F10(r) = − 1

2π

∫ 2π

0




l∑

i=2
i odd

cir
i cosi+1 θ − r sin2 θ

n∑

i=2
i even

air
i cosi θ


 dθ.

We define

M(l, n) =





max{l, n+ 1} if l odd, n even,
max{l − 1, n+ 1} if l even, n even,
max{l, n} if l odd, n odd,
max{l − 1, n} if l even, n odd.

Then it is easy to check that

M(l, n) = max{O(l), O(n+ 1)},
and that[

M(l, n)− 1

2

]
=

[
max{O(l), O(n+ 1)} − 1

2

]
= max

{[
l − 1

2

]
,
[n
2

]}
.

Clearly we have that

F10(r) =

M(l,n)∑

k=0

σkr
k,

with

(5) σk = − 1

2π

∫ 2π

0

(
ck cos

k+1 θ − ak−1 sin
2 θ cosk−1 θ

)
dθ,

where k ≥ 1 is an odd integer number, a−1 = 0, ak = 0 if k > n and ck = 0 if
k > l. Of course σk = 0 if k is even. Since F10(r) is an odd function, it has at
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most [(M(l, n) − 1)/2] simple positive real roots. From section 2 we obtain that
for |ε| sufficiently small, the maximum number of limit cycles of system (3) which
can bifurcate from the periodic orbits of the linear center ẋ = y, ẏ = −x using the
averaging theory of first order is [(M(l, n)− 1)/2]. So statement (a) of Theorem 1
is proved.

4. Proof of statement (b) of Theorem 1

In this section we consider the differential systems

ẋ = y + εh1
l (x) + ε2h2

l (x) +O(ε3),
ẏ = −x− ε(f1

n(x)y + g1m(x))− ε2(f2
n(x)y + g2m(x)) +O(ε3).

Taking polar coordinate this system becomes

ṙ = ε
xh1

l (x)− y2f1
n(x)− yg1m(x)

r
+ ε2

xh2
l (x)− y2f2

n(x)− yg2m(x)

r
+O(ε3),

θ̇ = −1− ε
xyf1

n(x) + xg1m(x) + yh1
l (x)

r2
− ε2

xyf2
n(x) + xg2m(x) + yh2

l (x)

r2
+O(ε3),

where x = r cos θ and y = r sin θ. This system is equivalent to
(6)
dr

dθ
= −ε

xh1
l (x)− y2f1

n(x)− yg1m(x)

r
− ε2

[
xh2

l (x)− y2f2
n(x)− yg2m(x)

r
−

(
xh1

l (x)− y2f1
n(x)− yg1m(x)

) (
xyf1

n(x) + xg1m(x) + yh1
l (x)

)

r3

]
+

ε3

[(
xh1

l (x)− y2f1
n(x)− yg1m(x)

) (
xyf2

n(x) + xg2m(x) + yh2
l (x)

)

r3
+

(
xh2

l (x)− y2f2
n(x)− yg2m(x)

) (
xyf1

n(x) + xg1m(x) + yh1
l (x)

)

r3
−

(
xh1

l (x)− y2f1
n(x)− yg1m(x)

) (
xyf1

n(x) + xg1m(x) + yh1
l (x)

)2

r5

]
+O(ε4)

= εF1(θ, r) + ε2F2(θ, r) + ε3F3(θ, r) +O(ε4).

The explicit expression of F1(θ, r) already has been done in section 3. Now using
the results stated in section 2 we shall apply the second order averaging theory
to the previous differential equation, but for doing that we need that F10(r) = 0.
Therefore, from (5) in what follows we must take

ck = ak−1 = 0 for all k odd.

From section 2 we must compute

(7) F20(r) =
1

2π

∫ 2π

0

(
DrF1(θ, r)

∫ θ

0

F1(t, r)dt+ F2(θ, r)

)
dθ .

