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Abstract. We study an even polynomial potential which appears in the
study of the galactic dynamics. We prove the existence of four families of
periodic orbits in every positive energy level, and we compute an analytic
approximation of them. Using such periodic orbits we provide information
about the non-integrability of this Hamiltonian system.
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1. Introduction and statements of main results

To determine interesting properties of the orbital structure of non-integra-
ble potentials is a fundamental topic in galactic dynamics. To know the
existence and stability of periodic orbits of low commensurability is impor-
tant for clarifying some behaviors of the elliptical galaxies. The numerical
studies are usually preferred due to the availability of reliable algorithms
and powerful machines. On the other hand, in several cases it is useful to
have some simple analytic results concerning the relation between the form
of the gravitational potential and the main families of orbits exhibited.

We consider two degrees of freedom natural Hamiltonian systems of the
form

(1) H = H(q1, q2, p1, p2) =
1

2
(p2

1 + p2
2) + V (q2

1, q
2
2),

with V a smooth potential with an absolute minimum and reflection sym-
metry with respect to both axes, see for more details [17]. The reason for
the choice of these symmetric systems is due to their interest in problems of
galactic dynamics. More precisely, we will examine the following potential

(2) V = V (q1, q2) =
1

2

(
q2
1 +

q2
2

k

)
+ ε(aq4

1 + bq2
1q

2
2 + cq4

2),

for the case k = 1.

The first objective of this paper is to study analytically the periodic orbits
of the two degrees of freedom Hamiltonian system (2) having k = 1, while
the Hamiltonian for the case k irrational is being studied in [2]. More pre-
cisely, we shall see that the Weinstein’s Theorem (stated in the appendix)
shows the existence of four families of periodic orbits bifurcating from the
periodic orbits of the linear differential system associated to the Hamiltonian
one. We shall use the averaging theory for computing an explicit analytic
approximation of these four families of periodic orbits for ε > 0 sufficiently
small. Additionally the averaging method allows one to study the stability
or instability of these periodic orbits.

The Hamiltonian system to be studied here is

(3)

q̇1 = p1,

q̇2 = p2,

ṗ1 = −q1 − ε(4aq3
1 + 2bq1q

2
2),

ṗ2 = −q2 − ε(2bq2
1q2 + 4cq3

2).

As usual the dot denotes derivative with respect to the independent variable
t, the time.

The periodic orbits are the most simple non–trivial solutions of a differen-
tial system. Their study is of particular interest because the motion in their
neighborhood can be determined by their kind of stability. Furthermore, the
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existence of isolated periodic orbits in the energy levels of a Hamiltonian sys-
tem with multipliers different from 1 forces, under convenient assumptions,
the non-existence of any second first integral of class C1. So the study of the
periodic orbits for a differential system becomes relevant for several reasons.
All the notions mentioned in this paragraph will be defined later on.

In this work we use the averaging method of first order to compute peri-
odic orbits as it is established in [18, 5], see the appendix for a summary of
this method. This method allows to find periodic orbits of our Hamiltonian
system (3), up to first order in ε, at any Hamiltonian level H = h > 0 as
a function of the parameter h. Roughly speaking, this method reduces the
problem of finding periodic solutions of some differential system to the one
of finding zeros of some convenient finite dimensional function. In [7, 8] the
application of this technique has been considered in order to obtain periodic
solutions of some well known Hamiltonian systems.

Our main result about the periodic orbits of the Hamiltonian system (3)

is summarized as follows, where r =
√

q2
1 + p2

1 and ρ =
√

q2
2 + p2

2.

Theorem 1. For ε > 0 sufficiently small in every energy level H = h > 0
the perturbed Hamiltonian system (3) may have 4 periodic solutions bifur-
cating from the periodic orbits of the unperturbed Hamiltonian system, as
follows

(a) The first one comes from the periodic orbit r = 0 and ρ =
√

2h of
system (3) with ε = 0 if (b − 6c)(b − 2c) is nonzero.

(b) The second one comes from the periodic orbit r =
√

2h and ρ = 0 of
system (3) with ε = 0 if (6a − b)(2a − b) is nonzero.

(c) The third one comes from the periodic orbit r =
√

(6c−b)h
3a−b−3c and ρ =√

(6a−b)h
3a−b−3c of system (3) with ε = 0 if b(6a − b)(6c − b)(3a − b + 3c)

is nonzero.

(d) The fourth one comes from the periodic orbit r =
√

(2c−b)h
a−b+c and

ρ =
√

(2a−b)h
a−b+c of system (3) with ε = 0 if b(2a − b)(b − 2c)(a − b + c)

is nonzero.

