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Abstract

We construct a series of examples of vectorfields relevant to the con-
jectures of Loewner and Caratheodory.

1 Introduction

We will note a one-dimensional foliations on the plane by F(R2). In many
situations we don’t have a unique foliation, but the union of n distinct foliations.
We will denote an n-foliation by Fn(R2) and by Fn

i (R2) each individual foliation
of Fn(R2) .

The following definition is taken from [7], with small modifications:
Definition. A smooth one-dimensional foliation F2(D2) with an isolated

singularity at o is called a singular Hessian foliation if there exists a smooth
real-valued function W on D2 whose Hessian

Hess(W) =

(
Wxx Wxy

Wxy Wyy

)

has the following properties:
1) Hess(W) is not a multiple of the identity for any p ∈ D2 − o.
2) The eigenspace corresponding to the large ( small ) eigenvalue of Hess(W)

is tangent to F2
1(D

2), ( F2
2(D

2) ) for each p ∈ D2 − o.
The Hessian foliations appears in the study of stagnation points in hydrody-

namics and in differential geometry. In fact, ( see for instance [5]), the directions
of the lines of curvature in the Bonnet coordinates correspond to the leaves of
the Hessian foliation of the Bonnet function. Let (dx, dy) be a principal direction
corresponding to the eigenvalue λ:

Wxxdx+Wxydy = λdx, Wxydx+Wyydy = λdy (1.1)

Therefore:
(Wxx −Wyy)dxdy +Wxy(dy

2 − dx2) = 0 (1.2)

Consider two complex numbers dx+ ıdy and χ1 + ıχ2 with:

χ1 = Wxx −Wyy, χ2 = 2Wxy (1.3)

The equation 1.2 shows that the radius-vector of (dx + ıdy)2 is orthogonal to
the vector χ2 − ıχ1 and so it is collinear to the vector χ1 + ıχ2. The argument
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of (dx+ ıdy)2 is the double of the argument of the complex number (dx+ ıdy)2.
Therefore, the index of the field of principal directions is half of the index of the
field (χ1, χ2).

The Loewner conjecture about the index of an umbilic point will be proved
if the index of the equilibrium point of:

dx

dt
= F1(x, y)=Wxx −Wyy,

dy

dt
= F2(x, y)=2Wxy. (1.4)

is less or equal than two.
A vectorfield of the form 5.26 will be called a Loewner vector field.
This equation can be seen from a different point of view according to [7] and

[9]. Consider the Cauchy-Riemann operator:

∂

∂z
=

1

2

(
∂

∂x
+ ı

∂

∂y

)

Then:
∂2

∂z2
=

1

4

(
∂2

∂x2
− ∂2

∂y2
+ 2ı

∂2

∂x∂y

)

A Loewner vectorfield can be identified with the square of the Cauchy-
Riemann operator. In section 3 we state a generalization of this vectorfield.

A necessary ( but not sufficient ) criterium for a system to be of this kind
is:

∂3

∂x3

(
1

2

∂F2

∂x
− ∂F1

∂y

)
=

∂3

∂y3

(
1

2

∂F2

∂y
+

∂F1

∂x

)
(1.5)

since:

1

2

∂F2

∂x
− ∂F1

∂y
= Wyyy (1.6)

1

2

∂F2

∂y
+

∂F1

∂x
= Wxxx (1.7)

Another criterium is:

∂2F2

∂x2
− ∂2F2

∂y2
= 2

∂2F1

∂x∂y
(1.8)

To prove it, try to obtain W from the system. Then:

Wxy =
F2

2
⇒ W =

1

2

∫ ∫
F2 dxdy + α(x) + β(y)

Substituting this expression of W into:

Wxx −Wyy = F1

we arrive at: ∫
∂F2

∂x
dy −

∫
∂F2

∂y
dx = 2(F1 + β′′ − α′′)

If we derive with respect x and y this expression, we obtain 1.8.
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A system in the form ( 5.26 ) will be called a basic system.
In ([4]) it is proved the following:
Let r = 3, 4, . . . ,∞, ω. The next conjectures are equivalents.
Cr-Loewner’s Conjecture
The index of an umbilic, of a surface Cr embedded in R3, is at most one.
Cr-Loewner’s Conjecture*
Let β : U ⊂ R2 → R be a map of class Cr defined in a neighborhood U of

(0, 0) ∈ R2. If (0, 0) is an isolated singularity of the vector field

X : (x, y) → (βxx − βyy, 2βxy),

then the index of X at (0, 0) is less or equal than 2.

