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Abstract. In this article we establish an interaction between non-
smooth systems, geometric singular perturbation theory and synchro-
nization phenomena. We find conditions for a non-smooth vector fields
be locally synchronized. Moreover its regularization provide a singular
perturbation problem with attracting critical manifold. We also state a
result about the synchronization which occurs in the regularization of
the fold-fold case. We restrict ourselves to the 3-dimensional systems
(` = 3) and consider the case known as a T-singularity.

1. Introduction

The main goal of this paper is to establish an interaction between three
important themes of the qualitative theory of non-smooth dynamical sys-
tems:

• synchronization phenomena,
• sliding vector fields (also known as Filippov systems) and
• singular perturbation.

Synchronization of dynamical systems has lately been an object of in-
terest of many researchers from many areas as electrical and mechanical
engineering, biology, and physics (see for instance [5]). The concept of syn-
chronization used in this paper was inspired by Chow and Liu [4]. Let
U ⊆ R` be an open set and X : U → R` be a Cr vector field, with r ≥ 1,
defining the dynamical system

(1) ẋ = X(x).

As usual ϕ(t, x0) denotes the solution of system (1) satisfying ϕ(0, x0) = x0.
We say that system (1) isM-synchronized if there exists a continuous map
G : U ⊆ R` → R such that M = G−1(0) and lim

t→∞
G(ϕ(t, x0)) = 0, for any

x0 ∈ U . There are many mathematical methods to study synchronization in
dynamical systems.

Example 1. If p ∈ R` is an asymptotically stable equilibrium point of (1),
then there exists U ⊆ R` such that for any q ∈ U we have that lim

t→∞
ϕ(t, q) =

p. Thus taking G(x) = ||x−p|| we have that (1) isM–synchronized at U with
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M = G−1(0) = {p}. In particular if we have a Liapunov function V then
the synchronization occurs. However, sometimes it is difficult to prove that
V̇ < 0. Rodrigues [1] presented a general version of the invariance principle
in which the derivative of the Liapunov function is not required.

Example 2. If M ⊆ R2 is a stable or semi-stable limit cycle of X then fol-
lowing our approach it is possible to get a M–synchronization phenomenon.
See for instance [13]. In particular the averaging method offers an algorithm
to detect existence of limit cycles.

Example 3. We point out that if the smoothness conditions are dropped
synchronization phenomenon can also occur. Consider the piecewise smooth
vector field on the plane given by

X(x, y) =

{
X+(x, y) = (−y,−x) if y > 0,
X−(x, y) = (−1, 1) if y < 0.

The system is M–synchronized with M = G−1(0) and

G(x, y) =

{
y + x if x ≤ 0,
y if x > 0.

See figure 1.

x
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y

Figure 1. M–Synchronized discontinuous vector field. The
bold line is the set M .

Now we illustrate how the singular perturbation techniques can be useful
in the investigation of synchronization problems.

Example 4. Consider the two parameter family of vector fields Xε,ψ on the
plane given by

Xε,ψ(x, y) = (xy + ε(sinψ + f(x, y, ε)), xy + ε(cosψ + g(x, y, ε))

where ψ ∈ (π4 ,
π
2 ), ε ≥ 0, f(0, 0, 0) = g(0, 0, 0) = 0 and with f, g of class

C∞. Observe that the singular set of X0,0 is represented by the equation
xy = 0. The study of the phase portrait for ε > 0 but small can be made
by considering center manifolds along the curve of zeroes. We refer [7] for
the details of the technique called “family blow up” that will be used here.
There exists a regular trajectory γ which divides the plane in two open sets
having γ like a common boundary. Moreover, on each one of these open
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sets the system is locally synchronized. The process produces a limiting
surface composed by the disc D(0, 1) =

{
x ∈ R2; |x| ≤ 1

}
and by the plane

R2 \ {(0, 0)}. The dynamics on D(0, 1) is the dynamics of the system

ẋ = xy + sin(ψ), ẏ = xy + cos(ψ).

