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aDepartamento de Matemática Aplicada II, Universidad de Sevilla, Escuela Técnica
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Abstract

The so-called noose bifurcation is an interesting structure of reversible pe-

riodic orbits that was numerically detected by Kent and Elgin in the well-

known Michelson system. In this work we perform an analysis of the periodic

behavior of a piecewise version of the Michelson system where this bifurcation

also exists. This variant is a one-parameterized three-dimensional piecewise

linear continuous system with two zones separated by a plane and it is also

a representative of a wide class of reversible divergence-free systems.

In the piecewise system, the noose bifurcation involves reversible periodic

orbits that intersect the separation plane at two or four points. This work

is focused on those reversible periodic orbits that intersect the separation
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plane twice (RP2-orbits). It is established that for every T between 2π

and a critical point there exists a unique value of the parameter for which

the system has a RP2-orbit with period T . Moreover, this critical value,

that separates periodic orbits with two or four intersection points with the

separation plane, corresponds to a RP2-orbit that crosses tangentially the

separation plane.

It is also proved that in a bifurcation diagram parameter versus period,

the curve of this family of periodic orbits has a unique maximum point, which

corresponds to the saddle-node bifurcation of periodic orbits that appears in

the noose bifurcation.

Keywords: piecewise linear systems, reversible systems, periodic orbits,

saddle-node bifurcation

2000 MSC: 34C23, 34C25, 34C45, 37G15

1. Introduction

After equilibria, periodic orbits are the simplest solutions of nonlinear

dynamical systems. In spite of that, generically, the proof of their existence

is not a trivial problem.

Of course, there are local methods that allow to affirm that there exist

periodic orbits in neighborhoods of certain singularities of equilibria (Hopf,

Bogdanov-Takens, . . . , see [13]) or close to global bifurcations (see, for in-

stance, [19]). In the particular case of piecewise linear systems there are

also results in this regard (see [2, 5, 8, 9, 20]). However, it is more difficult

to answer some global questions as, for example, to determine the size of

those neighborhoods in the phase space or in a parameter space, to know
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where the periodic orbits born/die or to prove the existence of the homo-

clinic/heteroclinic cycle that organizes the periodic behavior.

An interesting phenomenon related to periodic orbits is the so-called

noose bifurcation [10], that appears in the well-known Michelson system

[1, 12, 18, 7, 22], 



ẋ = y,

ẏ = z,

ż = d2 − y − 1
2
x2,

(1)

where the dot stands for the derivative with respect to t and, without loss of

generalicity, we can assume that d ≥ 0. This family of time-reversible sys-

tems appears in the study of travelling wave solutions of the one-dimensional

Kuramoto–Sivashinsky equation [18]. It also arises in the analysis of the

unfolding of the nilpotent singularity of codimension three [6, 7].

The noose bifurcation occurs when the curve of the family of periodic

orbits that appears from a period-doubling bifurcation and the curve of the

original family of periodic orbits come together and annihilate at a saddle-

node bifurcation, see Fig. 1. Therefore, two of the most common bifurca-

tions of periodic orbits (saddle-node and period-doubling) are connected by

a noose-shaped curve.

In [10] the authors perform an excellent study of the noose bifurcation.

They associate its existence to the appearance of a small extra loop at the

periodic orbit. This loop grows until it coincides with the other loop at

the period-doubling bifurcation. The existence of the noose bifurcation is

based on numerical computations and no theoretical proofs are given. In

fact, although there are many interesting works about periodic behavior and
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Figure 1: Schematic picture of the noose structure in two different bifurcation diagrams.

global connections in the Michelson system (see, for instance, [1, 6, 11, 14,

17, 21, 22, 23]), as far as we know, the existence of the noose bifurcation has

not been proved yet.

On the other hand, Arneodo, Coullet and Tresser in [2] realized that

piecewise linear systems gave a good chance of proving analytically the ex-

istence of dynamical objects. Following this idea, in [3] and [4] the authors

studied some global connections of system




ẋ = y,

ẏ = z,

ż = 1− y − λ(1 + λ2)|x|,
(2)

where the parameter λ is strictly positive. Particularly, they give an analyt-

ical proof of the existence of a pair of homoclinic connections and a T-point

heteroclinc cycle.

The continuous system (2) is given by two linear systems separated by

the plane {x = 0}, called the separation plane, and it can be considered

as a continuous piecewise linear version of the Michelson system (1). In

fact, a simple linear change of variables followed by the change of function
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x2 → |x| allows to obtain system (2) from system (1), see [3]. Moreover,

both systems are volume-preserving and time-reversible with respect to the

involution R(x, y, z) = (−x, y,−z). Some other dynamical aspects of the

Michelson system also remain in this piecewise linear version [3, 4].

Specifically, we have checked numerically that the system (2) also exhibits

the complete structure of reversible periodic orbits related to the noose bi-

furcation (see Fig.2). In this figure, together with the saddle-node (SN) and

period doubling (PD) bifurcations we would like to focus the attention on the

existence of a point (TG) where a qualitative change occurs to the shape of

the periodic orbit. Concretely, the solid line corresponds to reversible peri-

odic orbits that intersect exactly twice the separation plane while the dashed

one stands for reversible periodic orbits with exactly four intersections with

the separation plane. The transition between these two kinds of periodic or-

bits involves the existence of a periodic orbit that has a transversal tangency

with the separation plane. This tangency creates the small loop that finally

closes the noose.

Although this numerical analysis may convince us of the existence of the

noose bifurcation in system (2), we have decided that we could go farther

if we were able to give a proof by hand of the existence of this complete

structure. From our point of view, this proof should have to be divided at

least in two different parts, depending on the number of intersections between

the periodic orbits and the separation plane. This is even more evident if we

take into account the closing equations technique that we are going to use

below.

This work concerns only with reversible periodic orbits which intersect
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Figure 2: Noose bifurcation in the piecewise linear continuous system (2). The saddle-

node (SN), period-doubling (PD) and tangency (TG) points are also shown. The thick

solid/dashed line corresponds to reversible periodic orbits which have exactly two/four

intersections with the separation plane. A thin line joins the periodic orbits involved in

the period-doubling bifurcation.

exactly twice the separation plane. These orbits will be denoted by RP2

(Reversible Periodic orbit with 2 intersections). Concretely, a global result

for their existence is established.

The system (2) can be written in matrix form as

ẋ =





A+x+ e3 if x ≥ 0,

A−x+ e3 if x ≤ 0,
(3)

with

A± =




0 1 0

0 0 1

∓λ(1 + λ2) −1 0


 , x =




x

y

z


 and e3 =




0

0

1


 .

In the half-space {x < 0}, the system has exactly one saddle-focus equilib-
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rium point p− = (−1/(λ(1 + λ2)), 0, 0)T , since the eigenvalues of matrix A−

are λ and α± iβ, where

α = −λ

2
and β =

√
4 + 3λ2

2
. (4)

By the reversibility with respect to R, there exists exactly one saddle-focus

equilibrium p+ = −p− in the half-space {x > 0} and its eigenvalues are

given by −λ and −α± i β.

Taking into account that both linear systems correspond to saddle-focus

equilibria, it is obvious that a periodic orbit must live in both half-spaces,

{x > 0} and {x < 0}. Hence, the periodic orbits of system (2) have to

intersect the separation plane {x = 0} at least at two points.

Before developing the conditions for the existence of RP2-orbits it is con-

venient to describe some basic elements of the flow of system (2). For in-

stance, the stable two-dimensional manifold W s (p−) of equilibrium point p−

is locally contained in the half-plane

P− = {λ
(
1 + λ2

)
x+ λ2y + λz = −1, x ≤ 0},

which is called the focal half-plane of p−. This half-plane is obtained from

the eigenvectors associated to the complex eigenvalues of A−. The half-

plane P− and the separation plane {x = 0} intersect along the straight-line

D− = {x = 0, λ2y + λz = −1} .
The unstable manifold W u (p−) of p− contains the half-line L− = {p− −

µ(1, λ, λ2) : − 1
λ(1+λ2)

≤ µ < ∞} generated by the eigenvector associated to

the eigenvalue λ of the matrix A−.