2 Parcial results on Carathéodory conjecture

The conjecture seems true for tha analytic case with some proofs with more
or less credibility. See [5]

Parcial results are the following:

From [9].
Let:

B be the open unit ball in R2 centered ay 0,
T = ∂B,
f ∈ C2(B,R be C3 near T ,
λ, µ, λ > µ the eigenvalues of Hess(W) f = Hf

Σλ,Σµ the eigenspaces associated to the eigenvalues, Σ = Σλ

⋃
Σµ

∂
∂r the radial derivative.

Assume that the function λ−µ− ∂µ
∂r ( resp. λ−µ− ∂λ

∂r ) has no zeros on Σλ

( resp. Σµ)

Then:
Σ is finite and Ind

(
∂2f
∂z2 , 0

)
is equal to:

2 + ](p ∈ T,Hf (p)p = λ(p)p, λ− µ− ∂µ

∂r
(p) < 0)

− ](p ∈ T,Hf (p)p = λ(p)p, λ− µ− ∂µ

∂r
(p) > 0)

If λ− µ− ∂µ
∂r (p) > 0 on T , or λ− µ− ∂λ

∂r (p) < 0 on T , then:

Ind

(
∂2f

∂z2
, 0

)
≤ 2.

In the same direction, in [8], the point 0 is a strong Hf umbilic if, for
some δ > 0 and all r ∈ (0, δ), the eigenvalues λ, µ satisfy on |z| = r that
minλ(z) > maxµ(z) the, the index of the umbilic is at most 1.
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Form [1]
” Let S be a surface in R3. Then It is known that if S is a surface with

constant mean curvature or special Weingarten, then the index of an isolated
point on S is negative. In the paper we shall prove that the index of an isolated
umbilical point on a Willmore surface does not exceed 1

2 .
We say that S is a Willmore surface is it is a stationary surface of the

Wilmore functional W , where the Willmore functional is define by the integral
of the square of the mean curvature. ”

3 A generalization of Loewner’s vectorfields.

3.1 Definition of Ln(f)

.
A natural generalization of a Loewner vectorfield is the vectorfield, Ln(f)

defined as follows:

Ln(f) = (2n)

(
Re

∂n

∂zn
, Im

∂n

∂zn

)
(f) (3.1)

=

(
∂

∂x
+ ı

∂

∂y

)n

(f) (3.2)

If n = 1 we get a gradient vectorfield, if n = 2 a Loewner vectorfield. For
other values of n:

L3(f) = (fxxx − 3fxyy , 3fxxy − fyyy).

L4(f) = (fxxxx − 6fxxyy + fyyyy , 4fxxxy − 4fxyyy).

The first component of Ln(f) is:

k≤n
2∑

k=0

(−1)k
(
n
2k

)
(
∂

∂x
)n−2k(

∂

∂y
)2k

and the second one:

k≤n−1
2∑

k=0

(−1)k
(

n
2k + 1

)
(
∂

∂x
)n−2k−1(

∂

∂y
)2k+1

We can define also L0(f) as the vectorfield:

dx

dt
= f(x, y)

dy

dt
= 0

It is interesting to remark that, L1(ıf) is the canonical system associated to
the hamiltonian −f(x, y) and L2(ıf) is the Loewner vectorfield π

2 -rotated.
In the definition of Ln we can avoid the use of complex derivation. Suppose

that we have a vectorfield whose components are (f(x, y), g(x, y)) then we can

4



generalize the previous definition saying that Ln(f, g) is a new vectorfield. The
components are the real and imaginary parts of the Cauchy-Riemann operator
applied to f + ıg.

∂

∂z
(f + ıg) =

1

2
(fx − gy + ı(gx + fy))

L1(f, g) = (fx − gy, gx + fy).