Theorem 1 is proved in Section 2 using the averaging theory.

It is well known that integrable and non–integrable Hamiltonian systems
can have infinitely many periodic orbits. However in general it is not easy
to prove the existence of families of periodic orbits in an analytical way,
specially if the Hamiltonian system is non–integrable. We can use these
families of periodic orbits to prove our second main result about the C1

non–integrability in the sense of Liouville–Arnol’d of Hamiltonian system
(3) with polynomial potential. See the appendix for a precise definition of
a Liouville–Arnol’d integrable Hamiltonian system.
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Theorem 2. The Hamiltonian system (3) with Hamiltonian H cannot have
a C1 second first integral G such that the gradients of H and G are linearly
independent at each point of the periodic orbits found in Theorem 1.

Theorem 2 is proved in section 3.

Our study on the non Liouville–Arnol’d integrability uses isolated periodic
orbits in the Hamiltonian levels, but other studies as the Moser–Holmes
proof (see [15, 6]) use transverse homoclinic orbits. It is important to remark
that both our method and Moser-Holmes method work for Hamiltonian
systems which are close to integrable systems.

Another interesting criterion on non–integrability also related with the
Poincaré’s result was used by Meletlidou and Ichtiarouglou [11, 12, 13]. They
consider perturbed Hamiltonian systems of the form H = H0 + εH1 , where
H0 is a non-degenerate integrable Hamiltonian, and they show that some
properties of the averaged value of the perturbing function H1, evaluated
along the non-isolated periodic orbits of H0, are strongly connected with the
non-integrability of the perturbed system. This criterion cannot be applied
to the Hamiltonian system (3) due to its degeneracy.

2. Proof of Theorem 1

Probably the more general theorem for studying the periodic orbits which
are born from the linear part of Hamiltonian system is the Weinstein’s The-
orem, stated in the appendix. This theorem needs that the Hessian matrix
Hxx(O) with x = (q1, q2, p1, p2), of the Hamiltonian function (1) with the
potential (2) at the equilibrium point O = (0, 0, 0, 0) of the Hamiltonian
system (3), be positive definite, which is the case because Hxx(O) = Id.
Then, the Weinstein’s Theorem states for our Hamiltonian system (3) the
existence of four families of periodic orbits which are born from the periodic
orbits of the linear part of the Hamiltonian system at the origin, but does
not provide an analytic approximation of these periodic orbits. Now using
the averaging theory method we shall provide an explicit analytic approx-
imation of these four families of periodic orbits, and in addition we shall
obtain information on their stability.

Proof of Theorem 1. For proving Theorem 1 we shall apply Theorem 5 of the
appendix to the Hamiltonian system (3). Generically the periodic orbits of a
Hamiltonian system with more than one degree of freedom live on cylinders
filled by periodic orbits. Therefore we cannot apply directly Theorem 5 to a
Hamiltonian system because the averaging method stated in Theorem 5 only
detects isolated periodic orbits in the set of all periodic orbits. Therefore we
must apply Theorem 5 to every fixed Hamiltonian level where the periodic
orbits are generically isolated. Remember that the integrable Hamiltonian
systems in the sense of Liouville–Arnol’d are non–generic, see [10].

Moreover system (3) for ε sufficiently small is close to the integrable one
for ε = 0.
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In order to prepare the application of the averaging method described in
the appendix, we begin by changing the first integral (1) and the equations
of motion (3) to convenient generalized polar coordinates in such a way that
for ε = 0 we have a pair of harmonic oscillators whose solution is

(4)
q1(t) = q10 cos t + p10 sin t, p1(t) = −q10 sin t + p10 cos t,

q2(t) = q20 cos t + p10 sin t, p2(t) = −q20 sin t + p20 cos t,

and with energy h = 1
2(p2

10 + p2
20 + q2

10 + q2
20). Thus we consider the change

of variables (q1, q2, p1, p2) → (r, θ, ρ, α) ∈ R+ × S1 × R+ × S1 given by

q1 = r cos θ, p1 = r sin θ, q2 = ρ cos(θ + α), p2 = ρ sin(θ + α).

Moreover doing this change of variables, the angular variables θ and α ap-
pear in the system. Later on the variable θ will be used for obtaining the
periodicity necessary for applying the averaging theory.