The elements in the other half-space can be obtained by using the in-

volution R. So, the stable manifold W s (p+) of p+ contains the half-line
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L+ = {p+ + µ(1,−λ, λ2) : − 1
λ(1+λ2)

≤ µ < ∞} and the unstable two-

dimensional manifold W u (p+) is locally contained in the half-plane

P+ = {λ
(
1 + λ2

)
x− λ2y + λz = 1, x ≥ 0},

which is called the focal half-plane of p+. The half-plane P+ and the separa-

tion plane {x = 0} intersect along the straight-lineD+ = {x = 0,−λ2y + λz = 1} .
The intersection between the straight-lines D+ and D− is given by the

point q = (0,−1/λ2, 0).

Taking into consideration that system (2) is formed by two linear systems

separated by the plane {x = 0}, it is also interesting to understand the

behaviour of the flow crossing this plane. From the first equation of the

system, it is clear that an orbit which intersects the plane {x = 0} at a point

(0, y0, z0) with y0 > 0, crosses transversally the separation plane from {x < 0}
to {x > 0}. Analogously, when y0 < 0 the orbit will cross transversally the

separation plane from {x > 0} to {x < 0}. In the case y0 = 0, the local

shape of the orbit depends on the sign of z0: for z0 > 0 the orbit is locally

contained in {x ≥ 0}, for z0 < 0 the orbit is locally contained in {x ≤ 0}
and for z0 = 0 the orbit crosses tangentially the plane x = 0 from {x < 0}
to {x > 0}. The z-axis is so-called the tangency line. More details can be

found in [4, 16].

Coming back to periodic orbits, we are going to obtain now a set of con-

ditions to characterize RP2-orbits. It is well known that a periodic orbit

is reversible if and only if it intersects twice the set of fixed points of in-

volution R, which in this case corresponds to the y-axis. Let x(t;λ, y0) =

(x(t;λ, y0), y(t;λ, y0), z(t;λ, y0)) stands for the solution of system (2) with

initial condition x(0;λ, y0) = (0, y0, 0). Assume that there exist three real
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values t̂ > 0, λ̂ > 0 and ŷ0 such that

x(t̂; λ̂, ŷ0) ∈ Fix(R), (5)

ŷ0 < 0, (6)

x(t; λ̂, ŷ0) < 0 for all t ∈ (0, t̂). (7)

Let us call ŷ1 = y(t̂; λ̂, ŷ0), p̂0 = (0, ŷ0, 0) and p̂1 = (0, ŷ1, 0). Then, under

hypotheses (5)-(7), system (2) has for λ = λ̂ a RP2-orbit whose period is 2t̂

(half-period is t̂) and whose intersections with the separation plane are p̂0

and p̂1. Note that when ŷ1 = 0 the periodic orbit crosses tangentially the

plane {x = 0} at p̂1 = (0, 0, 0).

y
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Figure 3: Reversible periodic orbit of system (2) which has exactly two transversal inter-

sections with {x = 0}.

In Fig. 3, a generic RP2-orbit is shown. The focal half-plane P− and the

points p̂0, p̂1 and q̂ = (0,−1/λ̂2, 0), which are contained in Fix(R), are also
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represented. Note that

ŷ0 > − 1

λ̂2
(8)

because, obviously, the RP2-orbit cannot intersect the focal half-planes.

Moreover, from hypotheses (5)-(7) and the properties of the flow through

the separation plane, the inequality

y1 = y(t̂; λ̂, ŷ0) ≥ 0 (9)

must be fulfilled.

Condition (5) leads to a system of two equations and three unknowns,

(t, λ, y0). Section 2 is devoted to explore its solution set. Concretely, we

will replace t with τ =
√
4 + 3λ2t/2 and thus we will prove that non-trivial

solutions are parameterized by τ ∈ ∪n≥1[(2n − 1)π, 2nπ]. In Section 3 the

analysis will be restricted to the first interval, τ ∈ [π, 2π], and we will study

the points verifying condition (5) that also correspond to RP2-orbits, that

is, those which satisfy conditions (6)-(7). In Section 4, two results will be

proved. On the one hand, the unique RP2-orbits of system (2) whose period

is less than 4π are those obtained in Section 3 and, on the other hand, there

exists a fold bifurcation of periodic orbits. Finally, in Section 5 we dedicate

some lines to RP2-orbits with period greater than 4π.

The following theorem, which is the core of the paper, is obtained from

the analysis performed in Sections 2-4.

Theorem 1. There exist two values 0 < λC < λF such that the following

statements hold:

1. If λ ∈ (0, λC) system (2) has a unique RP2-orbit whose period is less

than 4π.
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Figure 4: Reversible periodic orbit which crosses tangentially the separation plane {x = 0}.

2. For λ = λC system (2) has exactly two RP2-orbits with periods less

than 4π. Moreover, those periods are different and the corresponding

RP2-orbit of longer period crosses tangentially the plane {x = 0}.
3. If λ ∈ (λC , λF ) system (2) has exactly two RP2-orbits with periods less

than 4π. Moreover, those periods are different.

4. For λ = λF system (2) has a unique RP2-orbit whose period is less

than 4π.

5. If λ > λF system (2) does not have any RP2-orbits with period less

than 4π.

The periodic orbit that crosses tangentially the plane {x = 0} for λ = λC

is shown in Fig. 4. The bifurcation diagram (λ vs. half-period) described in

Theorem 1 for RP2-orbits is shown in Fig. 5. Numerical computations allow

to obtain λC ≈ 0.5851 and λF ≈ 0.8481.

Note that we have chosen the subscript F for the value of λ given in
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Figure 5: Curve of RP2-orbits in plane t-λ, where t is the half-period and the values λC

and λF are given in Theorem 1.

statement 4 of Theorem 1 because this value corresponds to a fold or saddle-

node bifurcation of periodic orbits. This fact is also proved below.

2. Analysis of the closing equations

This section is devoted to investigate the set of points which satisfy con-

dition (5), that can be easily written as the following system of two equations





x(t̂; λ̂, ŷ0) = 0,

z(t̂; λ̂, ŷ0) = 0.
(10)

According to conditions (6) and (7), the expressions of x and z in system

(10) can be obtained by integrating the linear system corresponding to the

half-space {x < 0}. Thus, after suitable manipulations, it is obvious that

(t̂, λ̂, ŷ0) verifies system (10) if and only if (t, λ, y0) = (t̂, λ̂, ŷ0) is a solution
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of system 



E1(t, λ, y0) = 0,

E2(t, λ, y0) = 0,
(11)

where

E1(t, λ, y0) =
√
4 + 3λ2

[
−1− 3λ2 + (1 + λ2)(1 + λ2y0)e

tλ
]
e

tλ
2

+ λ [(1 + λ2)(2 + 3λ2)y0 − 2] sin (βt)

− λ2
√
4 + 3λ2 [(1 + λ2)y0 − 2] cos (βt),

and

E2(t, λ, y0) = λ (1 + λ2y0)
√
4 + 3λ2(e

3λ
2
t − cos (βt))

+ [2 + 3λ2 − (2 + 6λ2 + 3λ4)y0] sin (βt),

with β given in equation (4).

Note that system (11) can be read as a system of two first-order linear

equations for y0, 



a1(t, λ)y0 + b1(t, λ) = 0,

a2(t, λ)y0 + b2(t, λ) = 0.

