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Abstract. We study the periodic orbits of the spatial anisotropic Manev
problem which depend on three parameters.

1. Introduction and statement of the main results

The objective of this paper is to study the periodic orbits of the spatial
anisotropic Manev problem given by the Hamiltonian

(1) H =
1

2
(p2

x + p2
y + p2

z) − 1√
µ(x2 + y2) + z2

− εβ

µ(x2 + y2) + z2
,

where µ is near 1, β ̸= 0 is a parameter and ε is small.

The dynamics of the planar anisotropic Manev problem was studied in [4]
and [6]–[8], including information on its periodic orbits, but as far as we know
there are no works on the spatial periodic orbits of the Manev problem.

If µ = 1 and β = 0, we have the spatial Kepler problem, see for instance the
book [3].

If µ ̸= 1 and β = 0, we have the spatial anisotropic Manev problem, which
originally comes from the quantum mechanics, see for instance [10, 1, 2].

If µ = 1 and β ̸= 0 then we have the spatial Manev problem. One of the
advantages of the Manev problem over the Keplerian is that it explains the
perihelion advance of the inner planets with the same accuracy as relativity,
see [5], [9], [11], [12]–[15] and [17]–[19].

Note that the Hamiltonian (1) is symmetric with respect to the z-axis. Then
it is easy to check that the third component K = xpy − ypx of the angular
momentum is a first integral of the Hamiltonian system with Hamiltonian
(1). We shall use this integral K to simplify the analysis of the given axially
symmetric perturbed system.
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Since µ is near 1 and ε is small we take µ = 1 − ε, and doing Taylor series
in ε at ε = 0 of the Hamiltonian (1), we obtain
(2)

H =
1

2
(p2

x + p2
y + p2

z)− 1√
x2 + y2 + z2

− ε
x2 + y2 + 2

√
x2 + y2 + z2β

2(x2 + y2 + z2)3/2
+O(ε2).

In the following we shall use the Delaunay variables for studying easily the
periodic orbits of the Hamiltonian system associated to the Hamiltonian (2),
see [3, 16] or section 2 for more details on the Delaunay variables. Thus in
Delaunay variables the Hamiltonian (2) has the form

(3) H = − 1

2L2
+ εP (l, g, k, L, G, K) + O(ε2),

where P (l, g, k, L,G, K) is equal to

(4)
−(G + L)((G2 + K2)L + 4Gβ) + (G2 − K2)(G − L)L cos(2g)

4G2L3(G + L)
,

where l is the mean anomaly, g is the argument of the perigee of the unper-
turbed elliptic orbit measured in the invariant plane, k is the longitude of the
node, L is the square root of the semi-major axis of the unperturbed elliptic
orbit, G is the modulus of the total angular momentum, and K is the third
component of the angular momentum.

Our main result is the following one.

Theorem 1. On every energy level H = h < 0 and for the third component
of the angular momentum K = 0, the spatial anisotropic Kepler problem given
by the Hamiltonian (2) for ε ̸= 0 sufficiently small and for every k0 ∈ [0, 2π)
has:

(a) Two 2π–periodic solutions γε(l) = (g(l, ε), k(l, ε), L(l, ε), G(l, ε),K(l, ε))
such that

γε(0) →
(

±1

2
arccos(16hβ), k0,

1√
−2h

,
1√
−2h

, 0

)
when ε → 0,

if |β| < 1/|16h|.
(b) Two 2π–periodic solution γε(l) such that

γε(0) →
(

±π

2
, k0,

1√
−2h

,
2
√

−2hβ +
√

2β

1 + 4hβ
, 0

)
when ε → 0,

if β > 0 and (1 + 4hβ)(1 − 2
√−hβ + 8hβ) ̸= 0.

(c) Two 2π–periodic solution γε(l) such that

γε(0) →
(

±π

2
, k0,

1√
−2h

,
2
√

−2hβ − √
2β

1 + 4hβ
, 0

)
when ε → 0,

if β > 0 and (1 + 4hβ)(1 + 2
√−hβ + 8hβ) ̸= 0.
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(d) Two 2π–periodic solution γε(l) such that

γε(0) →
({

0
π

}
, k0,

1√
−2h

,
2
√

−2hβ +
√−2β

−1 + 4hβ
, 0

)
when ε → 0,

if β < 0 and (1 − 4hβ)(1 − 4
√

hβ + 4hβ)(−1 − 2
√

hβ + 8hβ) ̸= 0.

(e) Two 2π–periodic solution γε(l) such that

γε(0) →
({

0
π

}
, k0,

1√
−2h

,
2
√

−2hβ − √−2β

−1 + 4hβ
, 0

)
when ε → 0,

if β < 0 and (1 − 4hβ)(−1 + 2
√

hβ + 8hβ)(1 + 4
√

hβ + 4hβ) ̸= 0.

Theorem 1 is proved in section 3.

We note, as we shall see in the proof of Theorem 1, that the averaging
method that we shall apply for finding the periodic solutions of Theorem 1
only find periodic solutions when the first integral K = 0. See the appendix
for a summary of the averaging method used here.