Next we calculate the terms of this integral. First we have that

(8)

DrF1(θ, r) = −
l∑

i=2
i even

icir
i−1 cosi+1 θ +

n∑

i=1
i odd

(i+ 1)air
i cosi θ sin2 θ

+

m∑

i=1

ibir
i−1 cosi θ sin θ.
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Since

(9)

∫ θ

0

F1(t, r)dt = −
l∑

j=0
j even

cjr
j

∫ θ

0

cosj+1 tdt+

n∑

j=1
j odd

ajr
j+1

∫ θ

0

cosj t sin2 tdt

+

m∑

j=0

bjr
j

∫ θ

0

cosj t sin tdt

= −
l∑

j=0
j even

cjr
jAj+1(θ) +

n∑

j=1
j odd

ajr
j+1(Aj(θ)−Aj+2(θ))

+

m∑

j=0

1

j + 1
bjr

j
(
1− cosj+1 θ

)
,

where for s odd we have

As(θ) =

∫ θ

0

coss tdt

=

s−2∑

k=1
k odd

(s− k)!

s!

(s− k)2(s− (k − 2))2 · · · (s− 1)2

(s− k)2
sin θ coss−k θ

+
(s− 1)2(s− 3)2 · · · (2)2

s!
sin θ,

see for more details [11].

From the nine main products of DrF1(θ, r)

∫ θ

0

F1(t, r)dt (see (8) and (9)), only

the following four are not zero when we integrate them between 0 and 2π:

(10)

l∑

i=2
i even

m∑

j=0
j even

i

j + 1
cibjr

i+j−1 cosi+j+2 θ−

n∑

i=1
i odd

m∑

j=0
j even

i+ 1

j + 1
aibjr

i+j cosi+j+1 θ sin2 θ−

m∑

i=2
i even

l∑

j=0
j even

ibicjr
i+j−1 cosi θ sin θAj+1(θ)+

m∑

i=2
i even

n∑

j=1
j odd

ibiajr
i+j cosi θ sin θ(Aj(θ)−Aj+2(θ)).

Then the fourth sums of (10) are odd polynomial in the variable r of degree E(l)+
E(m)−1, O(n)+E(m), E(l)+E(m)−1 and O(n)+E(m), respectively. Therefore

(11)
1

2π

∫ 2π

0

(
DrF1(θ, r)

∫ θ

0

F1(t, r)dt

)
dθ
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is an odd polynomial in the variable r of degree max{E(l)+E(m)−1, O(n)+E(m)}.
Hence (11) can contribute at most with

(12)

[
max{E(l) + E(m)− 1, O(n) + E(m)} − 1

2

]

simple positive real roots to the roots of F20(r).

Now we shall study the contribution of
1

2π

∫ 2π

0

F2(θ, r)dθ to F20(r). The first

part

(13)
xh2

l (x)− y2f2
n(x)− yg2m(x)

r
,

of F2(θ, r) (see (6)), contributes at the roots of F20(r) exactly as the function
F1(θ, r) contributes to F10(r); i.e. it contributes at most with

(14)

[
max{O(l), O(n+ 1)} − 1

2

]

simple positive real roots to the roots of F20(r).

Finally we shall study the contribution of the second part

(15)

(
xh1

l (x)− y2f1
n(x)− yg1m(x)

) (
xyf1

n(x) + xg1m(x) + yh1
l (x)

)

r3

of F2(θ, r) to F20(r), which can be written as

(16)

1

r




l∑

i=0
i even

cir
i cosi+1 θ −

n∑

i=1
i odd

air
i+1 cosi θ sin2 θ −

m∑

i=0

bir
i cosi θ sin θ


 ·




n∑

j=1
j odd

ajr
j+1 cosj+1 θ sin θ +

m∑

j=0

bjr
j cosj+1 θ +

l∑

j=0
j even

cjr
j cosj θ sin θ


.

From the nine products between the different sums only four will not be zero after
the integration with respect to θ between 0 and 2π, and two of these four are equal.
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So the terms of (16) which will contribute to F20(r) are

(17)

1

r




l∑

i=0
i even

m∑

j=0
j even

cibjr
i+j cosi+j+2 θ − 2

n∑

i=1
i odd

m∑

j=0
j even

aibjr
i+j+1 cosi+j+1 θ sin2 θ

−
m∑

i=0
i even

l∑

j=0
j even

bicjr
i+j cosi+j θ sin2 θ


 =

1

r




l∑

i=0
i even

m∑

j=0
j even

cibjr
i+j cosi+j θ(cos2 θ − sin2 θ)

−2

n∑

i=1
i odd

m∑

j=0
j even

aibjr
i+j+1 cosi+j+1 θ sin2 θ


.