The determinant of the augmented matrix is (1+3λ2)
√
4 + 3λ2 E(t, λ), where

E(t, λ) = λ3
√
4 + 3λ2[(1 + e2tλ)− (1 + etλ)e

tλ
2 cos (βt)]

+ (2 + 6λ2 + 3λ4) (etλ − 1)e
tλ
2 sin (βt).

So, system (11) can be solved for y0 if, and only if,

E(t, λ) = 0. (12)

Moreover, this solution is unique because, as it is proved in the following

lemma, the coefficient

a2(t, λ) = (2 + 6λ2 + 3λ4) sin (βt)− λ3
√
4 + 3λ2

(
e

3λ
2
t − cos (βt)

)
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and the function E(t, λ) cannot vanish simultaneously. Therefore, from the

second equation of system (11) it is possible to obtain y0 as a function of

(t, λ),

y0(t, λ) =
(2 + 3λ2) sin (βt) + λ

√
4 + 3λ2

(
e

3λ
2
t − cos (βt)

)

(2 + 6λ2 + 3λ4) sin (βt)− λ3
√
4 + 3λ2

(
e

3λ
2
t − cos (βt)

) . (13)

Lemma 1. For t > 0 and λ > 0, system (11) is equivalent to the system

formed by equations (12) and (13).

Proof. The following expressions for the trigonometric functions sin(βt)

and cos(βt) can be obtained from the system a2(t, λ) = 0, E(t, λ) = 0.

sin (βt) =
λ3
√
4 + 3λ2

(
e3tλ − 1

)
e−

3tλ
2

2 (2 + 6λ2 + 3λ4)
, cos (βt) =

(
1 + e3tλ

)
e−

3tλ
2

2
.

Since

sin2 (βt) + cos2 (βt)− 1 =
(1 + λ2)

3
(1 + 3λ2)

(
e3tλ − 1

)2
e−3tλ

(2 + 6λ2 + 3λ4)2
> 0,

for t > 0 and λ > 0, functions a2(t, λ) and E(t, λ) cannot vanish simultane-

ously and the proof is concluded.

As it has been outlined above, the solution set of system (11) can be

studied from equation (12). Although λ must be positive for our model, the

solution set of (12) has several symmetry properties which makes interesting

to analyze this set even for non-positive values of λ.

Note that E(t, 0) = 0 for every t. To remove this limit case we introduce

the smooth function

F (t, λ) =





E(t, λ)

λ
if λ 6= 0,

2t sin(t) if λ = 0,
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where the values F (t, 0) have been obtained by continuity. Furthermore,

more suitable coordinates are chosen by replacing t with the new variable

τ =

√
4 + 3λ2

2
t. (14)

So, from now on, we consider the function

G(τ, λ) = F

(
2τ√

4 + 3λ2
, λ

)
. (15)

Some basic properties which describe the zero set of function G are stated

in the next lemma.

Lemma 2. The following statements about function G hold.

1. Function G vanishes for (τ, λ) = (kπ, 0) with k ∈ N∗ := N ∪ {0}.
Moreover, if τ ∈ (kπ, (k + 1)π), k ∈ N∗, then sign(G(τ, 0)) = (−1)k.

2. The points (kπ, 0) with k ∈ N∗ are fold points of the zero set of G, that

is, G(kπ, 0) = ∂G
∂λ
(kπ, 0) = 0 and ∂G

∂τ
(kπ, 0) · ∂2G

∂λ2 (kπ, 0) 6= 0.

3. Function G satisfies G(τ, λ) = exp
(

4τλ√
4+3λ2

)
G(τ,−λ) for all (τ, λ) ∈

R2.

4. If τ ∈ ⋃k∈N∗(2kπ, (2k + 1)π) then G(τ, λ) > 0 for all λ ∈ R.

5. For every τ ∈ ⋃k∈N[(2k−1)π, 2kπ] there exists a unique value λ̃(τ) ≥ 0

such that G(τ, λ̃(τ)) = G(τ,−λ̃(τ)) = 0. Moreover, if τ ∈ ⋃k∈N((2k −
1)π, 2kπ) then λ̃(τ) > 0, ∂G

∂λ
(τ, λ̃(τ)) > 0 and ∂G

∂λ
(τ,−λ̃(τ)) < 0.

6. If τ ∈ ⋃k∈N[(2k − 1)π, 2kπ] and λ > 0, then sign(G(τ, λ)) = sign(λ −
λ̃(τ)).

7. For every k ∈ N there exists a unique pair (τk, λk) ∈ ((2k−1)π, 2kπ)×
(0,+∞) such that G(τk, λk) = G(τk,−λk) = 0 and ∂G

∂τ
(τk, λk) =

∂G
∂τ
(τk,−λk) =

15



0. Moreover, ∂2G
∂τ2

(τk, λk)· ∂
2G
∂τ2

(τk,−λk) 6= 0 and so the pairs (τk, λk) and

(τk,−λk) are fold points of the zero set of G.

Proof. The proofs of items 1 and 2 are immediate and the proof of item 3

is a direct consequence of the obvious property E(t, λ) = −e2tλE(t,−λ).

The proofs of some of the remaining items are based on geometric rea-

sonings. The principal idea is to write the equation G(τ, λ) = 0 as a system

whose equations correspond to a straight line and the unit circle. More pre-

cisely, for X = cos(τ) and Y = sin(τ) the equation G(τ, λ) = 0 can be

thought of as the system





r ≡ A(τ, λ) +B(τ, λ)X + C(τ, λ)Y = 0

X2 + Y 2 = 1
(16)

where, for λ 6= 0, the coefficients are given by

A(τ, λ) = λ2
√
4 + 3λ2

(
1 + e

4τλ√
4+3λ2

)
, (17)

B(τ, λ) = −λ2
√
4 + 3λ2

(
e

3τλ√
4+3λ2 + e

τλ√
4+3λ2

)
, (18)

C(τ, λ) =
(
2 + 6λ2 + 3λ4

)

e

3τλ√
4+3λ2 − e

τλ√
4+3λ2

λ


 (19)

and, for λ = 0, it holds A(τ, 0) = B(τ, 0) = 0 and C(τ, 0) = 2τ .

It follows that

A(τ, λ) ≥ 0, B(τ, λ) ≤ 0 and sign(C(τ, λ)) = sign(τ). (20)

Therefore, a point (cos(τ), sin(τ)), with τ > 0, is located above the straight

line r if and only if G(τ, λ) > 0 and it is located below r if and only if

G(τ, λ) < 0.
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The first coordinate of the intersection point between the straight line r

and Y = 0 is

X̃(τ, λ) =
−A(τ, λ)

B(τ, λ)
=

1 + e
4τλ√
4+3λ2

e
3τλ√
4+3λ2 + e

τλ√
4+3λ2

. (21)

Note that function X̃ satisfies

X̃(τ, λ)− 1 =

(
e

τλ√
4+3λ2 − 1

)2(
1 + e

τλ√
4+3λ2 + e

2τλ√
4+3λ2

)

e
3τλ√
4+3λ2 + e

τλ√
4+3λ2

> 0 (22)

for τ · λ 6= 0.

The second coordinate of the intersection point between the straight line

r and X = 0 is

Ỹ (τ, λ) =
−A(τ, λ)

C(τ, λ)
= −

e
− λτ√

4+3λ2

(
1 + e

4λτ√
4+3λ2

)
λ3
√
4 + 3λ2

(
−1 + e

2λτ√
4+3λ2

)
(3λ4 + 6λ2 + 2)

. (23)

The slope of the straight line r is

m̃(τ, λ) =
−B(τ, λ)

C(τ, λ)
=

λ2
√
4 + 3λ2

(
e

3τλ√
4+3λ2 + e

τλ√
4+3λ2

)

(2 + 6λ2 + 3λ4)

(
e

3τλ√
4+3λ2 − e

τλ√
4+3λ2

λ

) . (24)

Since inequalities (20) hold, it is clear that m̃(τ, λ) is positive for τ > 0.

