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Abstract. We apply the averaging theory of first order to study the periodic orbits
of Hamiltonian systems describing an universe filled with a scalar field which possesses
three parameters. The main results are the following.

First, we provide sufficient conditions on the parameters of these cosmological
model, which guarantee that at any positive or negative Hamiltonian level, the Hamil-
tonian system has periodic orbits, the number of such periodic orbits and their sta-
bility change with the values of the parameters. These periodic orbits live in the
whole phase space in a continuous family of periodic orbits parameterized by the
Hamiltonian level.

Second, under convenient assumptions we show the non–integrability of these cos-
mological systems in the sense of Liouville–Arnol’d, proving that cannot exist any
second first integral of class C1.

It is important to mention that the tools (i.e the averaging theory for studying the
existence of periodic orbits and their kind of stability, and the multipliers of these
periodic orbits for studying the integrability of the Hamiltonian system) used here
for proving our results on the cosmological scalar field, can be applied to Hamiltonian
systems with an arbitrary number of degrees of freedom.

1. Introduction and statements of main results

For a good introduction to the cosmological model here studied we suggest to the
reader to look at the paper of Maciejewski et al. [14] and references therein for a
detailed deduction and implications about the importance of this model.

The foundation of homogeneous and isotopic cosmological models is the Friedmann-
Robertson-Walker (FRW) universe, described by the metric

(1) ds2 = a(η)2
[
−dη2 + dr2

1−Kr2
+ r2d2Ω2

]
,

where a is the scalar factor, d2Ω2 is the line element on a two-sphere, and we chose to
use the conformal time η. As it is known from the previous metric, the scalar factor
represents the relative change in the distance of two points whose spatial coordinates
are fixed. It depends only on the time, so that the whole universe is deformed in
a homogeneous fashion. Depending on the matter components one obtains various
evolution of the scalar factor a, as given by the general action

(2) I =
c4

16πG

∫ [
R− 2Λ− 1

2

(
∇αψ∇αψ + V (ψ) + ξR|ψ|2

)
− ρ

]√−gd4x,

where R is the Ricci scalar, Λ is the cosmological constant, V the field’s potential, ξ
the coupling constant and ρ is the density of the perfect fluid. The potential usually
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includes at least a quadratic term m2|ψ|2, where m is the so called mass of the field.
When ξ = 0 we say that the field is minimally coupled-it does not uncouple since the
determinant of the metric g multiplies the whole Lagrangian density. The case when
ξ = 1

6 is the so called conformal coupling. Under geometric assumptions, the above
action can be simplified so that it allows the Hamiltonian approach with the phase
variables depending only on conformal time η. After including an additional matter
component ρ is equivalent to considering different energy levels. Namely for ρ ∝ a−4

(which is the case of radiation) a constant is added to the Hamiltonian, thus imitating
its nonzero value. This is the justification for studying the integrability of these systems
on a generic energy hypersurface.

As was saw in [14] the general action (2) for conformally coupled scalar fields must
includes the following part

(3) I =
c4

16πG

∫ [
R− 2Λ− 1

2

(
∇αψ∇αψ +

m2

~
|ψ|2 + 1

6
R|ψ|2

)
− λ

4!
|ψ|4

]√−gd4x,

where the additional coupling to gravity through the Ricci scalar R, and a quartic
potential term with constant λ are considered. After some algebraic manipulations,
assuming that the constant angular momentum is null, and under the use of convenient
variables the Hamiltonian associated to the action (3) assumes the form

(4) H = H(q1, q2, p1, p2) =
1

2
(−p21+p22)+

1

2

[
k(−q21 + q22) +m2q21q

2
2

]
+

1

4

(
Λq41 + λq42

)
,

with k ∈ {−1, 0, 1} K = k|K| is associated to the index of curvature of the space),
λ,Λ,m2 ∈ R. Notice that the kinetic part is of natural form, albeit indefinite, and the
potential associated is a polynomial of degree four.

In this paper we study the case k = 1, so the Hamiltonian system is given by

(5)

q̇1 = −p1,
q̇2 = p2,
ṗ1 = q1 −m2q1q

2
2 − Λq31 ,

ṗ2 = −q2 −m2q21q2 − λq32.

As usual the dot denotes derivative with respect to the independent variable t ∈ R, the
time. According to [14] we name (5) the conformal coupled scalar field Hamiltonian
systems with three parameters.

The periodic orbits are the most simple non–trivial solutions of a differential system.
Their study is of particular interest because the motion in their neighborhood can be
determined by their kind of stability. Furthermore, if the system is non–integrable in
the sense of Liouville –Arnol’d, the existence of isolated periodic orbits in the energy
levels of a Hamiltonian system with multipliers different from 1 is related with the non-
existence of any second first integral of class C1, so the study of these periodic orbits
for a differential system becomes relevant.

In general is very difficult to study analytically the existence of periodic orbits and the
kind of their stability for a given Hamiltonian system. In this work we use the averaging
method of first order to compute periodic orbits and their kind of stability as it was
established in [7], see Appendix for a summary of this method. This method allows to
find periodic orbits of our cosmological model (5), up to first order in ε, at any non-zero
Hamiltonian level as a function of the parameters λ, Λ and m. Roughly speaking, this
method reduces the problem of finding periodic solutions of some differential system
to the one of finding zeros of some convenient finite dimensional function. In [10] and
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[11] some of us applied these techniques to the Henon–Heiles and to the Yang–Mills
Hamiltonians. As we have mention in the abstract the averaging theory for studying
the existence of periodic orbits and their kind of stability, and the multipliers of these
periodic orbits for studying the integrability of the Hamiltonian system are the tools
used here for proving our results on the cosmological scalar field. We remark that these
tools can be applied to Hamiltonian systems with an arbitrary number of degrees of
freedom.