We provide the global phase portrait of this system in the Poincaré ball (i.e.
in the compactification of R2 with the sphere S1 of the infinity). The phase
portrait is drawn by the programme P4 and it is illustrated in figure 2, for
details see [6]. In polar coordinates x = r cos θ, y = r sin θ, Xε,ψ takes the
form

ṙ = r2(cos2 θ sin θ + sin2 θ cos θ) + ε(cos θ(sinψ + f) + sin θ(cosψ + g)),

θ̇ = r(cos2 θ sin θ − sin2 θ cos θ) + ε
r (− sin θ(sinψ + f) + cos θ(cosψ + g)).

Moreover we consider ε = 0 and define Y0,ψ =
X0,ψ

r . The rays θ = 0, π/2, π
and 3π/2 are composed by equilibrium points and the rays θ = π/4 and
θ = 5π/4 are invariant by the flow. Thus the phase portrait of the limiting
system is illustrated on Figure 2. Using the geometric singular perturbation
theory we have that the phase portrait of Xε,ψ, for ψ ∈ (π4 ,

π
2 ) and ε > 0

small, is illustrated in figure 2.

y

x

y

x

Figure 2. Phase portrait of the limiting system and the
phase portrait of Xε,ψ, for ψ ∈ (π4 ,

π
2 ) and ε > 0 small. The

bold line divides the plane in two open sets. On each one of
the open sets the system is locally synchronized.

It is worth mentioning that there are some results on synchronization in
the framework of invariant manifold theory. Normal hyperbolicity and its
persistence can be applied to get general results on synchronization. In [4]
it is proved that if M is an invariant set and all Lyapunov exponents on M
are negative, then the system is M–synchronized.

The paper is organized as follows. In Section 2 we present basic facts and
definitions about non–smooth dynamical systems. In Section 3 we state our
main results. In Section 4 we prove the main results.
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2. Non–smooth dynamical systems

Let U ⊆ R` be an open subset with 0 ∈ U . A non-smooth dynamical
system can be considered as a pair of differential systems in the following
way. Consider a Cr map H : U ⊆ R` → R satisfying that H(0) = 0
and ∇H(0) 6= 0. Thus we can assume that Σ = {p ∈ U ;H(p) = 0} is
a smooth submanifold through 0. Denote Σ+ = {p ∈ U ;H(p) > 0} and
Σ− = {p ∈ U ;H(p) < 0}.

Denote X r, r ≥ 1, the set of Cr vector fields defined on U . The topology
on X r is the usual Cr topology. Denote Ωr(U , H) the set of vector fields
Z = (X+, X−) where X+ and X− are defined on U . We consider the
product topology on Ωr(U ,H). The vector fields (X+) and (X−) define
flows ϕ+(t, p) and ϕ−(t, p) which provide Cr-foliations on U ∩ Σ+ and on
U ∩ Σ−, respectively.

There is a distinguished region ΣS ⊆ Σ characterized by the following
property: when a trajectory γ(t) of (X+, X−) ∈ Ωr(U ,H) meets Σ at p ∈ ΣS

it slides on Σ for positive time. The study of this flow is our main concern.
Let U ⊆ R` be an open set with 0 ∈ U and (X+, X−) ∈ Ωr(U , H) with

discontinuity set Σ. The Filippov convention ( see [9]) is the following: the
sewing region is Σ1 = {p ∈ Σ : X+H(p) · X−H(p) > 0}, the escaping
region is Σ2 = {p ∈ Σ : X+H(p) > 0, X−H(p) < 0}, and the sliding
region is Σ3 = {p ∈ Σ : X+H(p) < 0, X−H(p) > 0}.

On ΣS = Σ2 ∪ Σ3 the flow slides on Σ; the flow follows a well defined
vector field XS called sliding vector field. It is tangent to Σ and defined
at q ∈ ΣS by XS(q) = m − q with m being the point where the segment
joining q + X+(q) and q + X−(q) is tangent to Σ ( see [3, 10, 11, 12] for
more details and related topics).

An approximation of the discontinuous vector field (X+, X−) ∈ Ωr(U ,H)
by an one-parameter family of continuous vector fields will be called a regu-
larization of (X+, X−). In the work [14] Sotomayor and Teixeira introduced
the regularization process. A C∞ function ϕ : R −→ R is a transition
function if ϕ(x) = −1 for x ≤ −1, ϕ(x) = 1 for x ≥ 1 and ϕ′(x) > 0 if
x ∈ (−1, 1). Consider a Cr map H : U ⊆ R` → R satisfying that H(0) = 0
and ∇H(0) 6= (0, 0). The ϕ–regularization of X = (X+, X−) ∈ Ωr(U ,H)
is the 1–parameter family Xε ∈ Cr given by

Xε(q) =

(
1

2
+

ϕε(H(q))

2

)
X+(q) +

(
1

2
− ϕε(H(q))

2

)
X−(q),

where ϕε(x) = ϕ(x/ε), for ε > 0.