Therefore, from inequality (22) any solution (X, Y ) of system (16) must

verify Y < 0.

Once the principal geometric idea have been presented, we can go ahead

with the proof of the lemma.

Item 4 is trivial for the particular case λ = 0. For τ ∈ ⋃k∈N∗(2kπ, (2k +

1)π) and λ 6= 0, it is obvious that Y = sin τ > 0. Thus G(τ, λ) must be

positive and statement 4 is proved.
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Regarding item 5, for the particular case when τ = kπ with k ∈ N, we

haveG(kπ, λ) = A(kπ, λ)+(−1)kB(kπ, λ). From this equality it is immediate

to prove that G(kπ, λ) = 0 if and only if λ = 0.

Now let us fix τ ∈ ⋃k∈N((2k − 1)π, 2kπ). From item 1, it follows that

G(τ, 0) < 0. On the other hand, since

X̃∞(τ) := lim
λ→+∞

X̃(τ, λ) =
1 + e

4τ√
3

e
τ√
3 + e

√
3τ

and

Ỹ∞(τ) := lim
λ→+∞

Ỹ (τ, λ) = −
e
− τ√

3

(
1 + e

4τ√
3

)

√
3
(
−1 + e

2τ√
3

) ,

it is easy to deduce that the limit straight line r for λ = +∞ is located below

the unit circle. In fact, it is a direct consequence of the inequality

(
1

X̃∞(τ)

)2

+

(
1

Ỹ∞(τ)

)2

− 1 = −

(
−1 + e

2τ√
3

)4

(
1 + e

4τ√
3

)2 < 0 for τ 6= 0.

So, function G(τ, λ) must be positive for λ large enough. Therefore, there

exists at least a positive value λ̃(τ) such that G(τ, λ̃(τ)) = 0.

In order to prove the uniqueness of λ̃(τ) we are going to analyse the

derivative of functions X̃(τ, λ) and m̃(τ, λ) with respect to λ. On the one

hand, it is immediate to see that the derivative

∂X̃

∂λ
(τ, λ) =

4e
−τλ√
4+3λ2

(
e

2τλ√
4+3λ2 − 1

)(
1 + 4e

2τλ√
4+3λ2 + e

4τλ√
4+3λ2

)
τ

(
1 + e

2τλ√
4+3λ2

)2

(4 + 3λ2)
3
2

is positive for λ > 0 and τ > 0. On the other hand, the derivative of function
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m̃ with respect to λ can be written as

∂m̃

∂λ
(τ, λ) =

4λ2
(
3 (λ2 + 1)

2√
4 + 3λ2 sinh

(
2τλ√
4+3λ2

)
− λ (3λ4 + 6λ2 + 2) τ

)

sinh2
(

τλ√
4+3λ2

)
(4 + 3λ2) (3λ4 + 6λ2 + 2)2

whose sign is determined by function

h(τ, λ) =

(
3
(
λ2 + 1

)2√
4 + 3λ2 sinh

(
2λτ√
4 + 3λ2

)
− λ

(
3λ4 + 6λ2 + 2

)
τ

)
.

After the change τ = (2λ)−1
√
4 + 3λ2 τ̃ , function h takes the form

1

2

√
4 + 3λ2

(
(6 sinh τ̃ − 3τ̃ )λ4 + (12 sinh τ̃ − 6τ̃)λ2 + (6 sinh τ̃ − 2τ̃)

)
,

which is positive for τ̃ > 0. Hence, the derivative of m̃ with respect to λ is

positive for λ > 0.

From this reasoning it has been proved that the value λ̃(τ) > 0 is unique.

Another direct consequence is that the partial derivative of function G with

respect to λ has to be positive at (τ, λ̃(τ)). Using statement 3 it also follows

that G(τ,−λ̃(τ)) = 0 and ∂G
∂λ
(τ,−λ̃(τ)) < 0, what concludes the proof of

item 5.

Note that item 5 allows to define a unique function λ̃ : τ ∈ ⋃k∈N[(2k −
1)π, 2kπ] → [0,+∞) such that G(τ, λ̃(τ)) = 0. Due to the analyticity of

function G and to items 1-5, function λ̃ is continuous in every interval [(2k−
1)π, 2kπ], analytical in every interval ((2k − 1)π, 2kπ) and λ̃(kπ) = 0 for

all k ∈ N. Therefore, for every k ∈ N there exists at least a value τk ∈
((2k − 1)π, 2kπ) such that λ̃′(τk) = 0.

The proof of statement 6 is a direct consequence of item 5.

In order to prove item 7 one must assure, inter alia, the uniqueness of ev-

ery τk. For that purpose it is enough to establish that λ̃′′(τ) is always negative
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when λ̃′(τ) = 0. More concretely, taking into account that ∂G
∂λ
(τ, λ̃(τ)) > 0

and that

λ̃′′(τ) = −
(
∂2G

∂τ 2
(τ, λ̃(τ))

)/(
∂G

∂λ
(τ, λ̃(τ))

)

when λ̃′(τ) = 0, it suffices to prove that for τ, λ > 0 the second derivative

∂2G
∂τ2

(τ, λ) is positive when G(τ, λ) and ∂G
∂τ
(τ, λ) vanish.

For λ 6= 0, system G(τ, λ) = ∂G
∂τ
(τ, λ) = 0 can be written as





A(τ, λ) +B(τ, λ) cos τ + C(τ, λ) sin τ = 0,

Ā(τ, λ) + B̄(τ, λ) cos τ + C̄(τ, λ) sin τ = 0,
(25)

where functions A, B and C are defined in (17)–(19) and

Ā(τ, λ) = 4e
4λτ√
4+3λ2 λ3,

B̄(τ, λ) = −2

λ
e

λτ√
4+3λ2

(
2λ4 + 3λ2 − e

2λτ√
4+3λ2

(
3λ2 + 1

)
+ 1

)
,

C̄(τ, λ) =
2√

4 + 3λ2
e

λτ√
4+3λ2

(
−λ2 + e

2λτ√
4+3λ2

(
6λ4 + 11λ2 + 3

)
− 1

)
.

The determinant of the coefficient matrix of (cos (τ), sin (τ)) in system

(25) is given by

K(τ, λ) = det


 B(τ, λ) C(τ, λ)

B̄(τ, λ) C̄(τ, λ)




= −
4e

2λτ√
4+3λ2


2e

2λτ√
4+3λ2 (3λ4+5λ2+1)λ4+

(
−1+e

2λτ√
4+3λ2

)2

(λ2+1)
3
(3λ2+1)




λ2 ,

which is negative for λ 6= 0 and τ > 0.
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Therefore, system (25) can be solved for the trigonometric functions

sin(τ) = 2 (K(τ, λ))−1 e
τλ√
4+3λ2

(
−1 + e

2τλ√
4+3λ2

)
λ
√
4 + 3λ2

×
(
2λ4 + 3λ2 + 1 + 2e

2τλ√
4+3λ2 λ4 + e

4τλ√
4+3λ2 (2λ4 + 3λ2 + 1)

)
,

cos(τ) = 2 (K(τ, λ))−1 e
τλ√
4+3λ2

(
1 + e

2τλ√
4+3λ2

)
λ2

×
(
λ2 + 1 + e

4τλ√
4+3λ2 (λ2 + 1)− 2e

2τλ√
4+3λ2 (3λ4 + 6λ2 + 2)

)
.