With this definition, L1(f) corresponds to L1(f, 0).
We will use the notation:

gradf =

(
fx
fy

)

sgradf =

(
fy
−fx

)

Then:
L(f, g) = gradf − sgradf. (3.3)

This characterization of Lmake possible to consider higher-dimensional cases
and phase space other than the plane.

3.2 Some properties

1.- From 3.3 we get a characterization of those maps h that preserves the
structure of a Loewner vectorfield i.e:

h∗L(f, g) = L(f ◦ h, g ◦ h)

The map h must be a canonical transformation and an area preserving map (
Dh = ±1 ). Then:

h∗L(f, g) = h∗(gradf − sgradf) = h∗gradf − h∗sgradf = L(f ◦ h, g ◦ h)

2.- If in the expression of Lnf we substitute afxuyv by a(cos(θ)u(sin(θ)v we
obtain the trigonometric expansion of cos(nθ) and sin(nθ) in terms of cos θ and
sin θ. Let us prove this fact:

For shortness we call c = cos(θ) and s = sin(θ). Then, the expression of:

Ln(f) =

(
∂

∂x
+ ı

∂

∂y

)n

f

becomes:
(Re(c+ ıs)n, Im(c+ ıs)n)

But this expression is equal to:
(
Re(einθ), Im(einθ)

)
= (cos(nθ), sin(nθ))

Let B be the open unit ball in Rn centered at O, we state the following
conjecture:

2.- The Generalized Loewner Conjecture. If f is Cn(B) and Ln(f)
has an isolated equilibrium point on O, then:

Ind(Ln(f), O) ≤ n n ≥ 0
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It is easy to prove that there exists f(x, y) such that Ind(Ln(f), O) = n.
One must take:

f = (x2 + y2)n

Then:
Ln(f) = rn(cos θ, sin θ)

The equilibrium point of this vectorfield has 2n − 2 sectors, all of which are
elliptic.

If n = 0 the lines y = C are invariant, therefore Ind(L0(f), O) = 0.
If n = 1, we have a gradient vectorfield. Since f is increasing on all

non equilibrium trajectories it is not possible any elliptic sector. Therefore
(L1(f), O) ≤ 1.

For n > 2 the numerical test where f is an homogeneous polynomial confirms
the conjecture. An homogeneous polynomial has invariant rays. By means of
a linear change of coordinates we can fix two rays on the axis, and by means
of a scale we fix another ray as y = x. If the vectorfield is quadratic there are
at most this three rays. The maximum number of elliptic sectors will be six.
The test ( see for instance in subsection 6.1one of the Mathematica programs
) prove that after a blow-up some of the new equilibrium points are of saddle
type. Therefore the conjecture is not contradicted.

4 Index and derivability

To study the dependence of the index with respect the differentiability of the
vectorfield we study the bifurcation of the Loewner vectorfield corresponding to:

f(x, y) =

(
x4 + y4

x2 + y2

)a

The Loewner vectorfield can be regularized by a temporal scaling:

dτ

dt
=

4af

(x2 + y2)2(x4 + y4)2

It becomes:

dx

dt
= (x2 − y2)

(
ax8 + (4a− 6)x6y2 + (10a− 8)x4y4 + (4a− 6)x2y6 + ay8

)

dy

dt
= −2xy

(
(a− 1)x8 + 4x6y2 + 6(1− a)x4y4 + 4x2y6 + (a− 1)y8

)

In the next Figures (1, 2, 3, 4) we see the cases of
C0-differentiability : a < 1

2
and
C1-differentiability : a < 3

2
If the function is differentiable it doesn’t exist elliptic sectors.

For surfaces it is easy to find examples of C0 differentiability and with umbilic
points of index greater than two. See [3], [2].
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Figure 1: a=-3

Figure 2: a=0.4
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Figure 3: a=0.5

Figure 4: a=0.6
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5 First integrals

In this section we want to study basic systems (5.26) with a given first
integral.