2.1. Singular perturbations. Geometric singular perturbation theory (GSP-
theory) is an important tool in the field of continuous dynamical systems.
Needless to say that in this area very good surveys are available (refer to
[7, 8]).
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Let w = (x, y) ∈ Rn+m and f, g be smooth functions. We deal with
equations that may be written in the form

(2) x′ = f(x, y, ε), y′ = εg(x, y, ε), x = x(τ), y = y(τ).

The main trick in the GSP-theory consists in considering the family (2) in
addition with the family (3) obtained after the time rescaling t = ετ .

(3) εẋ = f(x, y, ε), ẏ = g(x, y, ε), x = x(t), y = y(t).

Equation (2) is called the fast system and (3) the slow system. Ob-
serve that for ε > 0 the phase portrait of fast and slow systems coincide.
For ε = 0, let M be the set of all singular points of (2). We call M the
slow manifold of the singular perturbation problem and it is important
to notice that equation (3) defines a dynamical system, on M, called the
reduced problem.

Combining results on the dynamics of these two limiting problems one
obtains information on the dynamics for small values of ε. In fact, such
techniques can be exploited to formally construct approximated solutions, on
pieces of curves which satisfy some limiting version of the original equation
as ε goes to zero.

2.2. Connection between the regularization process and singular
perturbation problems. A singular perturbation problem is a study of
the phase portrait of a differential system, ẋ = Xε(x) with x ∈ R` and ε ∼ 0,
near a continuum of zeroes of X0(x). This set can be a differentiable mani-
fold, an algebraic variety or a general stratified set. Fenichel [8] studied the
existence of centermanifolds and the reduction principle to central behav-
ior in the neighborhood of compact pieces of normally hyperbolic regular
manifolds of zeroes. Roughly speaking, if ` = 2 and the center manifold
is attracting in the normal direction then for ε ∼ 0, there exists a curve
γ which is near the center manifold and which is a global attractor of Xε.
Usually we say that when there exists a graphic with the attracting property
the system is synchronized. Here we propose to use singular perturbation
as a framework to study synchronization.

In order to illustrate our techniques we present an example of a non-
smooth dynamical system and its regularized. Observe that by means of
a blow up procedure it appears naturally a singular perturbation problem.
Thus the regularized vector field will be synchronized for small values of the
the parameter and one gets informations on the original vector field.

Example 5. Consider the vector fields X− = (x + 1,−y + 1) and X+ =
(0, 1) defined on R2. Suppose that X is a non-smooth vector field which
is equal to X− if y > x, and it is equal to X+ if y < x. On the line
Σ = {(x, x);x ∈ R} we assume that X is multi-valuated. Observe that the
points (x, x) ∈ Σ with x < 0 are sewing points, and the points (x, x) ∈ Σ
with x > 0 are sliding points. The phase portrait of X is illustrated in figure
3.
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y=x

Figure 3. Non-smooth vector field X = (X+, X−) with
X− = (x+ 1,−y + 1) and X+ = (0, 1).

To simplify the regularization process we start with a rotation of π/4.
Thus we get the pair of vector fields

Y + =

√
2

2
(−1, 1), x > 0; Y − =

√
2

2
(x+ y, x− y + 2), x < 0.