We note that the integral between 0 and 2π with respect to θ of the term i = j = 0
of the first sum of this last expression is zero. So the result of integrate between 0
and 2π with respect to θ this last expression is an odd polynomial in the variable
r of degree max{E(l) + E(m), O(n) + E(m) + 1}. Consequently the contribution
of (15) to the zeros of F20(r) is at most with

(18)

[
max{E(l) + E(m), O(n) + E(m) + 1} − 1

2

]

simple positive real roots.

In short from (12), (14) and (18), we have that the polynomial F20(r) has at
most [

max{E(l) + E(m), O(n) + E(m) + 1, O(l), O(n+ 1)} − 1

2

]

simple positive real roots. So, from the results of section 2 statement (b) of Theorem
1 is proved.

5. Proof of statement (c) of Theorem 1

Since in this section we must repeat arguments that were used in the previous
two sections, the long proof of this section is less detailed than the previous ones.

In this section we consider the differential systems (6). We write

f2
n(x) =

n∑

i=0

âix
i, g2m(x) =

m∑

i=0

b̂ix
i and h2

l (x) =

l∑

i=0

ĉix
i.

We have obtained explicit expressions of F1(θ, r) and F2(θ, r) in the last sections.
Now using the results stated in section 2, we shall apply the third order averaging
theory to the previous differential equation, but for doing that we must assume
that F20(r) = F10(r) ≡ 0. Therefore, from (5) and (13) we have that

(19) ck = ĉk = ak−1 = âk−1 = 0 for all k odd,



LIÉNARD GENERALIZED SYSTEMS 11

and from (10) and (17) we get that if

either f1
n(x) = h1

l (x) ≡ 0, or g1m(x) ≡ 0,

then F20(r) ≡ 0. These last two conditions are sufficient in order that F20(r) ≡ 0,
but they are not necessary. This explains the inequality of statement (c) instead
of the equalities of the statements (a) and (b). But in any case we will show in
the proof of statement (d) that the inequality becomes equality for some particular
Liénard differential systems. Note that f1

n(x) = h1
l (x) ≡ 0 forces that all the ai’s

and ci’s are zero, while g1m(x) ≡ 0 implies that all the bi’s are zero.

5.1. Case f1
n(x) = h1

l (x) ≡ 0. In this part we shall apply the third order averaging
theory to equation (6), considering f1

n(x) = h1
l (x) ≡ 0 and condition (19). From

section 2 we must calculate

(20)

F30(z) =
1

T

∫ T

0

[1
2
y1(s, z)

T ∂2F1

∂z2
(s, z)y1(s, z) +

1

2

∂F1

∂z
(s, z)y2(s, z)

+
∂F2

∂z
(s, z)y1(s, z) + F3(s, z)

]
ds,

where

(21) y1(t, r) =

m∑

j=0

bj
j + 1

rj(1− cosj+1 t) and

y2(t, r) = 2

m∑

i=1

m∑

j=1

i

j + 1
bibjr

i+j−1

[
1− cosi+1 t

i+ 1
+

cosi+j+2 t− 1

i+ j + 2

]
−

2

l∑

i=0
i even

ĉir
iAi+1(t) + 2

n∑

i=0
i odd

âir
i+1 [Ai+1(t)−Ai+2(t)]+

2

m∑

i=0

b̂ir
i

i+ 1

(
1− cosi+1 t

)
− 2

m∑

i=1

m∑

j=1

bibj
i+ j + 2

ri+j−1
(
1− cosi+j+2 t

)
.

In this case, from (8), we have

∂2F1

∂r2
(t, r) =

m∑

i=2

i(i− 1)bir
i−2 cosi t sin t

Thus all terms of the sums obtained from

(y1(t, r))
2 ∂2F1

∂r2
(t, r)

have sin t. Therefore the integral between 0 and 2π with respect t is zero and this
first part does not contribute to F30. From (8) we have that

∂F1

∂r
(t, r)y2(t, r) =

(
m∑

i=1

ibir
i−1 cosi t sin t

)
y2(t, r).

In this expression the integral between 0 and 2π with respect to t is not zero only in
the sums having terms Ai(t) with i odd. Thus we obtain that this part contribute
to F30(r) with an odd polynomial in the variable r of degree
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(22) max{E(l) + E(m)− 1, O(n) + E(m)}.

From (8) and (21) we obtain that
∂F2

∂r
(t, r)y1(t, r) contribute to F30(r) with an odd

polynomial in the variable r of degree

(23) max{E(l +m)− 1, O(m+ n)}.