As we shall see one of the main problems for applying the averaging theory for
studying the periodic orbits of a given differential system is to find the changes of
variables which allow to write the original differential systems in the normal form for
applying the averaging theory. For more details in this direction see the book [22].

Next we will define some subsets of the (λ,Λ)-plane for each nonzero fixed value of
m (see Figure 1-2). The straight lines:

l1 : λ = −m2

3 ;
l2 : λ = −m2;

l3 : Λ = −m2

3 .
l4 : Λ = −m2.

The regions:
R1 : λ < −m2, Λ > −m2, λ+ Λ > −2m2;
R2 : λ > −m2, Λ < −m2, λ+ Λ < −2m2;

R3 : λ < −m2

3 , Λ > −m2

3 , λ+ Λ > −2m2

3 ;

R4 : λ > −m2

3 , Λ < −m2

3 , λ+ Λ < −2m2

3 ;
Ω1 : λ < −m2, Λ > −m2, λ+ Λ < −2m2;
Ω2 : λ > −m2, Λ < −m2, λ+ Λ > −2m2;

Ω3 : λ < −m2

3 , Λ > −m2

3 , λ+ Λ < −2m2

3 ;

Ω4 : λ > −m2

3 , Λ < −m2

3 , λ+ Λ > −2m2

3 .

Also we define the half-lines:

s13 = ∂(R1 ∩R3) ∩ l3;
s31 = ∂(R1 ∩R3) ∩ {λ+ Λ = −2m2

3 };
s24 = ∂(R2 ∩R4) ∩ {λ+ Λ = −2m2};
s42 = ∂(R2 ∩R4) ∩ l1;
s̃13 = ∂(Ω1 ∩ Ω3) ∩ {λ+ Λ = −2m2};
s̃31 = ∂(Ω1 ∩ Ω3) ∩ l3;
s̃24 = ∂(Ω2 ∩ Ω4) ∩ l4;
s̃42 = ∂(Ω2 ∩ Ω4) ∩ {λ+ Λ = −2m2

3 },
where ∂ means boundary.

Our main result about the periodic orbits of the Hamiltonian system (5) is summa-
rized as follows.

Theorem 1. For everym 6= 0 at every positive Hamiltonian level the conformal coupled
scalar field Hamiltonian system (5) has at least

(a1) one periodic orbit if (λ,Λ) ∈ s31 ∪ s42;
(a2) two periodic orbits if (λ,Λ) ∈ s13 ∪ s24 ;
(a3) three periodic orbits if (λ,Λ) ∈ [R1 \ (R1 ∩R3)] ∪ [R2 \ (R2 ∩R4)];
(a4) four periodic orbits if (λ,Λ) ∈ [R3 \ (R1 ∩R3)] ∪ [R4 \ (R2 ∩R4)];
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Figure 1. Regions R1, R2, R3, R4 for h > 0 and m 6= 0.

Figure 2. Regions Ω1,Ω2,Ω3,Ω4 for h < 0 and m 6= 0.

(a5) five periodic orbits if (λ,Λ) ∈ [R1 ∩R3] ∪ [R2 ∩R4].

For m 6= 0 and for every negative Hamiltonian level the conformal coupled scalar field
Hamiltonian system (5) has at least

(b1) one periodic orbit if (λ,Λ) ∈ s̃31 ∪ s̃42;
(b2) two periodic orbits if (λ,Λ) ∈ s̃13 ∪ s̃24 ;
(b3) three periodic orbits if (λ,Λ) ∈ [Ω1 \ (Ω1 ∩ Ω3)] ∪ [Ω2 \ (Ω2 ∩ Ω4)];
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(b4) four periodic orbits if (λ,Λ) ∈ [Ω3 \ (Ω1 ∩ Ω3)] ∪ [Ω4 \ (Ω2 ∩ Ω4)];
(b5) five periodic orbits if (λ,Λ) ∈ [Ω1 ∩ Ω3] ∪ [Ω2 ∩ Ω4].

Theorem 1 is proved in section 2 using the averaging theory.

From Theorem 1 it follows that when m 6= 0 (fixed) and h > 0, we have periodic
solutions in our cosmological model for any choice of the parameters (λ,Λ) /∈ l1 ∪ l2.
The same conclusion holds for the case h < 0 if (λ,Λ) /∈ l3 ∪ l4. Thus combining
these results we obtain that there are four values of the parameters (λ,Λ), namely,

P1 =
(
−m2

3 ,−m2

3

)
∈ l1 ∩ l3, P2 =

(
−m2,−m2

3

)
∈ l2 ∩ l3, P3 =

(
−m2,−m2

)
∈ l1 ∩ l4

and P4 =
(
−m2

3 ,−m2
)
∈ l2 ∩ l4, where our arguments do not guarantee the existence

of periodic solutions for the Hamiltonian system (5).