2. Delauney variables

The transformation of Delauney is given by

x = r(cos(f + g) cos k − c sin(f + g) sin k),
y = r(cos(f + g) sin k + c sin(f + g) cos k),
z = rs sin(f + g),

with c = K/G and s2 = 1 − K2/G2. The true anomaly f and the eccentric
anomaly E are auxiliary quantities defined by the relations

√
1 − e2 =

G

L
, r = (1 − e cosE), l = E − e sin E.

sin f =
a
√

1 − e2 sinE

r
, cos f =

a(cosE − e)

r
,

where e is the eccentricity of the unperturbed elliptic orbit. Note that the
angular variable k is a cyclic variable for the Hamiltonian (3), and consequently
K is a first integral of the Hamiltonian system as we already knew.

3. Proof of Theorem 1

We shall write the Hamiltonian system on the energy level H = h < 0.
From the equation H = h we isolate L = 1/

√
−2h+O(ε). So the Hamiltonian
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system with Hamiltonian (3) eliminating L becomes

dG

dt
= ε

(
1 −

√
−2hG

)
h

(
G2 − K2

)
sin(2g)

G2
(
1 +

√
−2hG

) + O(ε2),

dK

dt
= 0,

dl

dt
= 2

√
2(−h)3/2 + O(ε),

dg

dt
= ε

2h

G3
(
2
√

−hG +
√

2
)2

( (
2hG2 − 2

√
−2hG − 1

)
K2+

2G
(
2G

(
2 +

√
−2hG

)
h −

√
−2h

)
β+

(
2hK2G2 −

√
−2hG3 +

√
−2hK2G + K2

)
cos(2g)

)
+ O(ε2),

dk

dt
= ε

hK
(
2
√

−hG −
(√

2 − 2G
√

−h
)
cos(2g) +

√
2
)

G2
(
2
√

−hG +
√

2
) + O(ε2).

Now we take l as new independent variable, and the previous equations of
motion restricted to K = K write

(5)

dG

dl
= −ε

(
1 −

√
−2hG

) (
G2 − K

2
)

sin(2g)

2
√

−2hG2
(
1 +

√
−2hG

) + O(ε2),

dg

dt
= −ε

1
√

−2hG3
(
2
√

−hG +
√

2
)2

( (
2hG2 − 2

√
−2hG − 1

)
K

2
+

(
2hK

2
G2 −

√
−2hG3 +

√
−2hK

2
G + K

2
)

cos(2g)
)
+

2G
(
2G

(
2 +

√
−2hG

)
h −

√
−2h

)
β + O(ε2),

dk

dt
= −ε

K
(
2
√

−hG −
(√

2 − 2G
√

−h
)
cos(2g) +

√
2
)

2
√

−2hG2
(
2
√

−hG +
√

2
) + O(ε2).

Since in the previous differential system the right hand side functions do not
depend on the angular variable l, its averaged equations with respect to l are
the same but without O(ε2). Therefore, from the appendix we have that the
equilibrium points of the averaged equations which have non–zero Jacobian
will provide periodic solutions of the Hamiltonian system with Hamiltonian
(3) in the energy level H = h < 0 and in the level K = K. Now we shall
compute these equilibria.

From the first equation of system (5) we have that
(
1 −

√
−2hG

) (
G2 − K

2
)

sin(2g) = 0. So we separate the computation of the equilibria in three cases.
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Case 1: 1−
√

−2hG = 0. This implies that G = 1/
√

−2h. Then the equilibrium
points must satisfy the remaining two equations of system (5), i.e.

1

8
(−8h(K

2
+ 2β) + (1 + 2hK

2
) cos(2g)) = 0, − 1√

2
(−h)1/2K = 0.

Therefore K = 0, we obtain the equation −2hβ + cos(2g)/8 = 0. It pos-

sesses the solutions g = ±1

2
arccos(16hβ), which exist when 16hβ ∈ [−1, 1], or

equivalently |β| ≤ 1/|16h|. Therefore we have the two solutions (g, G, K) =
(± arccos(16hβ)/2, 1/

√
−2h, 0). The Jacobian of the averaged equations at

these two solutions is √
−h

(
1 − 256h2β2

)

16
√

2
.

Then, from the appendix, statement (a) of Theorem 1 is proved.

Case 2: G = ±K. First we consider G = K. The last two equations from the
averaged system becomes

(1 + 2hK
2
)(4hβ −

√
−2hK) + K

(
(−2h)3/2K

2
+ 4hK +

√
−2h

)
cos(2g)

4hK
2
(
2hK

2
+ 1

) = 0,

2
√

−hK −
(√

2 − 2
√

−hK
)
cos(2g) +

√
2

4K
(√

2hK −
√

−h
) = 0.

From the last equation we deduce K =
cos(2g) − 1

2
√

−2h cos2 g
. We then obtain

−2hβ cot4 g = 0. This equation has the two solutions g = ±π/2. But then K
is not defined at these two values of g. So, no equilibria when G = K.

In a similar way we can see that the case G = −K does not provide equilibria
of the averaged system.

Case 3: sin(2g) = 0. This equation has the three solutions g = 0, ±π

2
, π. We

consider three subcases.