5.1 Hamiltonian case

If we assume that the system 5.26 is hamiltonian, putting the condition:

F1 =
∂H

∂y
, F2 = −∂H

∂x

into the condition (1.6) one arrives to

∂4H

∂x4
+

∂4H

∂x2∂y2
+

∂4H

∂y4
= G(y) (5.1)

5.2 General case

Assume now that K(x, y) is a first integral. Then:

Kx(Wxx −Wyy) + 2KyWxy = 0 (5.2)

Or
KxWxx + 2KyWxy −KxWyy = 0 (5.3)

If we solve this equation, we find a Hessian foliation which leaves are the
level sets of K(x, y). If the first integral is, for instance:

−2x(x2 − 3y2)

3(x2 + y2)3
(5.4)

whose level sets are in the Figure (5), we have a counterexample of the Loewner
Conjecture.

In ([2]) it is constructed a closed surface with a single topological umbilic of
index two. But the differentiability conditions do not seem clear.

As a guide to solve ( 5.3 ) we follow ([6]). We want to find W (x, y) from the
given first integral K(x, y). The equation (5.2) is a particular case of a second
order linear partial differential equation:

L(u) = A
∂2u

∂x2
+ 2B

∂2u

∂x∂y
+ C

∂2u

∂y2
+D

∂u

∂x
+ E

∂u

∂y
= 0 (5.5)

To write (5.3) in normal form we consider, as usual, the equation of the char-
acteristics:

A

(
∂u

∂x

)2

+ 2B
∂u

∂x

∂u

∂y
+ C

(
∂u

∂y

)2

= 0 (5.6)

In our particular case:

Kx

((
∂u

∂x

)2

−
(
∂u

∂y

)2
)

+ 2Ky
∂u

∂x

∂u

∂y
= 0 (5.7)
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Figure 5: Level sets of (5.4)

The discriminant of (5.7):
K2

y +K2
x

is positive. Therefore we have an equation of hyperbolic type.
The equation of (5.7) can be broken into two equations with real coefficients:

∂u

∂x
− α1

∂u

∂y
= 0,

∂u

∂x
− α2

∂u

∂y
= 0 (5.8)

where α1, α2 are roots of the equation

Kxα
2 + 2Kyα−Kx = 0 (5.9)

That is to say:

α =
−Ky ±

√
K2

x +K2
y

Kx
(5.10)

Assuming that Kx(x, y) 6= 0 we are lead to solve the equation:

Kx
∂u

∂x
+

(
Ky ±

√
K2

x +K2
y

) ∂u

∂y
= 0 (5.11)

Suppose that u1, u2 are independent solutions of (5.11). Then, the new variables:

u1(x, y) = ξ, u2(x, y) = η (5.12)

transform the equation (5.5) into its canonical form:

2B∗ ∂2u

∂x∂y
+D∗ ∂u

∂x
+ E∗ ∂u

∂y
= 0 (5.13)
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where:

B∗ = Aχxηx +B(χxηy + χyηx) + Cχyηy

D∗ = L(χ)

E∗ = L(η)

Let’s apply this process to the function (5.4).

2
(
x4 − 6x2y2 + y4

)

(x2 + y2)
4 (Wxx −Wyy) + 2

8x(x− y)y(x+ y)

(x2 + y2)
4 Wxy = 0 (5.14)

Or equivalently:
(
x4 − 6x2y2 + y4

)
(Wxx −Wyy) + 8x(x− y)y(x+ y)Wxy = 0 (5.15)

Then, α1, α2 in (5.8) are:

α1 = −1− 4xy

x2 − 2xy − y2

α2 = 1− 4xy

x2 + 2xy − y2
(5.16)

We must solve the associated partial differential equation:

ux + (1 +
4xy

x2 − 2xy − y2
)uy = 0

ux + (−1 +
4xy

x2 + 2xy − y2
)uy = 0 (5.17)

They admit the two independent solutions:

u1 =
x2 + y2

−x+ y

u2 =
x2 + y2

x+ y
(5.18)

After some simplifications, the new variables:

x =
ηχ(−η + χ)

η2 + χ2

y =
η(η + χ)χ

η2 + χ2
(5.19)

convert the equation (5.15) in:

χη
(
η2 + χ2

)
Vχη = 2Vηη

3 + 2Vχχ
3 (5.20)

This equation has the solution:

1

χ2
− 1

η2
(5.21)

In the original variables:

W (x, y) = − 4xy

(x2 + y2)2
(5.22)
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The differential equation is:

dx

dt
= 96xy

y2 − x2

(x2 + y2)4
,

dy

dt
= 24

x4 − 6x2y2 + y4

(x2 + y2)4
. (5.23)

This is not a counterexample to the Loewner Conjecture since W is not
continuous at the origin.