Finally, since

F3(t, r) = −2

m∑

i=1

n∑

j=0

biâjr
i+j cosi+j+1 t sin2 t− 2

m∑

i=1

m∑

j=0

bib̂jr
i+j−1 cosi+j+1 t sin t+

2

m∑

i=1

l∑

j=0

biĉjr
i+j−1 cosi+j+2 t−

m∑

i=1

l∑

j=0

biĉjr
i+j−1 cosi+j t+

1

r2

(
m∑

i=1

bir
i cosi t

)3

cos2 t sin t,

only the first, third and fourth sums contributing to F30(r) with an odd polynomial
in the variable r of degree

(24) max{O(m+ n), E(m+ l)− 1}.

Thus from (22),(23) and (24) we have that the polinomial F30(r) has at most

(25)

[
max{O(m+ n), E(m+ l)− 1} − 1

2

]

simple positive real roots.

5.2. Case g1m(x) ≡ 0. From section 2 the expression of F30 includes the terms

∂2F1

∂z2
(s, z) (y1(s, z))

2
,

∂F1

∂z
(s, z)y2(s, z),

∂F2

∂z
(s, z)y1(s, z) and F3(s, z),

that we must integrate between 0 and 2π.

From (8) we have in this case

∂2F1

∂r2
(t, r) = −

l∑

i=2
i even

i(i− 1)cir
i−2 cosi+1 t+

n∑

i=1
i odd

i(i+ 1)air
i−1 cosi t sin2 t.
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From (9) we obtain that

y1(t, r)
2 =

l∑

i=0
i even

l∑

j=0
j even

cicjr
i+jAi+1(t)Aj+1(t)−

2

l∑

i=0
i even

n∑

j=1
j odd

ciajr
i+j+1Ai+1(t) (Aj(t)−Aj+2(t))+

n∑

i=1
i odd

n∑

j=1
j odd

aiajr
i+j+2 (Ai(t)−Ai+2(t)) (Aj(t)−Aj+2(t)).

Therefore

(26)
∂2F1

∂z2
(s, z) (y1(s, z))

2

does not contribute to F30 because all terms of (26) have cos t to odd power.
Now we shall study the contribution of

∂F1

∂z
(s, z)y2(s, z).

We start calculating

y2(s, z) =

∫ s

0

[
∂F1

∂z
(t, z)

∫ t

0

F1(r, z)dr + F2(t, z)

]
dt.

From (8) and (9), we obtain in this case that

∂F1

∂r
(t, r)

∫ t

0

F1(s, r)ds =


−

l∑

i=2
i even

icir
i−1 cosi+1 t+

n∑

i=1
i odd

(i+ 1)air
i cosi t sin2 t





−

l∑

i=0
i even

cir
iAi+1(t) +

n∑

i=1
i odd

air
i+1 (Ai(t)−Ai+2(t))


.

Since Ai(t) can be written as

Ai(t) =

i−1∑

j=0
j even

αj(i) cos
j t sin t,
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we obtain that

∫ t

0

(
∂F1

∂z
(s, z)

∫ s

0

F1(u, z)du

)
ds =

l∑

i=2
i even

l∑

j=0
j even

j∑

k=0
k even

icicjαk(j)r
i+j−1

(
1− cosi+k+2 t

i+ k + 2

)
−

l∑

i=2
i even

n∑

j=1
j odd

j−1∑

k=0
k even

iciajαk(j)r
i+j

(
1− cosi+k+2 t

i+ k + 2

)
+

l∑

i=2
i even

n∑

j=1
j odd

j+1∑

k=0
k even

iciajαk(j)r
i+j

(
1− cosi+k+2 t

i+ k + 2

)
−

n∑

i=1
i odd

l∑

j=0
j even

j∑

k=0
k even

(i+ 1)aicjαk(j)r
i+j ·

[(
1− cosi+k+1 t

i+ k + 1

)
−

(
1− cosi+k+3 t

i+ k + 3

)]
−

n∑

i=1
i odd

n∑

j=1
j odd

j−1∑

k=0
k even

(i+ 1)aiajαk(j)r
i+j+1 ·

[(
1− cosi+k+1 t

i+ k + 1

)
−

(
1− cosi+k+3 t

i+ k + 3

)]

n∑

i=1
i odd

n∑

j=1
j odd

j+1∑

k=0
k even

(i+ 1)aiajαk(j)r
i+j+1 ·

[(
1− cosi+k+1 t

i+ k + 1

)
−

(
1− cosi+k+3 t

i+ k + 3

)]
.

