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Abstract

We construct a series of examples of vectorfields relevant to the con-
jectures of Loewner and Caratheodory.

1 Introduction

We will note a one-dimensional foliations on the plane by F(R?). In many
situations we don’t have a unique foliation, but the union of n distinct foliations.
We will denote an n-foliation by F"(R?) and by F7(R?) each individual foliation
of F(R?) .

The following definition is taken from [7], with small modifications:

Definition. A smooth one-dimensional foliation F2(D?) with an isolated
singularity at o is called a singular Hessian foliation if there exists a smooth
real-valued function W on D? whose Hessian

o= (7 ;)

has the following properties:

1) Hess(W) is not a multiple of the identity for any p € D? — o.

2) The eigenspace corresponding to the large ( small ) eigenvalue of Hess(W)
is tangent to F%(D?), ( F3(D?) ) for each p € D? — 0.

The Hessian foliations appears in the study of stagnation points in hydrody-
namics and in differential geometry. In fact, ( see for instance [5]), the directions
of the lines of curvature in the Bonnet coordinates correspond to the leaves of
the Hessian foliation of the Bonnet function. Let (dz, dy) be a principal direction
corresponding to the eigenvalue A:

Wezdax + Waydy = Adx, Weydx + Wy, dy = Ady (1.1)

Therefore:
(Wew — Wy, )dzdy + Wy, (dy* — dz?) =0 (1.2)

Consider two complex numbers dx + 1dy and x1 + 1x2 with:
X1 = sz — Wyy, X2 = 2me (13)

The equation 1.2 shows that the radius-vector of (dz + 1dy)? is orthogonal to
the vector y2 — 11 and so it is collinear to the vector x1 4+ 2x2. The argument
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of (dx +1dy)? is the double of the argument of the complex number (dx + 1dy)?.
Therefore, the index of the field of principal directions is half of the index of the
field (x1, x2)-

The Loewner conjecture about the index of an umbilic point will be proved
if the index of the equilibrium point of:

dx

E = Fl(xvy):Wrx - Wyyv

d

W _ P20, (14

is less or equal than two.

A vectorfield of the form 5.26 will be called a Loewner vector field.

This equation can be seen from a different point of view according to [7] and
[9]. Consider the Cauchy-Riemann operator:

o_1(0,0
0z or ay

02 1[0 o2 P 0?
072 4\ 022 0y dzdy

A Loewner vectorfield can be identified with the square of the Cauchy-
Riemann operator. In section 3 we state a generalization of this vectorfield.

A necessary ( but not sufficient ) criterium for a system to be of this kind

Then:

is:

9 (Lo R\ _ o (105 o )
Ox3 \ 2 Oz oy | oy3 \ 2 Oy Ox '
since:
10F, OF,
20 oy 4o
10F,  OF

Another criterium is:

2 2 2
Ox? oy? 0x0dy

To prove it, try to obtain W from the system. Then:

F. 1

Substituting this expression of W into:
Wew — Wyy = Fi

we arrive at:

aFQ /@da:fQF + 8" —a")

If we derive with respect = and y this expression, we obtain 1.8.



A system in the form ( 5.26 ) will be called a basic system.

In ([4]) it is proved the following:

Let r = 3,4,...,00,w. The next conjectures are equivalents.

C"-Loewner’s Conjecture

The index of an umbilic, of a surface C” embedded in R?, is at most one.

C"-Loewner’s Conjecture®

Let 8 : U C R?2 = R be a map of class C" defined in a neighborhood U of
(0,0) € R2. If (0,0) is an isolated singularity of the vector field

X : (Jf,y) — (ﬂ_L_L - ﬁyy726ly)a

then the index of X at (0,0) is less or equal than 2.

2 Parcial results on Carathéodory conjecture

The conjecture seems true for tha analytic case with some proofs with more
or less credibility. See [5]
Parcial results are the following:

From [9].
Let:

B be the open unit ball in R? centered ay 0,

T =08,

f€C?*B,R be C° near T,

A, i, A > p the eigenvalues of Hess(W) f = Hy

X, X, the eigenspaces associated to the eigenvalues, ¥ =X, (J X,
% the radial derivative.