In short in the new variables the first integral is
(5)

H =
1

2
(r2 + ρ2) + ε

[
ar4 cos4 θ + br2ρ2 cos2 θ cos2(θ + α) + cρ4 cos4(θ + α)

]
,

and the equations of motion are
(6)

ṙ = −ε2r cos θ sin θ
[
2ar2 cos2 θ + bρ2 cos2(θ + α)

]
,

ρ̇ = −ε2ρ cos(θ + α) sin(θ + α)
[
br2 cos2 θ + 2cρ2 cos2(θ + α)

]
,

θ̇ = −1 − ε2 cos2 θ
[
2ar2 cos2 θ + bρ2 cos2(θ + α)

]
,

α̇ = ε
[
4ar2 cos4 θ + 2b(ρ2 − r2) cos2 θ cos2(θ + α) − 4cρ2 cos4(θ + α)

]
.

Remember that the derivatives of the left hand side of these equations are
with respect to the time variable t, which is not periodic. The angular
variable α cannot be used as the independent variable because the new
differential system would not have the form (14) for applying Theorem 5.

As for ε > 0 sufficiently small we have θ̇ < 0, we can change to the θ
variable as the independent one, and we denote by a prime the derivative
with respect to θ, getting the system
(7)
r′ = ε2r cos θ sin θ

[
2ar2 cos2 θ + bρ2 cos2(θ + α)

]
+ O(ε2),

ρ′ = ε2ρ cos(θ + α) sin(θ + α)
[
br2 cos2 θ + 2cρ2 cos2(θ + α)

]
+ O(ε2),

α′ = −ε
[
4ar2 cos4 θ + 2b(ρ2 − r2) cos2 θ cos2(θ + α) − 4cρ2 cos4(θ + α)

]
+ O(ε2).

We shall study the motion of the differential system (7) at the level H =
h > 0 of its first integral H given by (5). Then we solve the equation
H(r, θ, ρ, α) = h for ρ, and expanding ρ in Taylor series to first order in ε
we obtain

(8) ρ =
√

2h − r2 + O(ε) =
√

p2
10 + p2

20 + q2
10 + q2

20 − r2 + O(ε).
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If we write the differential equations of r′ and α′, substituting in them the
expression of ρ given by (8), and expanding them in Taylor series in powers
of ε, we obtain the differential system

(9)
r′ = εF11 + O(ε2),

α′ = εF12 + O(ε2).

where

F11 = 2r cos θ sin θ
[
2ar2 cos2 θ + b(p2

10 + p2
20 + q2

10 + q2
20 − r2) cos2(θ + α)

]

+O(ε2),

F12 = −
[
4ar2 cos4 θ + 2b(p2

10 + p2
20 + q2

10 + q2
20 − 2r2) cos2 θ cos2(θ + α)

−4c(p2
10 + p2

20 + q2
10 + q2

20 − r2) cos4(θ + α)
]
+ O(ε2).

Clearly system (9) satisfies the assumptions of Theorem 5, and it has the
form (14) with the analytic function F1 = (F11, F12). Furthermore this
function is 2π–periodic in the variable θ, the independent variable of system
(9). In order to apply the averaging theory of first order we must calculate
the averaged functions of F11 and F12 as follows
(10)

f1(r, α) =
1

2π

∫ 2π

0
F11dθ = −1

2
br cosα sinα(2h − r2),

f2(r, α) =
1

2π

∫ 2π

0
F12dθ = −3

2
ar2 +

3

2
c(2h − r2) − 1

4
b(2h − 2r2)(2 + cos 2α).

We need to compute the real solutions (r∗, α∗) of f1(r, α) = f2(r, α) = 0
such that the Jacobian

(11) |Dr,α(f1, f2)|(r∗,α∗),

is nonzero. We eliminate solutions which provide the same periodic orbit
but with different initial conditions, or solutions with r < 0, getting the
following four possible solutions if we recall that 2h = r2 + ρ2 when ε = 0.

(a) The first one is the periodic orbit r = 0 and α = −1
2 arccos(6c

b − 2),

or equivalently r = 0 and ρ =
√

2h. This is a periodic orbit of the harmonic
oscillator contained in the plane (q1, p1).

(b) The second one is the periodic orbit r =
√

2h and α = −1
2 arccos(6a

b −
2), or equivalently r =

√
2h and ρ = 0. This is a periodic orbit of the

harmonic oscillator contained in the plane (q2, p2).

(c) The third one is the periodic orbit r =
√

(6c−b)h
3a−b+3c and α = π/2, which

implies ρ =
√

(6a−b)h
3a−b−3c .