The periodic solutions of Theorem 1 are of the form

(6)
q1(t) = r∗ cos(t) +O(ε), p1(t) = r∗ sin(t) +O(ε)

q2(t) = ρ∗ cos(−t+ α∗) +O(ε), p2(t) = ρ∗ sin(−t+ α∗) +O(ε),

where r∗, ρ∗, α∗ are functions of the parameters h,m, λ, Λ, and ε is a small parameter
which will be defined later on. In the definition of the following four cases we assume
that m and h are fixed with m h 6= 0.

Families (I): h > 0 and (λ,Λ) /∈ l1 ∪ l2. We have two families of periodic solu-

tions (6) generated by a circle on the plane (q2, p2) with r∗ = 0, ρ∗ =
√
h, α∗ =

±1
2 arccos

(
−2m2+3λ

m2

)
.

Families (II): h < 0 and (λ,Λ) /∈ l3 ∪ l4. We have two families of periodic solutions (6)
but they are generated by a circle on the (q1, p1)-plane with r∗ =

√
−2h, ρ∗ = 0, α∗ =

±1
2 arccos

(
−2m2+3Λ

m2

)
.

Family (III): Either h > 0 and (λ,Λ) ∈ R1 ∪ R3, or h < 0 and (λ,Λ) ∈ Ω1 ∪ Ω2. We
have one parametric family of periodic solutions generated by the periodic solution (6)

with r∗ =
√

− 2h(m2+λ)
2m2+λ+Λ

, ρ∗ =
√

2h(m2+Λ)
2m2+λ+Λ

, α∗ = 0.

Families (IV): Either h > 0 and (λ,Λ) ∈ R2 ∪R4, or h < 0 and (λ,Λ) ∈ Ω2 ∪Ω4. Here
we have two families of periodic solutions generated by the periodic solutions (6) with

r∗ =
√

− 2h(m2+3λ)
2m2+3(λ+Λ)

, ρ∗ =
√

2h(m2+3Λ)
2m2+3(λ+Λ)

, α∗ = ±π
2 .

It is well known that integrable and non–integrable Hamiltonian systems can have
infinitely many periodic orbits. However it is difficult to find a whole family of periodic
orbits in an analytical way, specially if the Hamiltonian system is non–integrable. Here
we find them up to first order in ε. Once we have shown that at any non-zero Hamilton-
ian level there exist periodic orbits, we can use these particular periodic orbits to prove
our second main result about the non–integrability in the sense of Liouville–Arnol’d of
our conformal coupled scalar field Hamiltonian system (5).

Theorem 2. Assume that the conformal coupled scalar field Hamiltonian system (5)
satisfies the assumptions of one of the statements of Theorem 1, and denote by (♯) this
statement. Then, under the assumption of statement (♯),

(a) either the conformal coupled scalar fields Hamiltonian system (5) is Liouville–
Arnol’d integrable and the gradients of the two constants of motion are linearly
dependent on some points of the periodic orbits found in statement (♯) of The-
orem 1,
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(b) or the conformal coupled scalar fields Hamiltonian system (5) is not Liouville–
Arnol’d integrable with any second first integral of class C1.

Theorem 2 is proved in section 3. For a precise definition of the notion of integrability
in the sense of Liouville–Arnol’d, see the Appendix. From now on we shall use the
definition of integrability in the sense of Liouville-Arnol’d.

We must mention that in general to study the non–integrability of a Hamiltonian
system, in our case the existence of an additional second first integral independent of
the Hamiltonian, it is very hard, and of course numerically this is not possible to detect,
see for instance [2].

In section 4 we characterize the stability or instability of each family of periodic
orbits on each Hamiltonian level h 6= 0, again using the averaging method. The main
result on the stability or instability of the periodic orbits is the following.
Theorem 3. The stability or instability of the families of periodic orbits (6) on each
level h of the Hamiltonian system (5) is as follows.

(a) The two families (I) are linearly stable in the regions I1 : λ > −m2 and
I3 : λ < −3m2, and are unstable in the region I2 : −3m2 < λ < −m2.

(b) The two families (II) are linearly stable in the regions II1 : Λ > −m2

3 and

II3 : Λ > −m2, and are unstable in the region II2 : −m2 < Λ < −m2

3 .
(c) The family (III) with h > 0 (resp. h < 0) in the region R1 (resp. Ω1) is

unstable (resp. linearly stable), while in the region R2 (resp. Ω2) is linearly
stable (resp. unstable).

(d) The two families (IV) with h > 0 (resp. h < 0) in the region R3 (resp. Ω3) are
linearly stable (resp. unstable), while in the region R4 (resp. Ω4) are unstable
(resp. linearly stable).

The proof of Theorem 3 is given in section 4.

Kovalevskaya’s idea and consequently Ziglin’s and Morales-Ramis’ theory go back
to Poincaré (see Arnol’d [4]), who used the multipliers of the monodromy group of the
variational equations associated to periodic orbits for studying the non–integrability
of the differential equations. Poincaré’s method allows to prove under convenient as-
sumptions that the non Liouville–Arnol’d integrable systems have not any second first
integral of class C1. See Appendix for more details. The main difficulty for applying the
Poincaré non–integrability method to a given Hamiltonian system is to find for such a
system periodic orbits having multipliers different from 1. It seems that this result of
Poincaré was forgotten by the mathematical community until modern Russian mathe-
maticians (mainly Kozlov) have recently published on it, see [4, 13]. Here we will apply
the Poincaré criterion to the motion of our cosmological system (5), and we will show
that either its motion is integrable and the two constants of motion have dependent
gradients along the periodic orbits found in Theorem 1, or it is not Liouville–Arnol’d
integrable with any second first integral of class C1. Of course for applying the Poincaré
non–integrability theory to Hamiltonian systems (5), we need to study some of the pe-
riodic orbits of these systems and to compute their multipliers. For doing that we shall
use the averaging theory, see the Appendix.