Consider ϕ : R → (−π/2, π/2) given by ϕ(s) = 2
π arctan(s). It is a

Cω function satisfying ϕ′(s) > 0 for s ∈ R and lim
s→±∞

= ±1. Around

Σ̃ = {x = 0} we apply the regularization Yε = Y ++Y −
2 + ϕ(xε )

Y +−Y −
2 . We

transform this system into a singular perturbation problem by considering
x = r cos θ, ε = r sin θ, with r ≥ 0 and θ ∈ [0, π]. We get

rθ̇ =
√
2
4 sin θ (1− r cos θ − y + ϕ(cot θ)(1 + r cos θ + y)) ,

ẏ =
√
2
4 (3 + r cos θ − y + ϕ(cot θ)(−1− r cos θ + y)) ,

where r ∈ R+, θ ∈ [0, π], y ∈ R. Observe that the mapping λ(θ) = ϕ(cot θ)
can be extended to a continuous decreasing function connecting (θ, λ) =
(0, 1) and (θ, λ) = (π,−1). Putting r = 0 in the first equation we get

the slow manifold ϕ(cot θ) = y−1
y+1 , which connects the points (θ, y) = (0, 0)

and (θ, y) = (π,∞). The slow flow, i.e, the flow determined by the second
equation on the the slow manifold is given by

ẏ = (3− y) +
y − 1

y + 1
(y − 1) > 0.

The fast flow, i.e, the flow determined by the first equation after the time

re-scale, is given by θ′ =
√
2
4 sin θ · (1− y + ϕ(cot θ)(1 + y)) .

Observe that in our approach we define a geometric object composed

by the union of Σ̃+ = {x > 0}, Σ̃− = {x < 0} and Σ̃0 = {(θ, y); θ ∈
(0, π), (0, y) ∈ Σ̃}. Thus we use the following rules for defining the orbits: if

a point of Σ̃+∪Σ̃− moving on an orbit of Y σ, σ = +,−, falls onto the sewing

region then it crosses Σ̃ through a fast orbit; if it falls onto the sliding then
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Figure 4. Phase portrait on the singular set r = 0 of
Y = (Y +, Y −). The double arrow is related with the fast
system and the simple arrow is related with the slow system.
The bold line is the slow manifold S0. For r ↓ 0 there ex-
ists a curve Sε which approaches S0 according the Hausdorff
distance and that synchronizes the regularized vector field.

it follows firstly a fast orbit over the slow manifold and then it follows a slow
orbit. See figure 4.

3. Statement of the main results

Our main results link non-smooth systems and singular perturbation
problems. First of all, for completeness, we present here a first theorem,
which proof can be found in [11].

Theorem A. Let U ⊆ R2 be an open set. Consider a Cr map H : U ⊆
R2 → R satisfying that H(0) = 0 and ∇H(0) 6= 0 and X ∈ Ωr(U , H). If
p ∈ Σ∩U then there exist a local coordinate system (x, y) with p = (0, y(p))
and a singular perturbation problem θ′ = α(r, θ, y), y′ = rβ(r, θ, y), such
that

• ΣS is homeomorphic to the slow manifold {α(0, θ, y) = 0},
• XS is topologically equivalent to the slow flow

(0, y′) = (α(0, θ, y), β(0, θ, y)),

• If p ∈ Σ1 then the flow of X on p is locally topologically equivalent
to the fast flow

(θ′, y′) = (α(0, θ, y), 0).

Let X = (X+, X−) ∈ Ωr(U ,H) be a discontinuous vector field defined on
the open set U ⊆ R`. As in the smooth case we denote ϕ(t, p) the trajectory
of X which satisfies ϕ(0, p) = p. Here, the concept of solution follows the
Filippov rules. More precisely if q = ϕ(t∗, p) ∈ ΣS then the flow over q will
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be the flow determined by the sliding vector field. The basin of attraction
of ΣS is the set AΣ = {p ∈ R`;ϕ(t, p) ∈ ΣSfor some t > 0}.
Theorem B. X ∈ Ωr(U ,H) is M–synchronized at AΣ with M = Σ =
H−1(0).

Our third result is about the synchronization which occurs in the regu-
larization of the fold-fold case. We restrict ourselves to the 3-dimensional
systems (` = 3) and consider the case known as a T-singularity.

We say that q ∈ Σ is a codimension 0 singular point of Z = (X+, X−) of
the kind fold–fold if

X+(H)(q) = X−(H)(q) = 0, (X+)2(H)(q) 6= 0, (X−)2(H)(q) 6= 0

and the curves σX+ , σX− , along which X+ and X− has quadratic con-
tact with Σ, are transverse at q. Besides, when (X+)2(H)(q) < 0 and
(X−)2(H)(q) > 0 we say that q is a T-singularity.