Moreover, when these expressions of sin(τ) and cos(τ) are substituted in

∂2G
∂τ2

and after some trivial simplifications, one realises that the sign of this

second derivative of G coincides with the sign of

L(τ, λ)=e
8τλ√
4+3λ2 (λ2 + 1)

3
+ 2e

6τλ√
4+3λ2 (λ6 − 3λ2 − 1)

+2e
4τλ√
4+3λ2 (3λ2 + 1) (λ2 + 1)

2
+ 2e

2τλ√
4+3λ2 (λ6 − 3λ2 − 1) + (λ2 + 1)

3
.

The change of variable

u = exp(2τλ/
√
4 + 3λ2) > 1 (26)

transforms function L into the polynomial function

L̃(u, λ) = (u4 + 2u3 + 6u2 + 2u+ 1)λ6 + (3u4 + 14u2 + 3)λ4+
[
3 (u2 + 1) (u− 1)2 + 4u2

]
λ2 + (u2 + 1) (u− 1)2 .

Since all coefficients of L̃ are positive for u > 1, we obtain that L(τ, λ) > 0

for τ, λ > 0.

Therefore we can conclude that the second derivative ∂2G
∂τ2

(τ, λ̃(τ)) is pos-

itive when τ, λ > 0 and the proof is finished.

Lemma 2 describes the zero set of function G given in (15). This set

is formed by infinitely many simple, closed and isolated curves. Function
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Figure 6: (a) Partial zero set of function G(τ, λ). (b) Partial zero set of function E(t, λ).

G is negative in the interior components of theses curves and positive in

the exterior component. In Fig. 6(a) we can see several isolated curves of

this set. In particular, for each of these curves both kinds of fold points

are distinguished. Those given in statement 7 of Lemma 2 correspond to

the maximum and minimum values of parameter λ. On the other hand, the

points on the curve where λ = 0 are the fold points given in statement 2. Note

that these points are pitchfork singularities for the zero set of function E since

E(t, 0) = 0 for every t. In Fig. 6(b), a portion of the zero set of function E is

shown. Note that this set corresponds to the image by t = 2τ (4 + 3λ2)
−1/2

of the curves shown in Fig. 6(a), together with the λ = 0 axis.

3. Study of the inequalities

We start this section by proving that the condition (6) is satisfied for

every (t̂, λ̂, ŷ0) that verifies the condition (5). Note that if a triple (t, λ, y0) =
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(t̂, λ̂, ŷ0) verifies the condition (5), then the pair (t, λ) has to belong to the

zero set of function E and y0 must have the expression given in (13). If the

values t, λ > 0 satisfy E(t, λ) = 0, then from Lemma 2 we have sin(βt) < 0

and the denominator of (13) is negative. Hence, the sign of y0 is the opposite

of the sign of its numerator

H(t, λ) = (2 + 3λ2) sin (βt) + λ
√
4 + 3λ2

(
e

3λ
2
t − cos (βt)

)
. (27)

To study this sign it is convenient to consider the change of variable (14)

which transforms function H into the function

J(τ, λ) = (2 + 3λ2) sin (τ) + λ
√
4 + 3λ2

(
e

3τλ√
4+3λ2 − cos (τ)

)
. (28)

Function J verifies some properties that are analogous to those described

in Lemma 2 for function G, and their proofs are omitted here because they

are also similar.

Lemma 3. The following statements about function J hold.

1. If τ ∈ ⋃k∈N∗(2kπ, (2k + 1)π), then J(τ, λ) > 0 for all λ > 0.

2. For every τ ∈ ⋃k∈N[(2k−1)π, 2kπ] there exists a unique value λ̄(τ) ≥ 0

such that J(τ, λ̄(τ)) = 0. This value λ̄(τ) vanishes at τ = kπ for every

k ∈ N. Moreover, if τ ∈ ⋃
k∈N((2k − 1)π, 2kπ), then λ̄(τ) > 0 and

∂J
∂λ
(τ, λ̄(τ)) > 0.

3. If τ ∈ ⋃k∈N[(2k − 1)π, 2kπ], then sign(J(τ, λ)) = sign(λ− λ̄(τ)).

4. For every k ∈ N there exists a unique pair (τ̄k, λ̄k) ∈ ((2k−1)π, 2kπ)×
(0,+∞) such that J(τ̄k, λ̄k) =

∂J
∂τ
(τ̄k, λ̄k) = 0. Moreover, ∂2J

∂τ2
(τ̄k, λ̄k) <

0.
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After Lemma 3 we can state the next proposition.

Proposition 1. Suppose that a triple (t, λ, y0) = (t̂, λ̂, ŷ0) verifies condition

(5) with t, λ > 0. Then condition (6) holds.

Proof. To prove the thesis of this proposition it is enough to show that

every (τ, λ) belonging to the zero set of function G with τ, λ > 0 satisfies

J(τ, λ) > 0 (see Fig. 7), i.e, functions λ̃ and λ̄ defined in lemmas 2 and 3

satisfy λ̄(τ) < λ̃(τ) for every τ ∈ ⋃k∈N((2k − 1)π, 2kπ).

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

Τ

Λ

Figure 7: Partial zero set of functions G(τ, λ) (solid line) and J(t, λ) (dashed line). The

regions where J(t, λ) is negative have been shadowed.

To do this, let us consider the straight line

r̄ ≡ (2 + 3λ2)Y + λ
√
4 + 3λ2

(
e

3τλ√
4+3λ2 −X

)
= 0,

which is obtained by substituting X = cos(τ) and Y = sin(τ) in (28). We

will see that, for every fixed τ ≥ π and λ > 0, the straight line r̄ is located

below the straight line r, given in (16), when Y ≤ 0 and X ≥ −1 (see Fig.
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8). The idea is to compare the relative position of the straight lines r and r̄

when they intersect the straight lines Y = 0 and X = −1.

The first coordinate of the intersection point of straight line r̄ with the

horizontal axis Y = 0 is X̄(τ, λ) = exp
(
3λτ/

√
4 + 3λ2

)
. Respectively, the

intersection between r and Y = 0 is X̃(τ, λ) given in (21). Note that

X̄(τ, λ)− X̃(τ, λ) =
−1 + e

6λτ√
4+3λ2

e
λτ√
4+3λ2 + e

3λτ√
4+3λ2

> 0

for τ, λ > 0 and so X̄(τ, λ) > X̃(τ, λ) when τ, λ > 0.

On the other hand, the second coordinate of the intersections points of

straight lines r and r̄ with X = −1 are given by

Ỹ1(τ, λ) = −
e
− λτ√

4+3λ2

(
1 + e

3λτ√
4+3λ2

)
λ3
√
4 + 3λ2

(
−1 + e

λτ√
4+3λ2

)
(3λ4 + 6λ2 + 2)

and

Ȳ1(τ, λ) = −

(
1 + e

3λτ√
4+3λ2

)
λ
√
4 + 3λ2

3λ2 + 2

respectively. Hence, the sign of Ỹ1(τ, λ) − Ȳ1(τ, λ) is given, for τ, λ > 0, by

the sign of function

P (τ, λ) = −
(
3λ2 + 2

)
λ2−e

λτ√
4+3λ2

(
3λ4 + 6λ2 + 2

)
+e

2λτ√
4+3λ2

(
3λ4 + 6λ2 + 2

)
.

The change of variable u = exp
(
τλ/

√
4 + 3λ2

)
transforms function P

into function

Q(u, λ) = (u− 1)u
(
3λ4 + 6λ2 + 2

)
− λ2

(
3λ2 + 2

)
.
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Figure 8: Relative position of the straight lines r and r̄ and the points X̄, Ȳ1 and X̃, Ỹ1.

The region X ≥ −1, Y ≤ 0 has been shadowed.

For λ > 0 and τ ≥ π we have

e
λτ√

4+3λ2 ≥ e
λπ√
4+3λ2 > e

λ√
4+3λ2 > 1 +

λ√
4 + 3λ2

+
λ2

6λ2 + 8
:= ũ.