Our proof on the non Liouville–Arnol’d integrability uses isolated periodic orbits in
the energy levels, the Holmes’ proof (see [9]) uses transverse homoclinic orbits. It is
important to remark that both our method and Holmes’s method work for Hamiltonian
systems which are close to integrable systems, but as we will see after a rescaling of
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the variables all systems (5) are close to integrable ones. The proof of Theorem 2
uses Theorem 1, and we obtain this last theorem perturbing an integrable Hamiltonian
system, more precisely perturbing its quadratic part which of course is integrable.

Other interesting criterion on non–integrability also related with a Poincare’s result
was used by Meletlidou and Ichtiarouglou [16, 17, 18]. They consider perturbed Hamil-
tonian systems of the form H = H0 + εH1 , where H0 is a non-degenerate integrable
Hamiltonian, and they show that some properties of the average value of the perturb-
ing function H1, evaluated along the non-isolated periodic orbits of H0, are strongly
connected with the non-integrability of the perturbed system. However this criterion
cannot be applied to the Hamiltonian system (5) because it is degenerated.

There are two known cases where the Hamiltonian system (5) has an additional first
integral, functionally independent of the Hamiltonian H. They were found by applying
the so called ARS algorithm based on the Painlevé analysis [1]. The additional first
integral of the system is

• C = p1p2 +
1
3 [m

2(q22 − q21)− 3] if λ = Λ = −m2

3 with m 6= 0,

• C = q1p2 + q2p1 if λ = Λ = −m2 with m 6= 0.

In the first integrable case (λ,Λ) =
(
−m2

3 ,−m2

3

)
= P1 ∈ l1 ∩ l3, and in the second

case the point (λ,Λ) = (−m2,−m2) = P3 ∈ l2 ∩ l4. As we have mentioned after
the statement of Theorem 1 in both points we cannot prove the existence of periodic
solutions for the Hamiltonian system (5).

In [14] it is proved that the above two cases are the only meromorphically integrable
cases of the Hamiltonian system (5) when m 6= 0. In fact, in order to prove the non-
existence of an additional meromorphic first integral on a non-zero Hamiltonian level
the authors applied the Morales-Ramis theory (see [19] or [20]). Notice that the non-
integrability in this case is based in the non-existence of any additional meromorphic
first integral in the sense of Liouville-Arnold. Our results are on the non-integrability
in the sense of Liouville-Arnold for any second first integral of class C1. In [6] and [8]
also the problem of non-existence of any additional meromorphic first integral in the
Hamiltonian system (5) was considered.

Similar studies to the one done here for the cosmological coupled scalar field (5)
about periodic orbits and their nonintegrability have been done for Yang-Mills, the
Hénon-Heiles and the Armbruster-Guckenheimer-Kim Hamiltonians, see [10], [11] and
[12], respectively.

2. Proof of Theorem 1

For proving Theorem 1 we shall apply Theorem 6 to the Hamiltonian system (5).
Generically the periodic orbits of a Hamiltonian system with more than one degree of
freedom are on cylinders fulfilled of periodic orbits. Therefore we cannot apply directly
Theorem 6 to a Hamiltonian system, since the Jacobian of the function f at the fixed
point a will be always zero. Then we must apply Theorem 6 to every Hamiltonian
fixed level where the periodic orbits generically are isolated. Recall that the integrable
Hamiltonian systems in the sense of Liouville–Arnol’d are non–generic, see [15].

On the other hand in order to apply Theorem 6 we need a small parameter ε. So
in the Hamiltonian system (5) we change the variables (q1, q2, p1, p2) to (X,Y, pX , pY )
where q1 =

√
εX, q2 =

√
εY , p1 =

√
εpX and p2 =

√
εpY . Since this change of
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coordinates is ε−1-symplectic, the Hamiltonian function in these new variables assumes
the form

(7) H =
1

2
(−p2X + p2Y ) +

1

2
(−X2 + Y 2) + ε

(
m2

2
X2Y 2 +

1

4
[ΛX4 + λY 4]

)
,

and system (5) becomes

(8)

Ẋ = −pX ,
Ẏ = pY ,
ṗX = X − ε

(
m2XY 2 + ΛX3

)
,

ṗY = −Y − ε
(
m2X2Y + λY 3

)
.

As the change of variables is only a scale transformation, for all ε different from zero,
the original and the transformed systems (5) and (8) have essentially the same phase
portrait, and additionally system (8) for ε sufficiently small is close to an integrable
one

First we change the Hamiltonian (7) and the equations of motion (8) to convenient
polar coordinates in such a way that for ε = 0 we have a pair of harmonic oscillators.
Thus we consider the change of variables

X = r cos θ, pX = r sin θ, Y = ρ cos(−θ + α), pY = ρ sin(−θ + α),

with (r, θ, ρ, α) ∈ R+×S1×R+×S1. Recall that this is a change of variables when r > 0
and ρ > 0, also as this change of coordinates is not canonical, we lost the Hamiltonian
structure of the differential equations. Moreover doing this change of variables appear
in the system the angular variables θ and α. Later on the variable θ will be used for
obtaining the periodicity necessary for applying the averaging theory.