Theorem C (Semi–linear case). Assume H(x, y, z) = z, X+ = (k1, a, x)
and X− = (b, k2, y). If k1 < 0, k2 > 0, a+ b < 0, a < b and ab < k1k2, then
(0, 0) is a T-singularity. Moreover the sliding vector field is synchronized
with respect to U = {x < 0, y > 0} and M = {(0, 0)}.

Our fourth result says that every structure of the slow system which
persists under regular perturbation also persists under singular perturbation.
More specifically, consider the differential system

ẋ = f(x, y, ε), ẏ = εg(x, y, ε)

with (x, y) ∈ Rn+m and the slow manifold S given implicitly by f(x, y, 0) =
0. We say that p ∈ S is normally hyperbolic if the real parts of the
eigenvalues of D1f(p, 0) are nonzero. We assume that, for every normally
hyperbolic p ∈ S, D1f(p, 0) has k

s eigenvalues with negative real part.

Theorem D. Let q ∈ S be a hyperbolic equilibrium point of the slow flow
with js–dimensional local stable manifold W s. Then there exists an ε-
continuous family of equilibrium points qε such that q0 = q and qε has a
(ks + js)–dimensional local stable manifold W s

ε . In particular, if ks + js =
n+m, for small ε > 0 the systems is synchronized with respect to Rn+m and
M = {qε}.

4. Proof of the main results

Proof of Theorem A. Denote X+ = (f+, g+) and X− = (f−, g−). First of all
we apply the regularization process between X+ and X−. Next we consider
the polar blow up coordinates given by x = r cos θ and ε = r sin θ, with
r ≥ 0 and θ ∈ [0, π]. Using these coordinates the parameter value ε = 0 is
represented by r = 0. We refer [11] for the details. ¤



NON–SMOOTH DYNAMICAL SYSTEMS 9

Proof of Theorem B. In fact, for any (x, y) ∈ AΣ there exists τ = τ(x, y) > 0
such that ϕ(t, x, y) ∈ ΣS = {H = 0}, for any t > τ. Taking G = H we have

lim
t→∞

G(ϕ(t, x, y)) = lim
t→∞

H(ϕ(t, x, y)) = lim
t→∞

0 = 0.

¤

Proof of Theorem C. As H(x, y, z) = z, X+ = (k1, a, x) and X− = (b, k2, y),
(0, 0, 0) is a fold–fold singularity. The SP–problem in the blowing up locus
is

(4)

ẋ = (k1 + b)/2 + ϕ(cot θ)(k1 − b)/2,
ẏ = (a+ k2)/2 + ϕ(cot θ)(a− k2)/2,

rθ̇ = − sin θ ((x+ y)/2 + ϕ(cot θ)(x− y)/2) .

The slow manifold is the surface
{
(x, y, θ) ∈ R2 × (0, π) : (x+ y)/2 + ϕ(cot θ)(x− y)/2 = 0

}
.

The graphic of this surface has a helicoidal shape and its intersections with
the planes θ = constant are straight lines. For θ = 0 the line is x = 0 and
for θ = π the line is y = 0.

The regularization Xε is given by

Xε =

(
1

2
+

ϕ( zε )

2

)
X+ +

(
1

2
− ϕ( zε )

2

)
X− =

(
k1 + b

2
+ ϕ(

z

ε
)
k1 − b

2
,
a+ k2

2
+ ϕ(

z

ε
)
a− k2

2
,
x+ y

2
+ ϕ(

z

ε
)
x− y

2

)
.

Performing the blow up z = r cos θ, ε = r sin θ, where r ≥ 0 and θ ∈ [0, π]
we get equation (4). Considering r = 0 in the third line of the equation (4)
we get the slow manifold. Observe that for each fixed θ ∈ [0, π] the points
(θ, x, y) satisfying ϕ(cot θ) = −x+y

x−y are on a straight line. Since ϕ(cot 0) = 1

and ϕ(cotπ) = −1 for θ = 0 the line is x = 0 and for θ = π the line is y = 0.
It concludes the proof of (a). In order to prove (b) we determine the slow
flow. It is given by
(

ẋ
ẏ

)
=

1

x− y

(
b −k1
k2 −a

)(
x
y

)
=

1

y − x

(
−b k1
−k2 a

)(
x
y

)
.