Assume that the function A — py — g—‘: (resp. A—pu— %) has no zeros on Xy
(resp. X,)

Then: )
Y. is finite and Ind (37’;, O) is equal to:

2 + ﬁ(PGTva(P)P:)\(p)p7)\—M_%(P)<0)
- ﬁ(PGTva(P)P:)\(p)p7)\—ﬂ_%(P)>0)

If)\—u—g—‘;(p)>00nT7or)\—u—%(p)<OonT,then:

o f

In the same direction, in [8], the point 0 is a strong H; umbilic if, for
some 6 > 0 and all » € (0,0), the eigenvalues A, u satisfy on |z| = r that
minA(z) > maxu(z) the, the index of the umbilic is at most 1.



Form [1]

” Let S be a surface in R®. Then It is known that if S is a surface with
constant mean curvature or special Weingarten, then the index of an isolated
point on S is negative. In the paper we shall prove that the index of an isolated
umbilical point on a Willmore surface does not exceed %

We say that S is a Willmore surface is it is a stationary surface of the
Wilmore functional W, where the Willmore functional is define by the integral
of the square of the mean curvature. ”

3 A generalization of Loewner’s vectorfields.

3.1 Definition of L,(f)

A natural generalization of a Loewner vectorfield is the vectorfield, L, (f)
defined as follows:

L) = @) (Regi ) () (3.1)

- (Z+2) W (32)

If n =1 we get a gradient vectorfield, if n = 2 a Loewner vectorfield. For
other values of n:

LS(f) = (fmz - 3fwyy7 3ffva - fuyy)

The first component of L, (f) is:

=32 ) 9
(_1)19 (n> (7)n72k(7)2k
Pt 2k ) ‘oz Oy
and the second one:
kS n—1

< n 0 n—2k—1 0
0 (_l)k <2k+ 1) (%) 2k (@)21@-&-1

We can define also Lo(f) as the vectorfield:

k=

dzx
dy
-0
dt

It is interesting to remark that, L (zf) is the canonical system associated to
the hamiltonian — f(z,y) and Lo (sf) is the Loewner vectorfield J-rotated.

In the definition of L,, we can avoid the use of complex derivation. Suppose
that we have a vectorfield whose components are (f(z,y), g(x,y)) then we can



generalize the previous definition saying that L, (f, g) is a new vectorfield. The
components are the real and imaginary parts of the Cauchy-Riemann operator
applied to f + 1g.
0 1
%(f +19) = §(fm — gy + 19z + fy))
Ll(fvg) = (fz_gyagm+fy)
With this definition, Lq(f) corresponds to L1 (f,0).

We will use the notation:
fm>
radf =
grad f ( 1

sgradf = (f;’c )

L(f,g) = gradf — sgrad . (3.3)

This characterization of L make possible to consider higher-dimensional cases
and phase space other than the plane.

Then:

3.2 Some properties

1.- From 3.3 we get a characterization of those maps h that preserves the
structure of a Loewner vectorfield i.e:

h*L(f,9) = L(f o h,g o h)

The map h must be a canonical transformation and an area preserving map (
Dh =41 ). Then:

hW'L(f,g) = h*(gradf — sgradf) = h*gradf — h*sgradf = L(f o h,goh)

2.- If in the expression of L,, f we substitute afguy» by a(cos(8)"(sin(g)” we
obtain the trigonometric expansion of cos(nf) and sin(nf) in terms of cos§ and
sinf. Let us prove this fact:

For shortness we call ¢ = cos(6) and s = sin(6). Then, the expression of:

Ln(f) = (881, +Zaay> f
becomes:
(Re(c+18)™, Im(c +1s)")
But this expression is equal to:
(Re(e™™), Im(¢™™)) = (cos(nf), sin(nf))

Let B be the open unit ball in R™ centered at O, we state the following
conjecture:

2.- The Generalized Loewner Conjecture. If f is C™(B) and L,(f)
has an isolated equilibrium point on O, then:

Ind(L,(f),0)<n n>0



It is easy to prove that there exists f(x,y) such that Ind(L,(f),O) = n.
One must take:
f="+y?)"
Then:
L, (f) =r"(cosb,sinb)

The equilibrium point of this vectorfield has 2n — 2 sectors, all of which are
elliptic.