The fixed value of the Hamiltonian level h in polar coordinates is
(9)

h =
1

2
(−r2+ρ2)+ε

(
m2

2
r2ρ2 cos2 θ cos2(−θ + α) +

1

4
[Λr4 cos4 θ + λρ4 cos4(−θ + α)]

)
,

and the equations of motion are given by

(10)

ṙ = −εr cos θ sin θ
[
m2ρ2 cos2(−θ + α) + Λr2 cos2 θ

]
,

ρ̇ = −ερ cos(−θ + α) sin(−θ + α)
[
m2r2 cos2 θ + λρ2 cos2(−θ + α)

]
,

θ̇ = 1− ε cos2 θ
[
m2ρ2 cos2(−θ + α) + Λr2 cos2 θ

]
,

α̇ = ε
[
−m2(r2 + ρ2) cos2 θ cos2(−θ + α)− Λr2 cos4 θ − λρ2 cos4(−θ + α)

]
.

Remember that the derivatives of the left hand side of these equations are with respect
to the time variable t, which is not periodic. As for ε sufficiently small θ̇ > 0 we
can change to the θ variable as the independent one, and we denote by a prime the
derivative with respect to θ. The angular variable α cannot be used as the independent
variable since the new differential system would not have the form (21) for applying
Theorem 6.
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Fixing the value of the first integral at h such that 2h + r2 > 0, and by solving
equation (9) for ρ, and expanding ρ in Taylor series of first order in ε we obtain
(11)

ρ =
√
2h+ r2 + ε

{
1

32
√
2h+r2

[−(2h+ r2)(6hλ + [4m2 + 3λ]r2)− 3Λr4 − (Λr4 + λ[2h+ r2]2 cos(4α)) cos(4θ)

−4(2h + r2)(2hλ+ [m2 + Λ]r2) sin(2θ) sin(2α) − 4r2 cos(2θ)
(
2hm2 + (m2 +Λ)r2

+m2(2h+ r2) sin(2α) sin(2θ)
)
− 2(2h + r2) cos(2α)

(
2 cos(2θ)[2hλ

+(m2 + λ)r2 +m2r2 cos(2θ)] +m2r2 cos(2θ) + λ(2h + r2) sin(2α) sin(4α)
)}

+O(ε2).

If we write the differential equations of r′ and α′ and substituting into the expression
of ρ given by (11), and expanding in Taylor series in powers of ε, we obtain the two
differential equations

(12)

r′ = −εr cos θ sin θ
[
Λr2 cos2 θ +m2(2h+ r2) cos2(−θ + α)

]
+O(ε2),

α′ = ε
[
− Λr2 cos4 θ − λ(2h+ r2) cos4(−θ + α)

−2m2(h+ r2) cos2 θ cos2(−θ + α)
]
+O(ε2).

Clearly system (12) satisfies the assumptions of Theorem 6, and it has the form (21)
with F1 = (F11, F12), where

F11 = −r cos θ sin θ
[
Λr2 cos2 θ +m2(2h+ r2) cos2(−θ + α)

]
,

F12 = −Λr2 cos4 θ − λ(2h+ r2) cos4(−θ + α)− 2m2(h+ r2) cos2 θ cos2(−θ + α).

The functions F11 and F12 are analytical. Furthermore they are 2π-periodic in the
variable θ, the independent variable of system (12). In order to apply the averaging
theory of first order we must calculate the following averaged functions of F11 and F12

(13)

f1(r, α) =
1
2π

∫ 2π

0
F11dθ

= −m2

8 r(2h+ r2) sin(2α),

f2(r, α) =
1
2π

∫ 2π

0
F12dθ

= −1
8

[
h(4m2 + 6λ) + r2(4m2 + 3(λ+Λ)) + 2m2(h+ r2) cos(2α)

]
.

We compute the real solutions (r∗, α∗) of f1(r, α) = f2(r, α) = 0. It is important to

remember that at order 0 in ε we have ρ =
√
2h+ r2. After some computations and

since r and ρ cannot be simultaneously zero, we get the solutions:

(I) r∗ = 0, α∗ = ±1
2 arccos

(
−2m2+3λ

m2

)
. Then ρ∗ =

√
2h which give us the restric-

tion h > 0, and m 6= 0.

(II) r∗ =
√
−2h, α∗ = ±1

2 arccos
(
−2m2+3Λ

m2

)
. Then ρ∗ = 0 and we have the restric-

tion h < 0 and m 6= 0.

(III) r∗ =
√
− 2h(m2+λ)

2m2+λ+Λ , α
∗ = 0. Then ρ∗ =

√
2h(m2+Λ)
2m2+λ+Λ we have the restriction

h(m2 + λ)(2m2 + λ+ Λ) < 0 and h(m2 +Λ)(2m2 + λ+ Λ) > 0.
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(IV) r∗ =
√

− 2h(m2+3λ)
2m2+3(λ+Λ)

, α∗ = ±π
2 . Then ρ∗ =

√
2h(m2+3Λ)
2m2+3(λ+Λ)

we have the restric-

tion h(m2 + Λ)(2m2 + 3(λ+ Λ)) < 0 and h(m2 + 3Λ)(2m2 + 3(λ+ Λ)) > 0.