Subcase A: g = π/2. Then the last two equations from the averaged system
becomes

Gh
(
3K

2
+ 2β − G

(
4hβG + G − 4

√
−2hβ

))
−

√
−2hK

2

G3
(
2
√

−hG +
√

2
)2

h
= 0,

K

G2
(
2Gh −

√
2
√

−h
) = 0.
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From the last equation we deduce K = 0. Then the second equation from the
averaged system reduces to

2β − G
(
4hβG + G − 4

√
−2hβ

)

G2
(
2
√

−hG +
√

2
)2 = 0.

Solving this last equation with respect to G we get

G =
2
√

−2hβ ± √
2β

1 + 4hβ
.

Therefore we have the two solutions

(g, G±, K) =

(
π

2
,
2
√

−2hβ ± √
2β

1 + 4hβ
, 0

)
.

The Jacobian of the averaged equations at the solution (g, G+,K) is

(1 + 4hβ)7
(
1 − 2

√−hβ + 8hβ
)

4
√

2h
(
1 + 2

√−hβ
)8

β3/2
,

and at the solution (g,G−, K) is

−(1 + 4hβ)7
(
1 + 2

√−hβ + 8hβ
)

4
√

2h
(
1 − 2

√−hβ
)8

β3/2
.

Then, from the appendix, statements (b) and (c) of Theorem 1 are proved
when g = π/2.

Subcase B: g = −π/2. The proof of statements (b) and (c) of Theorem 1 when
g = −π/2 are completely similar to case g = π/2.

Subcase C: g = 0, Now the last two equations from the averaged system be-
comes

K
2
+ 2β + G

(
−4hβG + G + 2

√
−2h

(
K

2
+ 2β

))

G2
(
2
√

−hG +
√

2
)2 = 0,

− K√
−2hG2 + G

= 0.

From this last equation we deduce K = 0. Hence the second equation from
the averaged system becomes

2β + G
(
−4hβG + G + 4

√
−2hβ

)

G2
(
2
√

−hG +
√

2
)2 = 0.

Solving this last equation with respect to G we get

G =
2
√

−2hβ ± √
2β

−1 + 4hβ
.
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Therefore we have the two solutions

(g, G±, K) =

(
π

2
,
2
√

−2hβ ± √
2β

−1 + 4hβ
, 0

)
.

The Jacobian of the averaged equations at the solution (g, G+,K) is
√

−hβ
(
1 + 2

√
hβ − 8hβ

)
(1 − 4hβ)6

(
−1 + 4

√
hβ − 4hβ

)

2
√

2
(
2
√

hβ − 1
)3 (

2h
√−β +

√
−h

)2 (
2
√

−hβ +
√−β

)4 ,

and at the solution (g,G−, K) is

−
√

−hβ(1 − 4hβ)6
(
1 + 4

√
hβ + 4hβ

) (
−1 + 2

√
hβ + 8hβ

)

2
√

2
(
1 + 2

√
hβ

)3 (√
−h − 2h

√−β
)2 (√−β − 2

√
−hβ

)4 .

Then, from the appendix, statements (d) and (e) of Theorem 1 are proved
when g = 0.

Subcase D: g = π. The proof of statements (d) and (e) of Theorem 1 when
g = π are completely similar to case g = 0.

In short, Theorem 1 is proved.

Appendix

Now we shall present the basic results from averaging theory that we need
for proving the results of this paper.

The next theorem provides a first order approximation for the periodic so-
lutions of a periodic differential system, for the proof see Theorems 11.5 and
11.6 of Verhulst [20].

Consider the differential equation

(6) ẋ = εF (t, x) + ε2R(t, x, ε), x(0) = x0,

with x ∈ D where D is an open subset of Rn, and t ≥ 0. Moreover we assume
that F (t, x) is T periodic in t. Separately we consider in D the averaged
differential equation

(7) ẏ = εf(y), y(0) = x0,

where

f(y) =
1

T

∫ T

0
F (t, y)dt.

Under certain conditions, see the next theorem, equilibrium solutions of the
averaged equation turn out to correspond with T–periodic solutions of equation
(7).

Theorem 2. Consider the two initial value problems (6) and (7). Suppose:
(i) F , its Jacobian ∂F/∂x, its Hessian ∂2F/∂x2 are defined, continuous

and bounded by an independent constant ε in [0, ∞)×D and ε ∈ (0, ε0].
(ii) F is T–periodic in t (T independent of ε).
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(iii) y(t) belongs to D on the interval of time [0, 1/ε].
Then the following statements hold.
(a) For t ∈ [0, 1/ε] we have that x(t) − y(t) = O(ε), as ε → 0.
(b) If p is a equilibrium point of the averaged equation (7) and

(8) det

(
∂f

∂y

)∣∣∣∣
y=p

̸= 0,

then there exists a T–periodic solution φ(t, ε) of equation (6) such that
φ(0, ε) → p as ε → 0.

(c) The stability or instability of the periodic solution φ(t, ε) is given by the
stability or instability of the equilibrium point p of the averaged system
(7). In fact, the equilibrium point p has the stability behavior of the
Poincaré map associated to the periodic solution φ(t, ε).
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