Since Q(ũ, λ) > 0 and ∂Q
∂u
(ũ, λ) > 0, we deduce that Q(u, λ) > 0 for λ > 0

and u ≥ ũ. Therefore Ȳ1(τ, λ) < Ỹ1(τ, λ) and the proof is concluded.

Once we have proved that condition (5) implies inequality (6), we fo-

cus on the proof of inequality (7) for λ̂ > 0 and t̂ ∈ [π/β̂, 2π/β̂], where

β̂ =
√

4 + 3λ̂2/2, that is, when (t̂, λ̂) belongs to the first E(t, λ) = 0 curve.

The next result affirms that when (5), (9) and t̂ ∈ [π/β̂, 2π/β̂] are satisfied,

condition (7) holds. So, after the proof of the result we will study condition

(9).
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Proposition 2. Let be λ̂ > 0 and β̂ =
√
4 + 3λ̂2/2. Assume that (t̂, λ̂, ŷ0)

satisfies conditions (5), (9) and t̂ ∈ [π/β̂, 2π/β̂]. Then, x(t; λ̂, ŷ0) < 0 for

every t ∈ (0, t̂).

Proof. Let us see that, under the hypotheses, if there exist a value tx ∈
(0, t̂) such that x(tx; λ̂, ŷ0) ≥ 0 then the value t̂ must be greater than 2π/β̂.

Remember that the first two equations of system (2) are ẋ = y and

ẏ = z and that (5) implies (6) (see Proposition 1). So, function x(t; λ̂, ŷ0)

satisfies x(0; λ̂, ŷ0) = x(t̂; λ̂, ŷ0) = 0, x(tx; λ̂, ŷ0) ≥ 0 and ∂
∂t
x(0; λ̂, ŷ0) = ŷ0 <

0. Furthermore, function x(t; λ̂, ŷ0) cannot be constant in an open interval

because it should correspond to an equilibrium and there are no equilibria

at the separation plane.

As a direct conclusion, there exist three values 0 < ty1 < ty2 < ty3 < t̂

such that y(ty1; λ̂, ŷ0) < 0, y(ty2; λ̂, ŷ0) > 0 and y(ty3; λ̂, ŷ0) < 0. Moreover,

condition (9) says that y(t̂; λ̂, ŷ0) ≥ 0.

It is obvious now that there exist two values 0 < tz1 < tz2 < t̂ where

z(tz1; λ̂, ŷ0) = z(tz2; λ̂, ŷ0) = 0, y(tz1; λ̂, ŷ0) > 0 and y(tz2; λ̂, ŷ0) < 0. More-

over, from the hypotheses, it holds that z(0; λ̂, ŷ0) = z(t̂; λ̂, ŷ0) = 0.

Consider now function v(t) = −λy(t; λ̂, ŷ0)+z(t; λ̂, ŷ0). Since λ̂ > 0, from

the previous reasoning it is clear that v(0) > 0, v(tz1) < 0, v(tz2) > 0 and

v(t̂) ≤ 0. Therefore, function v vanishes at three values 0 < tv1 < tv2 < tv3 ≤
t̂.

Taking into account that the plane −λy + z = 0 contains the one-

dimensional unstable manifold {p− − µ(1, λ, λ2) : µ ∈ R} of the equilibrium

p− of the linear system ẋ = A−x + e3, it is obvious that tv3 − tv1 ≥ 2π/β̂.

Since t̂ > tv3 − tv1, the result is proved.
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Now, we consider condition (9) when βt ∈ (π, 2π). Observe that the

second component of the solution of system (2) in the half-space {x < 0}
with initial condition p0 = (0, y0, 0) is given by

y(t;λ, y0) = e−
tλ
2

(1+3λ2)
√
4+3λ2

(√
4 + 3λ2(1 + λ2y0)e

3λt
2 +

+
√
4 + 3λ2 [(1 + 2λ2)y0 − 1] cos (βt) + λ (y0 − 3) sin (βt)

)
.

(29)

For any solution (t, λ) of equation (12) with t, λ > 0 and for y0 given by

(13) we have

y0+
1

λ2
=

2 (3λ4 + 4λ2 + 1) sin (βt)√
3λ2 + 4 cos (βt)λ5 − e

3tλ
2

√
3λ2 + 4λ5 + (3λ4 + 6λ2 + 2) sin (βt) λ2

> 0,

(30)

that is, condition (8) is satisfied.

Note that, for βt ∈ (π, 3π/2], inequality (30) implies that y(t;λ, y0) > 0.

Thus, any solution (t, λ) of equation (12) with βt ∈ (π, 3π/2] and λ > 0

corresponds to a RP2-orbit. For the rest of the interval, βt ∈ (3π/2, 2π), the

conclusion is not so easy because, as we will see below, there exists a point

where the sign of y(t;λ, y0) changes. Obviously, the orbit corresponding to

such a point intersects the separation plane at the tangency line {x = 0, y =

0}. It is then natural to analyze the orbits that go into {x < 0} through

Fix(R) and, after that, have a first intersection with the separation plane at

the tangency line.

By integrating the linear system corresponding to the half-space {x < 0},
a point (0, y0, 0) is mapped onto a point at {x = 0, y = 0} if there exist

t, λ > 0 such that 



M1(t, λ, y0) = 0,

M2(t, λ, y0) = 0,
(31)
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where

M1(t, λ, y0) =
(
(λ2 + 1)(λ2y0 + 1)etλ − 3λ2 − 1

)√
3λ2 + 4 e

tλ
2

+λ
(
(λ2 + 1)(3λ2 + 2)y0 − 2

)
sin (βt)

−λ2
(
(λ2 + 1)y0 − 2

)√
3λ2 + 4 cos (βt)

and

M2(t, λ, y0) =
((
λ2y0+1

)
e

3
2
tλ+
(
(2λ2+1)y0−1

)
cos (βt)

)√
3λ2 + 4−λ

(
y0−3

)
sin (βt).

The coefficient of y0 in M1(t, λ, y0) is given by λ(λ2+1)H(t, λ), where H

is defined in (27). If function H does not vanish for a pair (t, λ), then y0 can

be solved from the first equation of system (31),

y0(t, λ) =
2λ sin(βt)−

(
2λ2 cos(βt) +

(
(λ2 + 1)etλ − 3λ2 − 1

)
e

tλ
2

)√
3λ2 + 4

λ(λ2 + 1)H(t, λ)
.

By substituting this expression in the second equation of (31), one obtains

M(t, λ) = 0, where

M(t, λ) = −e
tλ
2

(
−1 + etλ

)
(6λ4 + 11λ2 + 4) cos(tβ)

+
(
1 + etλ

)
λ
((

−1 + etλ
)
λ (4 + 3λ2) + e

tλ
2

√
4 + 3λ2 sin(tβ)

)
.

(32)

To explore the zero set of function M for βt ∈ [3π/2, 2π] we consider the

function N defined as

N(τ, λ) = S

(
2τ√

4 + 3λ2
, λ

)
, (33)

where

S(t, λ) =





M(t, λ)

λ
if λ 6= 0,

−4t cos(t) + 4 sin(t) if λ = 0.

The next lemma summarize several features of the zero set of function N for

τ ∈ [3π/2, 2π] and λ > 0.
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Lemma 4. Function N satisfies the following properties.

1. Given τ ∈ [3π/2, 2π], there exist a unique value λ∗(τ) > 0 such that

N(τ, λ∗(τ)) = 0. Moreover, the derivative ∂N
∂λ

verifies ∂N
∂λ

(τ, λ∗(τ)) > 0.