Notice that in each solution (r∗, α∗) the Hamiltonian level h must be non null.

Now we will check the Jacobian

(14) |Dr,α(f1, f2)|(r∗,α∗).

The Jacobian (14) of each solution (I) is

(15)
3

8
h2(m2 + λ)(m2 + 3λ),

which is not zero if λ 6= −m2 and λ 6= −m2

3 . Therefore, if we eliminate the two straight
lines l1 and l2 in the (λ,Λ)-plane, we guarantee the existence of these two families of
periodic solutions (I) when m 6= 0 and h > 0.

In case (II) the Jacobian is

(16)
3

4
h2(m2 + Λ)(m2 + 3Λ),

which is not zero if Λ 6= −m2 and Λ 6= −m2

3 . Therefore if we eliminate the two straight
lines l3 and l4 in the (λ,Λ)-plane, we guarantee the existence of these two families of
periodic solutions (II) when m 6= 0 and h < 0.

In case (III) the Jacobian is

(17)
3

4
m2h2

(m2 + λ)(m2 +Λ)

2m2 + λ+ Λ
,

which is not zero if m 6= 0 because the existence of the solution in this case already

implies that (m2+λ)(m2+Λ)
2m2+(λ+Λ)

6= 0. In this case in the regions R1 and R2 we can guarantee

the existence of this family of periodic solutions when h > 0. Similarly if h < 0 the
existence of two periodic solutions is for the regions Ω1 and Ω2.

Finally for the case (IV) the Jacobian is equal to

(18) −3

4
m2h2

(m2 + 3λ)(m2 + 3Λ)

2m2 + 3(λ+ Λ)
,

as previously it is not zero if m 6= 0. Then in the regions R3 and R2 we can guarantee
the existence of these two families of periodic solutions when h > 0. Similarly if h < 0
the existence of two periodic solutions is for the regions Ω3 and Ω4.

Summarizing, from Theorem 6 each solution of f1(r, α) = f2(r, α) = 0 provides a
periodic orbit of system (12) (and consequently of the Hamiltonian system (8) on the
Hamiltonian level h > 0 or h < 0 according a carefully analysis of the previous solutions
taking into account the lines l1, l2, l3, l4 and the regions R1, R2, R3, R4,Ω1,Ω2,Ω3,Ω4.

Notice that there are two periodic orbits if the solutions of case (I) exist; there are two
periodic orbits if the solutions of case (II) exist; there is one periodic orbit if the solution
of (III) exists, and there are two periodic orbits if the solutions of case (IV) exist. Now
analyzing all the possible combinations, in fact, the possible intersections between the
regions R1 and R3; R2 and R4 and the half-lines sij we obtain the conclusion for the
case h > 0. For example, if we take parameters in the region R1∩R3 we have 5 periodic



PERIODIC SOLUTIONS AND NON–INTEGRABILITY IN A COSMOLOGICAL MODEL 11

orbits and if we take parameters in the half-line s13 we obtain the existence of only one
periodic orbit (see Figure 1). In a similar way we analyze the case h < 0 (see Figure 2).

In this way, we obtain the existence of one, two, three, fourth or five periodic orbits
for positive and negative values of the Hamiltonian level h if the solutions in case
(I)-(IV) exists. Now the statements of Theorem 1 follow easily.

In the next section we will use the existence of these periodic orbits with multipliers
different from 1 to study the non–integrability of the Hamiltonian system (8).

3. Proof of Theorem 2

We assume that we are under the assumptions of Theorem 1, and that one of the
founded periodic orbits corresponding to the solutions of cases (I)-(IV) exist. Their
associated Jacobians (15)-(18) are different from 1 playing with the energ level h. Since
these Jacobians are the product of the four multipliers of these periodic orbits with two
of them always equal to 1, the remainder two multipliers cannot be equal to 1. For more
details on the computations of the multipliers see the last part of the Appendix. Hence
under the assumptions of Theorem 1, by Theorem 5, either the conformal coupled
field Hamiltonian systems cannot be Liouville–Arnol’d integrable with any second first
integral C, or the system is Liouville-Arnol’d integrable and the differentials of H and
C are linearly dependent on some points of these periodic orbits. Therefore the theorem
is proved.

4. Proof of Theorem 3
For the family (I) we have that the eigenvalues of the averaged system (12) associated

the point (r∗ = 0, α∗) are

λ1 = −
√
3π

h

m2

√
−(m2 + λ)(m2 + 3λ), λ2 = −λ1.

In particular, in the regions I1 and I3 the eigenvalues are imaginary pure so we can
only affirm that the family of periodic orbits is linearly stable. While in the region I2
the eigenvalues are real, then the family of periodic orbits is unstable.

In the case of the family (II) we have a similar result. In fact, the eigenvalues are

λ1 = −
√
3π

h

m2

√
−(m2 + Λ)(m2 + 3Λ), λ2 = −λ1.

In the regions II1 and II3 the family of periodic orbits is linearly stable. While in the
region II2 the family of periodic orbits is unstable.

