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1. Introduction

In his studies on population dynamics in 1986 Ginzburg [1] worked with

the following family of second order differential equations
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depending on four parameters: α > 0, β1 > 0, γ > 0 and β ∈ R. Recently

Bellamy and Mickens [2] claimed that the Lev Ginzburg differential equation

(1) can exhibit a limit cycle coming from a Hopf bifurcation. We will show

that this differential equation has neither a Hopf bifurcation, nor limit cycles.

The second order differential equation (1) can be written as the following

first order planar polynomial differential system

x′ =
dx

dt
= y,

y′ =
dy

dt
= (1 − β1y)(γ − αx + βy),

(2)

of degree 2, simply called a quadratic system in what follows. We denote by

X : R2 → R2 the vector field associated with the differential system (2), that

is

X (x, y) = (y, (1 − β1y)(γ − αx + βy)) . (3)

The study of the existence of limit cycles in (1) goes back to the original

work of Ginzburg who obtained some important results by numerical analysis.

The differential system (2) presents only one equilibrium point p = (γ/α, 0)
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for all values of the parameters. The existence of limit cycles in system (2)

was studied in [2] via Hopf bifurcation analysis, claiming that a limit cycle

is born at the equilibrium point p by a Hopf bifurcation when β = 0. But

the Hopf bifurcation analysis presented in [2] is not correct. In fact, the

linearization DX (p) of X at p when β = 0 has eigenvalues λ1,2 = ±i
√

α.

Then the equilibrium point p is either a center or a weak focus (see [3] for

more details), and the standard Hopf bifurcation analysis can only be applied

when the equilibrium is a weak focus, but the equilibrium point p when β = 0

is a center. Thus the main results of this paper are the following.

Theorem 1. The Lev Ginzburg differential system (2) for β = 0 has a center.

Proof. Now consider β = 0. By a translation, a linear change of variables

and a rescaling of the independent variable t, system (2) can be written as

u̇ = −v + β1uv, v̇ = u. (4)

It is easy to check that this differential system has the first integral

H = H(u, v) = eβ1(2u−v2β1)(uβ1 − 1)2,

because

XH =
∂H

∂u
(−v + β1uv) +

∂H

∂v
u = 0.

The value of the first integral H at the equilibrium point located at the

origin is H(0, 0) = 1, and near the origin H(u, v) < 1. Since H(u, v) =
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H(u, −v), we obtain that the curves H(u, v) = h are symmetric with respect

to the u–axis if they intersect such an axis. Therefore, since the origin is a

focus or a center, it follows that the curves H(u, v) = h . 1 are closed, and

consequently the origin is a center.

Theorem 2. There are no periodic orbits in the Lev Ginzburg differential

system (2) for β ̸= 0.

Proof. For each β1 > 0, system (2) possesses an invariant line

Lβ1 = {(x, y) ∈ R2 : x ∈ R, y = 1/β1}

that separates the plane in two disjoint invariant unbounded sets

Aβ1 = {(x, y) ∈ R2 : x ∈ R, y > 1/β1},

and

Bβ1 = {(x, y) ∈ R2 : x ∈ R, y < 1/β1},

that is, R2 = Aβ1∪Bβ1∪Lβ1 . Now consider the vector field Y : Aβ1∪Bβ1 → R2

given by

Y(x, y) =
1

1 − β1y
X (x, y),

where X is defined in (3). The divergence of Y is given by

divY(x, y) = β ̸= 0.
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From the Bendixson criterion (see Theorem 7.10 of [4], for instance) it follows

that the vector field X does not have any periodic orbit in the region Aβ1∪Bβ1 .

The theorem is proved.

2. Conclusions

This paper shows that the Lev Ginzburg differential system (2) cannot

exhibit a Hopf bifurcation. See Theorem 1. Concerning the existence of a

limit cycle, the main result of this article is summarized in Theorem 2 which

says that there are no limit cycles in system (2).
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