(d) The fourth one is the periodic orbit r =
√

(2c−b)h
a−b+c and α = 0, which

implies ρ =
√

(2a−b)h
a−b+c .
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In each one of these solutions the Jacobian (11) takes respectively the
values

3

2
(b − 6c)(b − 2c)h2,

3(b − 6a)(b − 2a)h2,

(b − 6a)b(b − 6c)h2

2(3a − b + 3c)
,

−3(b − 2a)b(b − 2c)h2

2(a − b + c)
.

So by Theorem 5, these are the possible four periodic solutions described in
the statement of Theorem 1. �

3. Proof of Theorem 2

We consider the four families of periodic orbits given in Theorem 1. Since
the Jacobians (11) corresponding to the four periodic orbits depend on the
3 parameters a, b, c and on the energy level h, they are in general different
from 1, and these Jacobians are the product of two multipliers of these
periodic orbits. Therefore, it follows that such two multipliers are in general
different from 1. For more details on the computations of the multipliers see
the appendix. Hence, Theorem 2 follows from Theorem 4.

4. Conclusions

We have used two important tools in the area of dynamical systems. First
the averaging theory for studying the existence of periodic orbits and their
stability adapted to Hamiltonian systems. The main results on the periodic
orbits of the Hamiltonian system (3) are summarized in Theorem 1. The
second tool based in the Theorem 4 of Poincaré allows to study the C1 non–
integrability in the sense of Liouville–Arnol’d of the Hamiltonian systems.
Theorem 2 summarizes this result for our galactic potential.

5. Appendix

In this section we summarize some facts on the Liouville–Arnol’d integra-
bility of the Hamiltonian systems, and on the theory of the periodic orbits
of the differential equations, for more details see [1] and the subsection 7.1.2
of [3], respectively. We present these results for Hamiltonian systems of two
degrees of freedom, because we are studying the Hamiltonian system (3)
with two degrees of freedom, but these results work for an arbitrary number
of degrees of freedom.
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5.1. Liouville–Arnol’d Theorem. We recall that a Hamiltonian system
with Hamiltonian H of two degrees of freedom is integrable in the sense of
Liouville–Arnol’d if it has a first integral C independent with H (i.e. the
gradient vectors of H and C are independent in all the points of the phase
space except perhaps in a set of zero Lebesgue measure), and in involution
with H (i.e. the parenthesis of Poisson of H and C is zero). For Hamiltonian
systems with two degrees of freedom the involution condition is redundant,
because the fact that C is a first integral of the Hamiltonian system, implies
that the mentioned Poisson parenthesis is always zero. A flow defined on
a subspace of the phase space is complete if its solutions are defined for all
time.

Now we shall state the Liouville–Arnol’d Theorem restricted to Hamil-
tonian systems of two degrees of freedom.

Theorem 3. Suppose that a Hamiltonian system with two degrees of freedom
defined on the phase space M has its Hamiltonian H and the function C as
two independent first integrals in involution. If Ihc = {p ∈ M : H(p) =
h and C(p) = c} ̸= ∅ and (h, c) is a regular value of the map (H, C), then
the following statements hold.

(a) Ihc is a two dimensional submanifold of M invariant under the flow
of the Hamiltonian system.

(b) If the flow on a connected component I∗
hc of Ihc is complete, then I∗

hc

is diffeomorphic either to the torus S1×S1, or to the cylinder S1×R,
or to the plane R2. If I∗

hc is compact, then the flow on it is always
complete and I∗

hc ≈ S1 × S1.
(c) Under the hypothesis (b) the flow on I∗

hc is conjugate to a linear flow
on S1 × S1, on S1 × R, or on R2.

The main result of this theorem is that the connected components of the
invariant sets associated with the two independent first integrals in involu-
tion are generically submanifolds of the phase space, and if the flow on them
is complete then they are diffeomorphic to a torus, a cylinder or a plane,
where the flow is conjugate to a linear one.

Using the notation of Theorem 3 when a connected component I∗
hc is

diffeomorphic to a torus, either all orbits on this torus are periodic if the ro-
tation number associated to this torus is rational, or they are quasi-periodic
(i.e. every orbit is dense in the torus) if the rotation number associated to
this torus is not rational.