The eigenvalues of family (III) are

λ1 = −
√
3π|h||m|

√
−(m2 + λ)(m2 + λ)

2m2 + λ+ Λ
, λ2 = −λ1.

For h > 0 (resp. h < 0) in the region R1 (resp. Ω1) the family of periodic orbits is
unstable (resp. linearly stable) while in the region R2 (resp. Ω2) is linearly stable (resp.
unstable).

Finally, for the families (IV) the eigenvalues are

λ1 = −π|h||m|
√

(m2 + 3λ)(m2 + 3λ)

2m2 + 3(λ+ Λ)
, λ2 = −λ1.
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Thus for h > 0 (resp. h < 0) in the region R3 (resp. Ω3) the family of periodic orbits
is linearly stable (resp. unstable) while in the region R4 (resp. Ω4) is unstable (resp.
linearly stable).

In conclusion, we have proved Theorem 3.

5. Conclusions

We have used two important tools in the area of dynamical systems. First the
averaging method for studying the existence of periodic orbits and their stability of the
Hamiltonian systems (5) in their Hamiltonian levels. The main results are summarized
in Theorem 1 about the existence and in Theorem 3 about the type of stability of each
family of periodic orbits. The second tool allows to study the non–integrability in the
sense of Liouville–Arnol’d of the Hamiltonian systems (5), for any second first integral
of class C1, see Theorem 2.

It is important to remark that these two tools are based in the study of the periodic
orbits via the averaging method, and that this method needs a small parameter, which
is easy to obtain if we study Hamiltonian systems near integrable ones in the sense
of Liouville–Arnol’d. However, the scale transformation introduced in the section 2
does not change the topology of the system, thus these results are valid for all ε, and
in particular for ε = 1. The two Hamiltonian systems (5) and (8) with ε 6= 0 have
qualitatively the same phase portrait.

6. Appendix

6.1. Liouville–Arnol’d Theorem. In this section we summarize some facts on the
Liouville–Arnol’d integrability of the Hamiltonian systems, and on the theory of the
periodic orbits of the differential equations, for more details see [3, 5] and the subsection
7.1.2 of [5], respectively. We present these results for Hamiltonian systems of two
degrees of freedom, because we are studying a Hamiltonian system with two degrees
of freedom associated to the motion of our Hamiltonian system associated for the
conformally coupled scalar fields, but these results work for an arbitrary number of
degrees of freedom.

We recall that a Hamiltonian system with Hamiltonian H of two degrees of freedom
is integrable in the sense of Liouville–Arnol’d if it has a first integral C independent
with H (i.e. the gradient vectors of H and C are independent in all the points of the
phase space except perhaps in a set of zero Lebesgue measure), and in involution with
H (i.e. the parenthesis of Poisson of H and C is zero). For Hamiltonian systems with
two degrees of freedom the involution condition is redundant, because the fact that
C is a first integral of the Hamiltonian system, implies that the mentioned Poisson
parenthesis is always zero. A flow defined on a subspace of the phase space is complete
if its solutions are defined for all time.

Now we shall state the Liouville–Arnol’d Theorem restricted to Hamiltonian systems
of two degrees of freedom.

Theorem 4. Suppose that a Hamiltonian system with two degrees of freedom defined
on the phase space M has its Hamiltonian H and the function C as two independent
first integrals in involution. If Ihc = {p ∈ M : H(p) = h and C(p) = c} 6= ∅ and (h, c)
is a regular value of the map (H,C), then the following statements hold.

(a) Ihc is a two dimensional submanifold of M invariant under the flow of the
Hamiltonian system.
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(b) If the flow on a connected component I∗hc of Ihc is complete, then I∗hc is diffeo-
morphic either to the torus S1 × S1, or to the cylinder S1 × R, or to the plane
R2. If I∗hc is compact, then the flow on it is always complete and I∗hc ≈ S1 × S1.

(c) Under the hypothesis (b) the flow on I∗hc is conjugated to a linear flow on S1×S1,
on S1 × R, or on R2.

The main result of this theorem is that the connected components of the invariant
sets associated with the two independent first integrals in involution are generically
submanifolds of the phase space, and if the flow on them is complete then they are
diffeomorphic to a torus, a cylinder or a plane, where the flow is conjugated to a linear
one.

Using the notation of Theorem 4 when a connected component I∗hc is diffeomorphic
to a torus, either all orbits on this torus are periodic if the rotation number associated
to this torus is rational, or they are quasi-periodic (i.e. every orbit is dense in the torus)
if the rotation number associated to this torus is not rational.

We consider the autonomous differential system

(19) ẋ = f(x),

where f : U → Rn is C2, U is an open subset of Rn and the dot denotes the derivative
respect to the time t. We write its general solution as φ(t, x0) with φ(0, x0) = x0 ∈ U
and t belonging to its maximal interval of definition.

We say that φ(t, x0) is T -periodic with T > 0 if and only if φ(T, x0) = x0 and
φ(t, x0) 6= x0 for t ∈ (0, T ). The periodic orbit associated to the periodic solution
φ(t, x0) is γ = {φ(t, x0), t ∈ [0, T ]}. The variational equation associated to the T -
periodic solution φ(t, x0) is

(20) Ṁ =

(
∂f(x)

∂x

∣∣∣
x=φ(t,x0)

)
M,

where M is an n × n matrix. The monodromy matrix associated to the T -periodic
solution φ(t, x0) is the solution M(T, x0) of (20) satisfying that M(0, x0) is the identity
matrix. The eigenvalues λ of the monodromy matrix associated to the periodic solution
φ(t, x0) are called the multipliers of the periodic orbit.