Another solution is:
χ2η2 (5.24)

For this solution:

W (x, y) =
(x2 + y2)4

(x2 − y2)2
(5.25)

The differential equation is:

dx

dt
= −192x2y2

(y2 + x2)2

(x2 − y2)3
,

dy

dt
= 48xy

(y2 + x2)2(x4 − 6x2y2 + y4)

(x2 − y2)4
. (5.26)

Since the basic differential equation is linear a linear combination of the
solutions is again a solution. Therefore:

a(x2 + y2)6 + b(x2 − y2)2

(x2 − y2)2(x2 + y2)2
(5.27)

is a family of solutions with the same problems with the continuity.
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6 Appendixes

6.1 L3(f), f homogeneous polynomial

Cas homogeni, grau cinc amb 3 rectes invariants.
a14 = − 1

192

(
−60a2 − b2

)
;a14 = − 1

192

(
−60a2 − b2

)
;a14 = − 1

192

(
−60a2 − b2

)
;

a50 = − 1
192

(
−108a2 − 5b2

)
; a41 = − 1

192

(
−b2 − 12c2

)
;a50 = − 1

192

(
−108a2 − 5b2

)
; a41 = − 1

192

(
−b2 − 12c2

)
;a50 = − 1

192

(
−108a2 − 5b2

)
; a41 = − 1

192

(
−b2 − 12c2

)
;

a32 = 6a14;a32 = 6a14;a32 = 6a14;
a23 = 6a41;a23 = 6a41;a23 = 6a41;
a05 = 5a14 + 5a41− a50;a05 = 5a14 + 5a41− a50;a05 = 5a14 + 5a41− a50;
f [x , y ] = a50 ∗ x∧5 + a41 ∗ x∧4 ∗ y + a32 ∗ x∧3 ∗ y∧2 + a23 ∗ x∧2 ∗ y∧3 + a14 ∗ x ∗ y∧4 + a05 ∗ y∧5f [x , y ] = a50 ∗ x∧5 + a41 ∗ x∧4 ∗ y + a32 ∗ x∧3 ∗ y∧2 + a23 ∗ x∧2 ∗ y∧3 + a14 ∗ x ∗ y∧4 + a05 ∗ y∧5f [x , y ] = a50 ∗ x∧5 + a41 ∗ x∧4 ∗ y + a32 ∗ x∧3 ∗ y∧2 + a23 ∗ x∧2 ∗ y∧3 + a14 ∗ x ∗ y∧4 + a05 ∗ y∧5
1

192

(
108a2 + 5b2

)
x5+ 1

192

(
b2 + 12c2

)
x4y+ 1

32

(
60a2 + b2

)
x3y2+ 1

32

(
b2 + 12c2

)
x2y3+

1
192

(
60a2 + b2

)
xy4+

(
1

192

(
−108a2 − 5b2

)
+ 5

192

(
60a2 + b2

)
+ 5

192

(
b2 + 12c2

))
y5

xp = FullSimplify[D[D[D[f [x, y], x], x], x]− 3 ∗D[D[D[f [x, y], y], y], x]]xp = FullSimplify[D[D[D[f [x, y], x], x], x]− 3 ∗D[D[D[f [x, y], y], y], x]]xp = FullSimplify[D[D[D[f [x, y], x], x], x]− 3 ∗D[D[D[f [x, y], y], y], x]]
yp = FullSimplify[3 ∗D[D[D[f [x, y], x], y], x]−D[D[D[f [x, y], y], y], y]]yp = FullSimplify[3 ∗D[D[D[f [x, y], x], y], x]−D[D[D[f [x, y], y], y], y]]yp = FullSimplify[3 ∗D[D[D[f [x, y], x], y], x]−D[D[D[f [x, y], y], y], y]]
x
(
b2(x− y)− 12c2y

)

y
(
60a2(x− y) + b2(x− y)− 12c2y

)