The other term of y2(t, r) is

∫ t

0

F2(s, r)ds = −
l∑

i=0
i even

ĉir
iAi+1(t) +

n∑

i=1
i odd

âir
i+1 (Ai(t)−Ai+2(t))+

m∑

i=0

b̂ir
i

(
1− cosi+1 t

i+ 1

)
+ 2

l∑

i=2
i even

n∑

j=1
j odd

ciajr
i+j

(
1− cosi+j+3 t

i+ j + 3

)
−

n∑

i=1
i odd

l∑

j=2
j even

aicjr
i+j

(
1− cosi+j+1 t

i+ j + 1

)
+

l∑

i=2
i even

l∑

j=2
j even

cicjr
i+j−1

(
1− cosi+j+2 t

i+ j + 2

)
−

n∑

i=1
i odd

n∑

j=1
j odd

aiajr
i+j+1

[(
1− cosi+j+2 t

i+ j + 2

)
−

(
1− cosi+j+4 t

i+ j + 4

)]
.
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From the above we determine that the first part of y2(t, r) does not contribute to
F30(r) and the second part only contribute with the terms

l∑

i=2
i even

m∑

j=0

i

j + 1
cib̂jr

i+j−1 cosi+j+2 t,

and
n∑

i=1
i odd

m∑

j=0

(i+ 1)

j + 1
aib̂jr

i+j
(
cosi+j+1 t− cosi+j+3 t

)
.

Thus the result of integrating both terms with respect to t between 0 and 2π is an
odd polynomial in the variable r of degree

(27) max{E(l) + E(m)− 1, O(n) + E(m)}.
Now we shall study the contribution of term,

∂F2

∂z
(s, z)y1(s, z).

From (6) we obtain that

∂F2

∂r
(t, r) = −

l∑

i=2
i even

iĉir
i−1 cosi+1 t+

n∑

i=1
i odd

(i+ 1)âir
i(1− cos2 t) cosi t+

m∑

i=1

ib̂ir
i−1 cosi t sin t+ 2

l∑

i=2
i even

n∑

j=1
j odd

(i+ j)ciajr
i+j−1 cosi+j+2 t sin t−

n∑

i=1
i odd

l∑

j=2
j even

(i+ j)aicjr
i+j−1 cosi+j t sin t+

l∑

i=2
i even

l∑

j=2
j even

(i+ j − 1)cicjr
i+j−2 cosi+j+1 t sin t−

n∑

i=1
i odd

n∑

j=1
j odd

(i+ j + 1)aiajr
i+j cosi+j+1 t(1− cos2 t) sin t.

From above we determine that the only terms of
∂F2

∂z
(s, z)y1(s, z) contributing to

F30(t) are
l∑

i=0
i even

m∑

j=0

jcib̂jr
i+j−1 cosj t sin tAi+1(t),

and
n∑

i=1
i odd

m∑

j=1

jaib̂jr
i+j cosj t sin t (Ai(t)−Ai+2(t)).

Thus the result of integrating both sums with respect to t is an odd polynomial in
the variable r of degree
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(28) max{E(l) + E(m)− 1, O(n) + E(m)}.
Finally we shall study the contribution of F3(t, r) to F30(r). From the eighteen

terms of F3(t, r), only four will not be zero after integration with respect to t
between 0 and 2π, and two of these four are equal. Thus the terms of F3(t, r)
which contribute to F30(r) are

l∑

i=2
i even

m∑

j=0

cib̂jr
i+j−1 cosi+j+2 t,

n∑

i=1
i odd

m∑

j=0

aib̂jr
i+j cosi+j+1 t(1− cos2 t),

and
l∑

i=2
i even

m∑

j=0

cib̂jr
i+j−1 cosi+j t(1− cos2 t).

Thus the result of integrating between 0 and 2π these three terms is an odd poly-
nomial in the variable r of degree

(29) max{E(l) + E(m)− 1, O(n) + E(m)}.
From (27), (28) and (29), we have that the polynomial F30(r) has at most

(30)

[
max{E(l) + E(m)− 1, O(n) + E(m)} − 1

2

]

simple positive real roots. Thus putting together the results of (25) and (30), taking
into account that
(31)[

O(m+ n)− 1

2

]
=

[
n+m− 1

2

]
and

[
O(n) + E(m)− 1

2

]
≤

[
n+m− 1

2

]
,

and by the results of section 2 statement (c) of Theorem 1 is proved.