Since y − x > 0 in the sliding region ( x < 0 and y > 0) it is enough to
compute the eigenvalues of the above matrix.

Since k1 < 0, k2 > 0, a− b < 0, and ab < k1k2 the eigenvalues

λ± =
−(b− a)±

√
(b− a)2 − 4(k1k2 − ab)

2
=

a− b±
√
(b+ a)2 − 4k1k2

2

are negative. In fact, −4k1k2 > 0 and then (b+ a)2 − 4k1k2 > 0. It implies
that the eigenvalues are real. Besides,

ab < k1k2 ⇒ (b+ a)2 − 4k1k2 < (b− a)2.
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Since (a− b) < 0 and
√
(b+ a)2 − 4k1k2 < (b− a) = |a− b| the eigenvalues

are negative. The corresponding eigenvectors

ω± =

(
2k1

a+ b±
√
(a+ b)2 − 4k1k2

, 1

)

are located in the sewing and in the sliding regions respectively. Since
|λ−| > |λ+| we have that all trajectories (except those on the straight line
corresponding to ω−) tend to the origin tangentially to the straight line
generated by ω+. ¤

y=0

x=0

Figure 5. T-singularity.

Proof of Theorem D. Consider the fast system supplemented by the trivial
equation ε′ = 0, i.e.

(5) x′ = εf(x, y, ε), y′ = g(x, y, ε), ε′ = 0.

Let G(x, y, ε) := (εf(x, y, ε), g(x, y, ε), 0) be the vector field defined by the
system (5). Assume that the linearization of G at points (x, y, 0), such that
(x, y) ∈ S, has ks eigenvalues with negative real part and ku eigenvalues
with positive real part. The corresponding stable and unstable eigenspaces
have dimensions ks and ku, respectively. Now we are in position to use the
Fenichel Lemma (see [8] for details). ¤
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Lemma 1 (Fenichel Lemma). Let N be a j-dimensional compact nor-
mally hyperbolic invariant manifold of the reduced problem with a j + js–
dimensional local stable manifold W s and a (j+ju)–dimensional local unsta-
ble manifold W u. Then there exists ε1 > 0 for which the following statements
hold.

(1) There exists a Cr−1 family of manifolds {Nε : ε ∈ (−ε1, ε1)} such
that N0 = N and Nε is a normal hyperbolic invariant manifold.

(2) There are Cr−1 families of (j+js+ks)–dimensional and (j+ju+ku)–
dimensional manifolds {N s

ε : ε ∈ (−ε1, ε1)} and {N u
ε : ε ∈ (−ε1, ε1)}

such that for ε > 0 the manifolds N s
ε and N u

ε are local stable and
unstable manifolds of Nε.

Next example illustrates the application of Theorem D.

Example 6. Consider the one-parameter family of constrained systems in
R2

(6) ẋ = x, (x+ y − λ)ẏ = y, λ ∈ R.
Applying the change of variables x1 = x, y1 = y and ε = x+ y − λ, we get
the following singular perturbation problem ẋ = x, εẏ = y. For ε = 0 we
have the reduced problem ẋ = x, 0 = y. The time rescaling τ = t/ε produces
x′ = εx, y′ = y, and so for ε = 0 we have the fast system x′ = 0, y′ = y.
The phase portraits of the reduced and of the fast systems are exhibited in
Figure 6.

SM SM

y y

xx

Figure 6. Phase portraits of reduced and fast of Example.

Figure 7 illustrates the phase portrait of the singular perturbation prob-
lem. The points of the form (λ, 0, λ) are impasse-normally-hyperbolic points
and correspond to the slow manifold of the singular perturbation problem.

Around (0, 0, 0) Theorem D assures the existence of the curve γ(λ) =
(0, 0,−λ) and such that, for each fixed λ, (0, 0,−λ) is an equilibrium point
for the adjoint vector field F ∗(x, y, λ) = A∗F (x, y, λ) = (x2 + xy − λx, y).
Moreover, each point (0, 0,−λ) with λ < 0, possesses an 1-dimensional local
stable manifold P s

λ and an 1-dimensional local unstable manifold P u
λ . Also,

for each (0, 0,−λ) with λ > 0, there exists a 2-dimensional local unstable
manifold P u

λ .