2. If τ ∈ [3π/2, 2π] and λ > 0 then sign(N(τ, λ)) = sign(λ− λ∗(τ)).

3. Function λ∗ : [3π/2, 2π] → (0,+∞) is analytical and has a unique crit-

ical value τC ∈ (3π/2, 2π). Moreover, this critical value τC corresponds

to the maximum value of function λ∗ in the interval [3π/2, 2π].

4. The critical value τC satisfies G(τC , λ
∗(τC)) = 0, where G is defined in

(15).

Proof. We will only prove statement 4 because the rest of items can be

proved as in Lemma 2.

The pair (τC , λ
∗(τC)) is the unique solution of system





N(τ, λ) = 0,

∂N
∂τ

(τ, λ) = 0,
(34)

in (3π/2, 2π)× (0,+∞).

Taking first order derivative of function N with respect to τ , system (34)

for λ > 0 can be written as





−e
λτ√
4+3λ2

(
−1 + e

2λτ√
4+3λ2

)
(6λ4 + 11λ2 + 4) cos τ+

(
1 + e

2λτ√
4+3λ2

)
λ

((
−1 + e

2λτ√
4+3λ2

)
λ (4 + 3λ2) + e

λτ√
4+3λ2

√
3λ2 + 4 sin τ

)
= 0,

2e
3λτ√
4+3λ2 λ3 (4 + 3λ2)− λ (4 + 3λ2)

(
−λ2 + e

2λτ√
4+3λ2 (3λ2 + 1)− 1

)
cos τ+

√
4 + 3λ2

(
−3λ4 − 5λ2 + e

2λτ√
4+3λ2 (3λ4 + 7λ2 + 2)− 2

)
sin τ = 0.
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Adding −λ times the first equation to exp
(
λτ/

√
4 + 3λ2

)
times the sec-

ond one, the equation
(
1 + e

4λτ√
4+3λ2

)
λ3 (4 + 3λ2)− e

λτ√
4+3λ2

(
1 + e

2λτ√
3λ2+4

)
λ3 (3λ2 + 4) cos τ+

e
λτ√
4+3λ2

(
−1 + e

2λτ√
4+3λ2

)√
4 + 3λ2 (3λ4 + 6λ2 + 2) sin(τ) = 0

is obtained.

It is direct to see that this last equation is equivalent to G(τ, λ) = 0 for

λ, τ > 0 and so the proof is finished.

In Figure 9 we can see the zero set of function G(τ, λ) for τ ∈ (π, 2π) and

the zero set of function N(τ, λ) for τ ∈ (3π/2, 2π). It can be observed that

both curves intersect at a unique point that, moreover, corresponds to the

maximum of function λ∗(τ) defined in Lemma 4.

After Proposition 2, we saw that any solution (t, λ) of equation (12)

with τ = βt ∈ (π, 3π/2] and λ > 0 corresponds to a RP2-orbit, because

y(t;λ, y0) > 0 holds. From Lemma 4 it is easy to see that this is also true

for τ = βt ∈ (3π/2, τC] and λ > 0 because τC is the only value for which

y(t;λ, y0) = 0. Moreover, the period of these RP2-orbits is less than 4π since

t = 2τ(4 + 3λ2)−1/2 ≤ τ . This is summarized in the following result.

Proposition 3. Let τC ∈ (3π/2, 2π) the critical value defined in Lemma 4

and let λ̃ be the function defined in Lemma 2. If τ ∈ (π, τC), then system

(2) has a RP2-orbit for λ = λ̃(τ) whose period is less than 4π.

4. Last details of the proof

This section is devoted to two remaining details that must be checked to

give a complete proof of Theorem 1. On the one hand, we must see that
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Figure 9: Partial zero sets of functions G (solid line) and N (dashed line). The intersection

between these two curves is the point (τC , λC) where function λ∗ reaches its maximum

value.

there not exist other RP2-orbits with period less than 4π apart from the

ones obtained in Proposition 3. On the other hand, we will see that the

point (τ1, λ1) defined in item 7 of Lemma 2 satisfies the inequality τ1 < τC

and so it corresponds to a saddle-node bifurcation of RP2-orbits of system

(2).

For the first thing, we are going to prove that the RP2-orbits that might

correspond to the zero curves of G with τ ≥ 3π must have period greater

than 4π. This can be done if we see that all these curves are included in the

horizontal half-stripe Γτ = {(τ, λ) ∈ [3π,+∞) × (−1, 1)}, whose image by

the change t = 2τ (4 + 3λ2)
−1/2

is included in {(t, λ) ∈ (2π,+∞)× (−1, 1)}.
The following proposition is devoted to prove it.
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Proposition 4. The image of the set {(τ, λ) ∈ R2 : G(τ, λ) = 0, τ ≥ 3π}
by the change t = 2τ (4 + 3λ2)

−1/2
is included in Γt = {(t, λ) ∈ (2π,+∞)×

(−1, 1)}.

Proof. Let us begin by proving that function G is positive for τ ≥ 3π and

λ ≥ 1. To do this, by following the proof of Lemma 2, it is enough to see that

the straight line r defined in (16) is located below the unit circle for τ ≥ 3π

and λ ≥ 1. Since functions X̃ and Ỹ given in (21) and (23) are increasing

with respect to λ when τ is fixed, it suffices to prove that the straight line r

is located below the unit circle for τ ≥ 3π and λ = 1.

When λ = 1, the intersection points of straight line r with the horizontal

and vertical axis are given by

X̃(τ, 1) =
1 + e

4τ√
7

e
τ√
7 + e

3τ√
7

and

Ỹ (τ, 1) = −
√
7e

− τ√
7

(
1 + e

4τ√
7

)

11
(
−1 + e

2τ√
7

) ,

respectively.

Note that the straight line r is located below the unit circle if X̃(τ, 1)−2+

Ỹ (τ, 1)−2 − 1 < 0. Since

1

X̃(τ, 1)2
+

1

Ỹ (τ, 1)2
− 1 = −

(
−1 + e

2τ√
7

)2 (
7− 114e

2τ√
7 + 7e

4τ√
7

)

7
(
1 + e

4τ√
7

)2

it is necessary to prove that the function p(τ) = 7−114e
2τ√
7 +7e

4τ√
7 is positive

for τ ≥ 3π. But, it is trivial because the change of variable s = e
2τ√
7 trans-

forms function p into the quadratic polynomial q(s) = 7s2 − 114s+ 7 which

is clearly positive for s ≥ exp(6π/
√
7).
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As a direct consequence, the set {(τ, λ) ∈ R2 : G(τ, λ) = 0, τ ≥ 3π} is

contained in the horizontal half-stripe Γτ = {(τ, λ) ∈ [3π,+∞)× (−1, 1)}.
On the other hand, the image of every half-straight line τ = constant,

λ > 0 by means of the transformation t = 2τ (4 + 3λ2)
−1/2

is a curve that

decreases with respect to λ. So, since the image of the point (τ, λ) = (3π, 1)

belongs to Γt = {(t, λ) ∈ (2π,+∞)× (−1, 1)}, the image of Γτ is included in

Γt and the proof is concluded.

Note that in the proof of Proposition 4 it is not necessary to know the

sign of G when τ ∈ [0, 3π) and λ ≥ 1, but it is possible to see that it is also

positive.

Now we are going to prove that every solution (τ̄ , λ̄), with τ̄ , λ̄ > 0, of

system 



G(τ, λ) = 0,

N(τ, λ) = 0,
(35)

verifies λ̃′(τ̄ ) < 0. In this way, function λ̃ is decreasing for τ = τC and

so the value τ1 defined in item 7 of Lemma 2 is less than τC . Therefore,

the fold point (τ1, λ1) gives a RP2-orbit and it corresponds to a saddle-node

bifurcation of periodic orbits of system (2).

Proposition 5. System (2) undergoes a saddle-node bifurcation of periodic

orbits for λ = λ1.