We consider the autonomous differential system

(12) ẋ = f(x),

where f : U → Rn is C2, U is an open subset of Rn and the dot denotes
the derivative respect to the time t. We write its general solution as ϕ(t, x0)
with ϕ(0, x0) = x0 ∈ U and t belonging to its maximal interval of definition.
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We say that ϕ(t, x0) is T -periodic with T > 0 if and only if ϕ(T, x0) = x0

and ϕ(t, x0) ̸= x0 for t ∈ (0, T ). The periodic orbit associated to the peri-
odic solution ϕ(t, x0) is γ = {ϕ(t, x0), t ∈ [0, T ]}. The variational equation
associated to the T -periodic solution ϕ(t, x0) is

(13) Ṁ =

(
∂f(x)

∂x

∣∣∣
x=ϕ(t,x0)

)
M,

where M is an n × n matrix. The monodromy matrix associated to the
T -periodic solution ϕ(t, x0) is the solution M(T, x0) of (13) satisfying that
M(0, x0) is the identity matrix. The eigenvalues λ of the monodromy matrix
associated to the periodic solution ϕ(t, x0) are called the multipliers of the
periodic orbit.

For an autonomous differential system, one of the multipliers is always 1,
and its corresponding eigenvector is tangent to the periodic orbit.

A periodic solution of an autonomous Hamiltonian system always has
two multipliers equal to one. One multiplier is 1 because the Hamiltonian
system is autonomous, and another one is 1 due to the existence of the first
integral given by the Hamiltonian.

Theorem 4. If a Hamiltonian system with two degrees of freedom and
Hamiltonian H is Liouville–Arnol’d integrable, and C is a second first in-
tegral such that the gradients of H and C are linearly independent at each
point of a periodic orbit of the system, then all the multipliers of this periodic
orbit are equal to 1.

Theorem 4 is due to Poincaré [16], section 36. It gives us a tool to
study the non Liouville–Arnol’d integrability, independently of the class of
differentiability of the second first integral. The main problem for applying
this theorem is to find periodic orbits having multipliers different from 1.

5.2. Averaging Theory of First Order. Now we shall present the basic
results from averaging theory that we need for proving the results of this
paper.

The next theorem provides a first order approximation for the periodic
solutions of a periodic differential system, for the proof see Theorems 11.5
and 11.6 of Verhulst [18].

Consider the differential equation

(14) ẋ = εF1(t,x) + ε2F2(t,x, ε), x(0) = x0

with x ∈ D, where D is an open subset of Rn, t ≥ 0. Moreover we assume
that both F1(t,x) and F2(t,x, ε) are T−periodic in t. We also consider in
D the averaged differential equation

(15) ẏ = εf1(y), y(0) = x0,

where

f1(y) =
1

T

∫ T

0
F1(t,y)dt.
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Under certain conditions, equilibrium solutions of the averaged equation
turn out to correspond with T−periodic solutions of equation (14).

Theorem 5. Consider the two initial value problems (14) and (15). Sup-
pose:

(i) F1, its Jacobian ∂F1/∂x, its Hessian ∂2F1/∂x2, F2 and its Jacobian
∂F2/∂x are defined, continuous and bounded by a constant indepen-
dent of ε in [0, ∞) × D and ε ∈ (0, ε0].

(ii) F1 and F2 are T−periodic in t (T independent of ε).

Then the following statements hold.

(a) If p is an equilibrium point of the averaged equation (15) and

det

(
∂f1

∂y

)∣∣∣∣
y=p

̸= 0,

then there exists a T−periodic solution φ(t, ε) of equation (14) such
that φ(0, ε) → p as ε → 0.

(b) The stability or instability of the limit cycle φ(t, ε) is given by the
stability or instability of the equilibrium point p of the averaged sys-
tem (15). In fact the singular point p has the stability behavior of
the Poincaré map associated to the limit cycle φ(t, ε).

We point out the main facts in order to prove Theorem 5(b), for more
details see Section 6.3 and 11.8 in [18].

5.3. Periodic orbits near equilibria. Consider the Hamiltonian system

(16) ẋk = Hxn+k
, ẋn+k = −Hxk

, k = 1, . . . , n,

where Hxl
denotes the partial derivative of the Hamiltonian H(x1, . . . , x2n)

with respect to the variable xl. We can combine equations (16) in a single
one writing

(17) ẋ = JHx, J =

(
0 I

−I 0

)
,

where Hx denotes the gradient of H, and where I is the n × n identity
matrix.

In 1973 Weinstein [19, 20] proved the following result.

Theorem 6 (Weinstein’s Theorem). If the Hamiltonian H is of class C2

near x = 0, Hx(0) = 0, and the Hessian Hxx(0) is positive definite, then
for any sufficiently small ε the energy surface H(x) = H(0)+ ε2 contains at
least n periodic solutions of system (17) whose periods are close to those of
the linear part of system (17) at the origin.
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