12 JAUME LLIBRE 1, PAULO R. DA SILVA 2 AND MARCO A. TEIXEIRA 3

y

x x

y

Figure 7. Phase portraits for small ε > 0 and ε < 0.

5. Regularization and synchronization

First of all we introduce the concept of δ–synchronization.

(7) x′ = f(x, y), y′ = g(x, y).

As usual ϕ(t, x0, y0) = (x(t, x0, y0), y(t, x0, y0)) denotes the solution of sys-
tem (7) satisfying ϕ(0, x0, y0) = (x0, y0).

Consider δ > 0. We say that system (7) is δ-synchronized for t ∈ [t1, t2]
and (x, y) ∈ A ⊆ R2 if there exists a continuous map G : R2 → R such that
G−1(0) is a simple curve, piecewise smooth such that |G(ϕ(t, x0, y0))| ≤ δ,
for t ∈ [t1, t2] and for any (x0, y0) ∈ A.

Consider the planar singular perturbation problem

(8) x′ = α(x, y, ε), y′ = εβ(x, y, ε).

If ε = 0 then the fast flow is horizontal. The slow flow on the center manifold
α(x, y, 0) = 0 is determined by the equation y′ = β(x, y, 0).

Lemma 2. Consider the singular perturbation problem (8). Suppose that
α, β : R2 → R are Cr functions satisfying that ∂α

∂x (x, y, 0) < 0, ∂α
∂y (x, y, 0) 6=

0 and β(x, y, 0) 6= 0 for any (x, y) ∈ R2 satisfying α(x, y, 0) = 0. Given
(x0, y0) ∈ R2 and δ > 0 there exist ε0 > 0, 0 < t1 < t2 and (x0, y0) ∈ A ⊆ R2

such that for 0 < ε < ε0 system (8) is δ-synchronized for 0 < ε < ε0,
t ∈ [t1, t2] and (x, y) ∈ A ⊆ R2.

Proof. Since ∂α
∂x (x, y, 0) < 0, ∂α

∂y (x, y, 0) 6= 0 it follows that the slow manifold

is a graphic of a monotone function. Besides, this graphic is composed by
equilibrium points of the fast system which are attracting in the x-direction.
Moreover β(x, y, 0) 6= 0 on the slow manifold implies that the reduced flow
has no equilibrium points. Denote Aδ/2 a tubular neighborhood of the slow

manifold with width δ/2. Given (x0, y0) ∈ R2 we have that ϕ0(x0, y0, t0) ∈
Aδ/2 for some t0 > 0. The continuity of the flow implies the existence of
ε0, t1, t2 and A satisfying the statement of the lemma. ¤
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Figure 8. Fast and slow flow of a singular perturbation
problem satisfying the hypothesis of Lemma 2 and the syn-
chronized vector field.

Theorem 3. Suppose that ΣS = Σ. Given δ > 0 there exist ε0 > 0, 0 <
t1 < t2 and (x0, y0) ∈ A ⊆ R2 such that for 0 < ε < ε0 the regularized vector
field Xε is δ-synchronized for 0 < ε < ε0, t ∈ [t1, t2] and (x, y) ∈ A ⊆ R2.

Proof. We can choose a coordinate system such that the discontinuous set
is defined by the function H(x, y) = x. Denote X+ = (f+, g+) and X− =
(f−, g−). Next we consider the blow up x = r cos θ, ε = r sin θ. Thus, the
trajectories of the regularized vector fields, in polar coordinates, satisfy the
differential system

rθ′ = α(r, θ, y), y′ = β(r, θ, y);

with α, β given by α(r, θ, y) = − sin θ

(
f+ + f−

2
+ ϕ (cot θ)

f+ − f−
2

)
, and

β(r, θ, y) = r

(
g+ + g−

2
+ ϕ (cot θ)

g+ − g−
2

)
. According to the proof of

Theorem A, the slow manifold α(0, θ, y) = 0 is homeomorphic to the sliding
region ΣS . In this coordinate system we have ΣS = Σ = {(0, y); y ∈ R}.
The singular perturbation problem satisfies the hypothesis of Lemma 2. It
means that given δ > 0 there exists r0 > 0 such that for 0 < r < r0 the
above system is δ-synchronized. The result follows after going back through
the blow ups. ¤
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