For an autonomous differential system, one of the multipliers is always 1, and its
corresponding eigenvector is tangent to the periodic orbit.

A periodic solution of an autonomous Hamiltonian system always has two multipliers
equal to one. One multiplier is 1 because the Hamiltonian system is autonomous, and
another is 1 due to the existence of the first integral given by the Hamiltonian.

Theorem 5. If a Hamiltonian system with two degrees of freedom and Hamiltonian H
is Liouville–Arnol’d integrable, and C is a second first integral such that the gradients
of H and C are linearly independent at each point of a periodic orbit of the system,
then all the multipliers of this periodic orbit are equal to 1.

Theorem 5 is due to Poincaré [21], section 36. It gives us a tool to study the
non Liouville–Arnol’d integrability, independently of the class of differentiability of the
second first integral. The main problem for applying this theorem is to find periodic
orbits having multipliers different from 1.
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6.2. Averaging Theory of First Order. Now we shall present the basic results from
averaging theory that we need for proving the results of this paper.

The next theorem provides a first order approximation for the periodic solutions of a
periodic differential system, for the proof see Theorems 11.5 and 11.6 of Verhulst [23].

Consider the differential equation

(21) ẋ = εF1(t,x) + ε2F2(t,x, ε), x(0) = x0

with x ∈ D, where D is an open subset of Rn, t ≥ 0. Moreover we assume that
both F1(t,x) and F2(t,x, ε) are T−periodic in t. We also consider in D the averaged
differential equation

(22) ẏ = εf1(y), y(0) = x0,

where

f1(y) =
1

T

∫ T

0
F1(t,y)dt.

Under certain conditions, equilibrium solutions of the averaged equation turn out to
correspond with T−periodic solutions of equation (21).

Theorem 6. Consider the two initial value problems (21) and (22). Suppose:

(i) F1, its Jacobian ∂F1/∂x, its Hessian ∂
2F1/∂x

2, F2 and its Jacobian ∂F2/∂x are
defined, continuous and bounded by a constant independent of ε in [0,∞) ×D
and ε ∈ (0, ε0].

(ii) F1 and F2 are T−periodic in t (T independent of ε).

Then the following statements hold.

(a) If p is an equilibrium point of the averaged equation (22) and

det

(
∂f1
∂y

)∣∣∣∣
y=p

6= 0,

then there exists a T−periodic solution ϕ(t, ε) of equation (21) such that ϕ(0, ε) →
p as ε→ 0.

(b) The stability or instability of the limit cycle ϕ(t, ε) is given by the stability or
instability of the equilibrium point p of the averaged system (22). In fact the
singular point p has the stability behavior of the Poincaré map associated to the
limit cycle ϕ(t, ε).

We point out the main facts in order to prove Theorem 6(b), for more details see
section 6.3 and 11.8 in [23]. Suppose that ϕ(t, ε) is a periodic solution of (21) cor-
responding to y = p an equilibrium point of the averaged system (22). Linearizing
equation (21) in a neighborhood of the periodic solution ϕ(t, ε) we obtain a linear
equation with T -periodic coefficients

(23) ẋ = εA(t, ε)x, A(t, ε) =
∂

∂x
[F (1(t, x)− F2(t, x, ε)]|x=ϕ(t,ε).

We introduce the T -periodic matrices

B(t) =
∂F1

∂x
(t, p), B1 =

1

T

∫ T

0
B(t)dt, C(t) =

∫ t

0
(B(s)−B1)ds.

From Theorem 6 we have

lim
ε→0

A(t, ε) = B(t),
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and it is clear that B1 is the matrix of the linearized averaged equation. The matrix C
has average zero. The near identity transformation

(24) x 7−→ y = (I − εC(t))x,

permits to write (23) as

(25) ẏ = εB1y + ε[A(t, ε) −B(t)]y +O(ε2).

Notice that A(t, ε) − B(t) → 0 as ε → 0, and also the characteristic exponents of
equation (25) depend continuously on the small parameter ε. It follows that, for ε
sufficiently small, if the determinant of B1 is not zero, then 0 is not an eigenvalue of
the matrix B1 and then it is not a characteristic exponent of (25). By the near-identity
transformation we obtain that system (23) has not multipliers equal to 1.
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Physica D 71 (1994), 261-268.

[17] Meletlidou E. and Ichtiaroglou S., On the number of isolating integrals in perturbed Hamiltonian
system with n ≥ 3 degrees of freedom, J. Phys. A: Math. Gen. 27 (1994), 3919-3926.



16 J. LLIBRE AND C.VIDAL

[18] Meletlidou E., Stagika G. and Ichtiaroglou S., Non-integrability and structure of the resonance
zones in a class of galactic potentials, Cel. Mech. and Dyn. Astron. 91 (2005), 323-335.

[19] Morales-Ruiz J.J., Differential Galois Theory and non-integrability of Hamiltonian systems,
Progress in Math. Vol. 178, Birkhauser, Verlag, Basel, 1999.
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