Solve[−6 ∗ a14 + a32 == 0, a32]Solve[−6 ∗ a14 + a32 == 0, a32]Solve[−6 ∗ a14 + a32 == 0, a32]
Solve[−6 ∗ a41 + a23 == 0, a23]Solve[−6 ∗ a41 + a23 == 0, a23]Solve[−6 ∗ a41 + a23 == 0, a23]
{{a32 → 6a14}}
{{a23 → 6a41}}
tn = FullSimplify[(yp/xp)/.y → m ∗ x]tn = FullSimplify[(yp/xp)/.y → m ∗ x]tn = FullSimplify[(yp/xp)/.y → m ∗ x]
m(−16a14+25a14m+16a41m−5a50m)

9a14−5a50+16a41m

pol = Normal[Series[Denominator[tn] ∗m−Numerator[tn], {m, 0, 6}]]pol = Normal[Series[Denominator[tn] ∗m−Numerator[tn], {m, 0, 6}]]pol = Normal[Series[Denominator[tn] ∗m−Numerator[tn], {m, 0, 6}]]
(25a14− 5a50)m+ (−25a14 + 5a50)m2

vpol = pol/.m → 1vpol = pol/.m → 1vpol = pol/.m → 1
0
Solve[vpol == 0, a05]Solve[vpol == 0, a05]Solve[vpol == 0, a05]
{{a05 → 5a14 + 5a41− a50}}
FullSimplify[Solve[pol == 0,m]]FullSimplify[Solve[pol == 0,m]]FullSimplify[Solve[pol == 0,m]]
{{m → 0}, {m → 1}}
f1 = xp;f1 = xp;f1 = xp;
f2 = yp;f2 = yp;f2 = yp;
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f1p = Normal[FullSimplify[((x ∗ f1 + y ∗ f2)/.{x → r ∗ Cos[a], y → r ∗ Sin[a]})/r]]f1p = Normal[FullSimplify[((x ∗ f1 + y ∗ f2)/.{x → r ∗ Cos[a], y → r ∗ Sin[a]})/r]]f1p = Normal[FullSimplify[((x ∗ f1 + y ∗ f2)/.{x → r ∗ Cos[a], y → r ∗ Sin[a]})/r]]
r2

((
15a2 + b2

)
Cos[a]− 15a2Cos[3a]−

(
45a2 + b2 + 12c2

)
Sin[a] + 15a2Sin[3a]

)

f2p = Normal[FullSimplify[((x ∗ f2− y ∗ f1)/.{x → r ∗ Cos[a], y → r ∗ Sin[a]})/r∧2]]f2p = Normal[FullSimplify[((x ∗ f2− y ∗ f1)/.{x → r ∗ Cos[a], y → r ∗ Sin[a]})/r∧2]]f2p = Normal[FullSimplify[((x ∗ f2− y ∗ f1)/.{x → r ∗ Cos[a], y → r ∗ Sin[a]})/r∧2]]
15a2r(−Cos[a] + Cos[3a] + Sin[a] + Sin[3a])
Series[f2p, {r, 0, 3}]Series[f2p, {r, 0, 3}]Series[f2p, {r, 0, 3}]
15a2(−Cos[a] + Cos[3a] + Sin[a] + Sin[3a])r +O[r]4

g1 = FullSimplify[f1p/r]g1 = FullSimplify[f1p/r]g1 = FullSimplify[f1p/r]
g2 = FullSimplify[f2p/r]g2 = FullSimplify[f2p/r]g2 = FullSimplify[f2p/r]
r
((
15a2 + b2

)
Cos[a]− 15a2Cos[3a]−

(
45a2 + b2 + 12c2

)
Sin[a] + 15a2Sin[3a]

)

15a2(−Cos[a] + Cos[3a] + Sin[a] + Sin[3a])
sg2 = FullSimplify[g2/.r → 0]sg2 = FullSimplify[g2/.r → 0]sg2 = FullSimplify[g2/.r → 0]
ss = Solve[sg2 == 0, a]ss = Solve[sg2 == 0, a]ss = Solve[sg2 == 0, a]
15a2(−Cos[a] + Cos[3a] + Sin[a] + Sin[3a])
Solve::ifun :
Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information. More. . .{
{a → 0}, {a → −π},