6. Proof of statement (d) of Theorem 1

First we need to prove that under the assumptions of statement (a) of Theorem

1 there are Liénard differential systems (3) such that H̃1(l,m, n) is equal to either
[n/2], or [(l − 1)/2]. As we mentioned in the introduction Lins, de Melo and Pugh

showed that there are Liénard differential systems (3) for which H̃1(l,m, n) = [n/2].

Now we shall provide a system for which H̃1(l,m, n) = [(l − 1)/2]. Indeed we
consider the Liénard differential system

(32)
ẋ = y + ε(4x3 − 3x),
ẏ = −x,

with l = 3 and m = n = 0. An easy computation shows that F10(r) = 3r(r2−1)/2.
So from the periodic orbit of radius 1 of the linear center ẋ = y, ẏ = −x, it
bifurcates one limit cycle. Consequently for system (32) we have that H̃1(3, 0, 0) =

[(3− 1)/2] = 1. Hence the two values whose maximum is H̃1(l,m, n) in statement
(a) of Theorem 1 are reached for convenient Liénard differential systems (3).
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Now we shall show that under the assumptions of statement (b) of Theorem 1

there are Liénard differential systems (3) such that H̃2(l,m, n) is equal to

either

[
O(n) + E(m)

2

]
, or

[
O(n+ 1)− 1

2

]
, or

[
E(l) + E(m)− 1

2

]
.

Since [
O(n) + E(m)

2

]
=

[
n− 1

2

]
+

[m
2

]
, and

[
O(n+ 1)− 1

2

]
=

[n
2

]
,

the existence of Liénard differential systems (3) satisfying that

H̃2(l,m, n) =

[
O(n) + E(m)

2

]
, or H̃2(l,m, n) =

[
O(n+ 1)− 1

2

]
,

follows from Theorem 1 and its proof of [19]. Now we shall present a system for

which H̃2(l,m, n) = [(E(l) + E(m) − 1)/2]. We consider the Liénard differential
system

(33)
ẋ = y + ε2x2 + ε2x,
ẏ = −x− εx2,

with l = m = 2 and n = 0. It is not difficult to check that F10(r) ≡ 0 and
F20(r) = r(r2 − 1)/2. Therefore from the periodic orbit of radius 1 of the linear
center ẋ = y, ẏ = −x, it bifurcates one limit cycle. Consequently for system (33)

we have that H̃2(2, 2, 0) = [(E(2)+E(2)− 1)/2] = 1. Hence the three values whose

maximum is H̃2(l,m, n) in statement (b) of Theorem 1 are reached for convenient
Liénard differential systems (3).

Finally we must prove that under the assumptions of statement (c) of Theorem

1 there are Liénard differential systems (3) such that H̃3(l,m, n) is equal to

either

[
O(m+ n)− 1

2

]
, or

[
E(l +m)− 1

2

]
.

From (31) we get that
[
O(m+ n)− 1

2

]
=

[
n+m− 1

2

]
,

therefore the existence of Liénard differential systems (3) satisfying that

H̃3(l,m, n) =

[
O(m+ n)− 1

2

]
,

follows from Theorem 1 and its proof of [19]. Now we shall give a system for which

H̃3(l,m, n) = [(E(l +m)− 1)/2]. We consider the Liénard differential system

(34)
ẋ = y + ε4x2 + ε37x,
ẏ = −x− ε26x2,

with l = m = 2 and n = 0. A tedious but easy computation shows that F10(r) =
F20(r) ≡ 0 and F30(r) = 7r(r2 − 1)/2. Therefore from the periodic orbit of radius
1 of the linear center ẋ = y, ẏ = −x, it bifurcates one limit cycle. Consequently for
system (34) we have that H̃3(2, 2, 0) = [O(2+ 2)− 1)/2] = 1. Hence the two values

whose maximum provides a lower bound for H̃3(l,m, n) in statement (c) of Theorem
1 are reached and coincides with maximum number of limit cycles bifurcating from
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the periodic orbits of the linear center for convenient Liénard differential systems
(3). In short statement (d) Theorem 1 is proved.
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