If n = 0 the lines y = C are invariant, therefore Ind(Lo(f),O) = 0.

If n = 1, we have a gradient vectorfield. Since f is increasing on all
non equilibrium trajectories it is not possible any elliptic sector. Therefore
(Li(£),0) < 1.

For n > 2 the numerical test where f is an homogeneous polynomial confirms
the conjecture. An homogeneous polynomial has invariant rays. By means of
a linear change of coordinates we can fix two rays on the axis, and by means
of a scale we fix another ray as y = x. If the vectorfield is quadratic there are
at most this three rays. The maximum number of elliptic sectors will be six.
The test ( see for instance in subsection 6.lone of the Mathematica programs
) prove that after a blow-up some of the new equilibrium points are of saddle
type. Therefore the conjecture is not contradicted.

4 Index and derivability

To study the dependence of the index with respect the differentiability of the
vectorfield we study the bifurcation of the Loewner vectorfield corresponding to:

$4+y4 a
x2+y2

f(wyy)=<

The Loewner vectorfield can be regularized by a temporal scaling:

dr daf

dt (x2 + y2)2(x4 + y4)2
It becomes:
C(% = (2% —9?) (az® + (4a — 6)z%* + (10a — 8)z*y* + (4a — 6)2%y® + ay®)
% = —2zy((a—1)2® + 42%% + 6(1 — a)z*y* + 42%y° + (a — 1)3®)

In the next Figures (1, 2, 3, 4) we see the cases of
CO-differentiability : a < 3
and

C'-differentiability : a < %
If the function is differentiable it doesn’t exist elliptic sectors.

For surfaces it is easy to find examples of C? differentiability and with umbilic
points of index greater than two. See [3], [2].









5 First integrals

In this section we want to study basic systems (5.26) with a given first
integral.

5.1 Hamiltonian case

If we assume that the system 5.26 is hamiltonian, putting the condition:

oOH 0H
R=2" p=-2
1= 5y 2 oz
into the condition (1.6) one arrives to
0*H n 0*H n O*H
ox*  0x%20y? Oyt

=G(y) (5-1)

5.2 General case

Assume now that K (z,y) is a first integral. Then:

KoWay 4+ 2K,W,y, — K, Wy, =0 (5.3)

If we solve this equation, we find a Hessian foliation which leaves are the
level sets of K (x,y). If the first integral is, for instance:

2 2
—2z(x* — 3y?) (5.4)
3(22 + 42)3
whose level sets are in the Figure (5), we have a counterexample of the Loewner
Conjecture.

In ([2]) it is constructed a closed surface with a single topological umbilic of
index two. But the differentiability conditions do not seem clear.

As a guide to solve ( 5.3 ) we follow ([6]). We want to find W (z,y) from the
given first integral K (z,y). The equation (5.2) is a particular case of a second
order linear partial differential equation:

0%u 0%y 0%y ou ou

To write (5.3) in normal form we consider, as usual, the equation of the char-

acteristics: ) )
ou ou du ou
A (833) + 2B%8—y +C (83/) =0 (5.6)

In our particular case:

ou\ > ou\ > ou Ou
K[ (2E) - (& 9K, LY .
v ((5‘1:) <8y) ) + Yoz oy 0 (5.7)



Figure 5: Level sets of (5.4)

The discriminant of (5.7):
K, + K

is positive. Therefore we have an equation of hyperbolic type.
The equation of (5.7) can be broken into two equations with real coefficients:

ou ou ou ou
— —a— = — —as— =0 5.8
or M oy ' or P Ay (58)
where a1, as are roots of the equation
K,o? +2K,0 — K, =0 (5.9)
That is to say:
-K,+,/K2?+ K;
= .1
« K. (5.10)