{
a → − 3π

4

}
,
{
a → −π

2

}
,
{
a → π

4

}
,
{
a → π

2

}
, {a → π}

}

Plot[−Cos[a] + Cos[3a] + Sin[a] + Sin[3a], {a, 0, 2 ∗ Pi}]Plot[−Cos[a] + Cos[3a] + Sin[a] + Sin[3a], {a, 0, 2 ∗ Pi}]Plot[−Cos[a] + Cos[3a] + Sin[a] + Sin[3a], {a, 0, 2 ∗ Pi}]

1 2 3 4 5 6

-2

-1

1

2

−Graphics−
m11 = FullSimplify[D[g1, r]];m11 = FullSimplify[D[g1, r]];m11 = FullSimplify[D[g1, r]];
m12 = FullSimplify[D[g1, a]];m12 = FullSimplify[D[g1, a]];m12 = FullSimplify[D[g1, a]];
m21 = FullSimplify[D[g2, r]];m21 = FullSimplify[D[g2, r]];m21 = FullSimplify[D[g2, r]];
m22 = FullSimplify[D[g2, a]];m22 = FullSimplify[D[g2, a]];m22 = FullSimplify[D[g2, a]];
A = {{m11,m12}, {m21,m22}};A = {{m11,m12}, {m21,m22}};A = {{m11,m12}, {m21,m22}};
A0 = FullSimplify[A/.r → 0];A0 = FullSimplify[A/.r → 0];A0 = FullSimplify[A/.r → 0];
MatrixForm[A0]MatrixForm[A0]MatrixForm[A0]( (

15a2 + b2
)
Cos[a]− 15a2Cos[3a]−

(
45a2 + b2 + 12c2

)
Sin[a] + 15a2Sin[3a] 0

0 15a((−2 + a)Cos[a] + (2 + 3a)Cos[3a] + (2 + a)Sin[a] + (2− 3a)Sin[3a])

)

FullSimplify[Eigenvalues[A0/.a → 0]]FullSimplify[Eigenvalues[A0/.a → 0]]FullSimplify[Eigenvalues[A0/.a → 0]]{
0, b2

}

FullSimplify[Eigenvalues[A0/.a → Pi/4]]FullSimplify[Eigenvalues[A0/.a → Pi/4]]FullSimplify[Eigenvalues[A0/.a → Pi/4]]{
− 15π2

4
√
2
,−6

√
2c2

}

FullSimplify[Eigenvalues[A0/.a → Pi/2]]FullSimplify[Eigenvalues[A0/.a → Pi/2]]FullSimplify[Eigenvalues[A0/.a → Pi/2]]{
15π2,−b2 − 12c2 − 15π2

}

FullSimplify
[
Eigenvalues

[
A0/.a → − 3π

4

]]
FullSimplify

[
Eigenvalues

[
A0/.a → − 3π

4

]]
FullSimplify

[
Eigenvalues

[
A0/.a → − 3π

4

]]
{

135π2

4
√
2
, 6
√
2c2

}

FullSimplify[Eigenvalues[A0/.a → −Pi/2]]FullSimplify[Eigenvalues[A0/.a → −Pi/2]]FullSimplify[Eigenvalues[A0/.a → −Pi/2]]

14



{
−15π2, b2 + 12c2 + 15π2

}

FullSimplify[Eigenvalues[A0/.a → Pi]]FullSimplify[Eigenvalues[A0/.a → Pi]]FullSimplify[Eigenvalues[A0/.a → Pi]]{
−b2,−60π2

}

Solve[{5a14− a50 == a∧2,−108a14 + 60a50 == b∧2, 9a14 + 16a41− 5a50 == c∧2}, {a14, a50, a41}]Solve[{5a14− a50 == a∧2,−108a14 + 60a50 == b∧2, 9a14 + 16a41− 5a50 == c∧2}, {a14, a50, a41}]Solve[{5a14− a50 == a∧2,−108a14 + 60a50 == b∧2, 9a14 + 16a41− 5a50 == c∧2}, {a14, a50, a41}]{{
a14 → − 1

192

(
−60a2 − b2

)
, a50 → − 1

192

(
−108a2 − 5b2

)
, a41 → − 1

192

(
−b2 − 12c2

)}}
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