Proof. As we have just said, to prove the thesis of the proposition it suffices

to prove that every solution (τ̄ , λ̄) of system (35) satisfy λ̃′(τ̄) < 0.

To do this, let us begin by proving that function

W (τ, λ) =
(
1 + λ2

)2
+
(
1 + λ2

)2
e

4λτ√
4+3λ2 − 2(1 + 3λ2 + λ4)e

2λτ√
4+3λ2
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is positive for λ > 0 and τ ≥ π.

The change of variable given by (26) transforms function W into the

function

Ŵ (u, λ) =
(
1 + λ2

)2
+
(
1 + λ2

)2
u2 − 2u(1 + 3λ2 + λ4).

For λ > 0 and τ ≥ π, we have

e
2λτ√
4+3λ2 ≥ e

2λπ√
4+3λ2 > e

4λ√
4+3λ2 > 1 +

4λ√
4 + 3λ2

:= û

It is easy to see that Ŵ (û, λ) > 0 and ∂Ŵ
∂u

(û, λ) > 0. Therefore Ŵ (u, λ) > 0

for λ > 0, u ≥ û and W (τ, λ) > 0 for λ > 0, τ ≥ π.

Hence, function

T (τ, λ) =
(
1 + 3λ2

)
W (τ, λ) +

(
2λ2 + 4λ4

)
e

2λτ√
4+3λ2

is positive for λ > 0 and τ ≥ π.

For λ, τ > 0, system (35) can be written in the form





(
1 + e

4λτ√
4+3λ2

)
λ3 (4 + 3λ2)− e

λτ√
4+3λ2

(
1 + e

2λτ√
4+3λ2

)
λ3 (4 + 3λ2) cos(τ)+

e
λτ√

4+3λ2

(
−1 + e

2λτ√
4+3λ2

)√
4 + 3λ2 (3λ4 + 6λ2 + 2) sin(τ) = 0,

−e
λτ√
4+3λ2

(
−1 + e

2λτ√
3+3λ2

)
(6λ4 + 11λ2 + 4) cos(τ)+

(
1 + e

2λτ√
3+3λ2

)
λ

((
−1 + e

2λτ√
4+3λ2

)
λ (4 + 3λ2) +

√
4 + 3λ2e

λτ√
4+3λ2 sin(τ)

)
= 0.

By solving this system for cos(τ) and sin(τ) we obtain a unique solution

given by
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sin(τ) = −
e
− λτ√

4+3λ2

(
−1+e

2λτ√
4+3λ2

)
λ3

√
4+3λ2

(
−2e

2λτ√
4+3λ2 λ2+1+λ2+e

4λτ√
4+3λ2 (λ2+1)

)

2T (τ,λ)

cos(τ) =
e
− λτ√

4+3λ2

(
1+e

2λτ√
4+3λ2

)
λ2

(
3λ4+5λ2+2+e

4λτ√
4+3λ2 (3λ4+5λ2+2)−2e

2λτ√
4+3λ2 (3λ4+6λ2+2)

)

2T (τ,λ)

(36)

From statement 5 of Lemma 2 we know that ∂G
∂λ

(τ, λ̃(τ)) > 0 and so the

sign of

λ̃′(τ) = −
(
∂G

∂τ
(τ, λ̃(τ))

)/(
∂G

∂λ
(τ, λ̃(τ))

)

is determined by the sign of the derivative ∂G
∂τ
(τ, λ̃(τ)).

By substituting the expressions of cos(τ) and sin(τ) given by (36) in the

derivative ∂G
∂τ
(τ, λ̃(τ)) and after some trivial computations it is obtained

∂G

∂τ
(τ, λ̃(τ)) = 2

(
−1 + e

4λ̃(τ)τ√
4+3λ̃(τ)2

)
λ̃(τ)

(
3λ̃(τ)4 + 4λ̃(τ)2 + 1

) W (τ, λ̃(τ))

T (τ, λ̃(τ))
> 0

and so the conclusion follows.

Note that λ1 is the value λF given in Theorem 1 and that λC stands for

λ̃(τC).

5. Some comments about other RP2-orbits

Theorem 1 is devoted to RP2-orbits whose period is less than 4π. Re-

member that the procedure to analyze those orbits began with the study of

the zero set of function E given in Eq. (12). After that, in Section 3, we

restricted the period to prove the inequalities that RP2-orbits must satisfy.

Nevertheless, from Lemma 2 (and Figure 6(b)), we know that there exist

infinitely many curves belonging to the zero set of function E. These curves,
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except the first one, correspond, in case of being periodic orbits, to higher

periods. In this last section we are going to give some numerical results about

when the points of these curves correspond or not with RP2-orbits.

In Figure 10(a), a RP2-orbit with period greater than 4π is shown. A

such orbit is characterized by some extra loops around the one-dimensional

manifold between two consecutive intersections with the separation plane

and, as we can see in Figure 10(b), a natural way for them to disappear

is the existence of tangencies with the separation plane (p̂1 and p̂3). Some

results about tangencies and their importance can be found in [15].

(a) (b)
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Figure 10: (a) RP2-orbit of system (2) with period greater than 4π. (b) Reversible periodic

orbit of system (2) which has exactly two transversal and two non transversal intersections

with {x = 0}.

In the particular case of the second curve of the zero set of E (that is,

the first one of Figure 6(b) with period greater than 4π), it has been checked
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that there exist only a piece that gives RP2-orbits (similar to those shown

in Figure 10(a)). The end points of this piece are approximately (t, λ) =

(9.28741, 0.442641) and (t, λ) = (11.27502, 0.424947) and they correspond to

non-transversal tangencies (as those shown in Figure 10(b)). On the other

hand, after testing some of them, the rest of curves do not seem to give

any RP2-orbits. A plausible reason may be that the extra loops are big

enough to intersect the separation plane and, therefore, condition (7) cannot

be fulfilled.

In Figure 11 the first three curves of the zero set of function E have been

numerically drawn. The solid line correspond to points that give RP2-orbits

while the dotted line do not. The zero set of function M given in (32) is

also shown as a dashed line in Figure 11. From item 4 of Lemma 4 it is

deduced that the maximum points of the zero set of function M are located

over the zero set of E. Moreover, in the case of the first curve this point was

the end point of the curve of RP2-orbits, given by a transversal tangency

with the separation plane. The maximum points of the zero set of M at the

other curves do not have this significance, because they do not correspond

to RP2-orbits.

A last remark to finish the section. The maximum point of the second

curve of the zero set of function E belongs to the piece where RP2-orbits

exist. So, it is a fold bifurcation of periodic orbits.
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[6] F. Dumortier, S. Ibañez and H. Kokubu, New aspects in the unfolding

of the nilpotent singularity of codimension three, Dyn. Syst.,16 (2001),

63–95.

[7] E. Freire, E. Gamero, A. J. Rodriguez-Luis and A. Algaba, A note on the

triple-zero linear degeneracy: normal forms, dynamical and bifurcation

behaviors of an unfolding, Internat. J. Bifur. Chaos Appl. Sci. Engrg.

12 (2002) 2799–2820.

[8] E. Freire, E. Ponce, J. Ros, Limit cycle bifurcation from center in sym-

metric piecewise-linear systems, Internat. J. Bifur. Chaos Appl. Sci. En-

grg. 9 (1999) 895–907.

[9] E. Freire, E. Ponce, F. Torres, Hopf-like bifurcations in planar piecewise

linear systems, Publ. Mat. 41 (1997) 135–148.

[10] P. Kent and J. Elgin, Noose bifurcation of periodic orbits, Nonlinearity

4, (1991) 1045–1061.

[11] H. Kokubu, D. Wilczak, P. Zgliczyński, Rigorous verification of cocoon
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