Assuming that K, (z,y) # 0 we are lead to solve the equation:

Kx%+(Kyj:,/K§+K§)g—Z:O (5.11)

Suppose that u1, ug are independent solutions of (5.11). Then, the new variables:

U1(1‘7y) = g? uz(x,y) =n (512)
transform the equation (5.5) into its canonical form:

& P P
Ry » LAy O A (5.13)

2B 0xdy or oy

10



where:

B* = AxaNe + B(Xany + Xynz) + Cxymy
D* = L(x)
E* = L(n)

Let’s apply this process to the function (5.4).

2 476 2,2 4 -
(2 — 62292 + ) S =y Yy o (514

(Waz = Wyy) + 2

(@2 +y2)" (@2 +y)"
Or equivalently:
(z* — 62%y® + y*) (Waw — Wyy) + 8z(z — 9)y(z + y) Wy = 0 (5.15)
Then, a1, as in (5.8) are:
W - g Amy
v x? — 2xy — y?
dxy
= 1-— -7 5.16
2 2 + 23y — Y2 (5.16)

We must solve the associated partial differential equation:

4xy

s+ 1+ =" =0
tr + +x2—2xy—y2)uy
4xy
e+ (-1+ —7—— =0 5.17
o+ (<14 g, (517)
They admit the two independent solutions:
L 22 4 42
) ”
2, .2
w = TtV (5.18)
Tty
After some simplifications, the new variables:
= mx(=nty)
772 + X2
y = Mrxx (5.19)
N+ X
convert the equation (5.15) in:
xn (0 +x%) Vi = 2Vyn® + 2V, x> (5.20)
This equation has the solution:
1 1
- (5.21)
X n
In the original variables:
4xy
w = 5.22
(Iay) (1'2 +y2)2 ( )

11



The differential equation is:

dx y? — 2
= = 96zy—=2—"——
dt i (22 4+ y2)4’
4 n2 2 4
dy _ 5T 6y 4y (5.23)
dt (@2 + ?)°

This is not a counterexample to the Loewner Conjecture since W is not
continuous at the origin.
Another solution is:

X’ (5.24)
For this solution: ( ) 2)4
z°+y
W(z,y) = = ) (5.25)
The differential equation is:
dx (y? + 2%)?
== 102522
dt Ty (x2 — y2)3’
dy (y*> +2°)* (=" — 62%y* + ¢*)
—= = 48 . 5.26
dt d (22 —y?)* ( )

Since the basic differential equation is linear a linear combination of the
solutions is again a solution. Therefore:
a(z? + y2)0 + b(z? — y?)?
(22 — 2)2(22 + 12)2

(5.27)

is a family of solutions with the same problems with the continuity.
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6 Appendixes

6.1 Ls3(f), f homogeneous polynomial

Cas homogeni, grau cinc amb 3 rectes invariants.
ald = — 33 (—60a2 — b?) ;
a50 = — 135 (—108a? — 5b%) ;241 = — 35 (—b% — 12¢2) ;
a3d2 = 6al4;
a23 = 6a4l;
a05 = bal4 + 5a4l — ab0;
flx,y] =250 x 25 + adl * 24 * y + a32 x "3 x y2 + a23 x 22 x y"3 + ald * x * y"4 + a05 * y"5
o5 (108a? + 5b%) 2+ 15 (0% + 12¢2) aty+ 55 (600 + b?) 23y?+ 35 (V% + 12¢%) 2?3+

55 (60a? + b?) 2yt + (155 (—108a% — 5b?) + 155 (60a® + b?) + 105 (0% + 12¢2)) °
Xp = FllllSlIIlpllfy[D[D[D[f[$, y],$],$],$] —3x D[D[D[f[$, y]iyliy]’m]]

yp = FullSimplify[3 x D[D[D|f[z, y], 2], ], z] — D[D[D|[f[z,y],y], 9], 9]

z (0*(z — y) — 12c%y)

y (60a?(z — y) + b*(z — y) — 12¢%y)

Solve[—6 * al4 + a32 == 0, a32]

Solve[—6 * a4l + a23 == 0, a23]

{{a32 — 6ald}}

{{a23 — 6adl}}

tn = FullSimplify[(yp/xp)/.y = m * z]
m(—16al4+25al4m—+16a4lm—5a50m)
9al4—5a50+16a41m

pol = Normal[Series[Denominator[tn] * m — Numerator[tn], {m, 0, 6}]]
(25214 — 5a50)m + (—25al4 + 5a50)m>

vpol = pol/.m — 1

0

Solve[vpol == 0, a05]

{{a05 — 5ald + badl — a50}}

FullSimplify[Solve[pol == 0, m]]

{{m — 0}, {m — 1}}

fl = xp;

2 =yp;

13



flp = Normal[FullSimplify[((z * f1 + y * £2)/.{z — r * Cos[a],y — r * Sin[a]}) /7]]
r? ((15a% 4 b2) Cosla] — 15a*Cos[3a] — (45a® + b? + 12¢?) Sin[a] + 15a?Sin[3a))

f2p = Normal[FullSimplify[((z * £2 — y * f1)/.{z — r * Cos[a],y — r * Sin[a]}) /r"2]]
15ar(—Cos[a] + Cos[3a] + Sin[a] + Sin[3a])

Series|[f2p, {r, 0, 3}]

15a%(—Cosla] + Cos[3a] + Sin[a] + Sin[3a])r + O[r]*

gl = FullSimplify[flp/r]

g2 = FullSimplify|[f2p/7]

r ((15a2 + b?) Cosla] — 15a?Cos[3a] — (45a® + b? + 12¢?) Sin[a] + 15a*Sin[3a))
15a%(—Cos|a] + Cos[3a] + Sin[a] + Sin[3a))

sg2 = FullSimplify[g2/.r — 0]

ss = Solve[sg2 == 0, a]

15a%(—Cosla] + Cos[3a] + Sin[a] + Sin[3a))

Solve::ifun :

Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete sol
{{a—0},{a— -7}, {a— -2} {a—-Z} {a—= 2}, {a> 35} {a—7}}
Plot[—Cos|a] + Cos[3a] + Sin[a] + Sm[3a] {a, 2 x Pi}]

n\/zs\/zlsﬁ

-1

-2F

—Graphics—

ml1l = FullSimplify[D[gl, r]];
m12 = FullSimplify[D[gl, a]];
m21 = FullSimplify[D[g2, r]];
m22 = FullSimplify[D[g2, a][;

A = {{mll,m12}, {m21,m22}};
A0 = FullSimplify[A/.r — 0];

MatrixForm[AQ]
(15a2 + b?) Cos[a] — 15a*Cos[3a] — (45a + b* + 12¢?) Sinla] + 15a*Sin[3a]
0 15a((—2 + a)Cosla] + (2 + 3«
FullSimplify[Eigenvalues[A0/.a — 0]]
{0,067}

FullSimplify[Eigenvalues[A0/.a — Pi/4]]
{4 -ovae
FullSimplify[Eigenvalues[A0/.a — Pi/2]]
{1572, —b% — 12¢* — 1572}

FullSimplify [Eigenvalues [A0/.a — —37]]
{ 12\5/% ,6/2¢? }
FullSimplify[Eigenvalues[A0/.a — —Pi/2]]

14



{—1571'2, b2 +12¢2 + 15772}

FullSimplify[Eigenvalues[A0/.a — Pi|]

{—b2, —60x2}

Solve[{5a14 — a50 == a”2, —108a14 + 60a50 == b"2,9al4 + 16a41 — 5a50 == 2}, {al4, a50, a41}]
{{al4 = — %5 (=60a? — b?) ,a50 — — 15 (—108a® — 5b?) , a4l — — 5= (—b? — 12¢2) } }

192
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