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Abstract. We consider the quartic center ẋ = −yf(x, y), ẏ = xf(x, y), with
f(x, y) = (x+a)(y+b)(x+c) and abc 6= 0. Here we study the maximum number
σ of limit cycles which can bifurcate from the periodic orbits of this quartic
center when we perturb it inside the class of polynomial vector fields of degree
n, using the averaging theory of first order. We prove that 4[(n− 1)/2] + 4 ≤
σ ≤ 5[(n− 1)/2 + 14, where [η] denotes the integer part function of η.

1. Introduction and statement of the main results

In the qualitative theory of real planar polynomial differential systems the prob-
lem of studying how many limit cycles bifurcate perturbing the periodic orbits of a
center has been extensively considered in literature. Basically, four methods have
been used to perform such studies and they are based on: the Poincaré return map
(see for instance [7, 8, 18]), the Poincaré-Pontrjagin-Melnikov integrals or Abelian
integrals that are equivalent in the plane (see [2, 11, 3, 4, 6, 10, 25, 26]), the inverse
integrating factor (see [12, 13, 14, 24]), and the averaging method which in the
plane is also equivalent to the Abelian integrals (see for instance [5, 17, 19]).

Roughly speaking the averaging method gives a quantitative relation between
the solutions of a non-autonomous periodic differential system and the solutions of
its averaged differential system, which is autonomous. In particular the number of
hyperbolic equilibrium points of the averaged differential system up to first order
gives a lower bound of the maximum number of limit cycles of the non-autonomous
periodic differential system, for more details see Theorem 2.6.1 of Sanders and Ver-
hulst [22] and Theorem 11.5 of Verhulst [23]. Whenever the first averaged function
vanishes, the number of limit cycles depends on the second averaged function, and
so on (see for more details [5]). In some cases by using the second order averaging
method the number of limit cycles increases, even more than the double see for
instance [20].

Using the averaging theory of first order in [6], and the Melnikov method in [3],
the authors give upper and lower bounds for the maximum number of limit cycles
bifurcating from the period annulus of a cubic or quintic center, respectively. The
lower bounds in both cases are 3[(n− 1)/2] + 2 and 3[(n+ 1)/2] + 1, respectively.

In this paper we bound the maximum number of limit cycles that bifurcate from
the period annulus surrounding the origin of the quartic polynomial differential
system

ẋ = −y(x+ a)(y + b)(x+ c),
ẏ = x(x+ a)(y + b)(x+ c),

(1)

where a, b, c ∈ R\{0}, when we perturb it inside the class of all polynomial differ-
ential systems of degree n ∈ N and using the averaging theory of first order. That
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is, we want to study the maximum number of limit cycles of the differential systems

ẋ = −y(x+ a)(y + b)(x+ c) + εPn(x, y),
ẏ = x(x + a)(y + b)(x+ c) + εQn(x, y),

(2)

which bifurcate from the period annulus surrounding the origin of the unperturbed
system (1), where Pn(x, y), Qn(x, y) ∈ Rn[x, y] (being Rn[x, y] the ring of real
polynomials in the variables x and y of degree n ∈ N) where ε is a small parameter.

For doing this study we transform the differential system (2) in the equivalent
differential equation

dr

dθ
= ε

Pn(r cos θ, r sin θ) cos θ +Qn(r cos θ, r sin θ) sin θ

(r cos θ + a)(r sin θ + b)(r cos θ + c)
+ ε2G(θ, r, ε), (3)

by using the change to polar coordinates x = r cos θ, y = r sin θ and taking θ as the
new independent variable of the differential system. System (3) is defined on the
disc r < d, with d = min{|a|, |b|, |c|} and being G a 2π-periodic function of θ.

From the averaging theory of first order, if r0 is a hyperbolic equilibrium point
of the averaged differential system

dr

dθ
= εF0(r), (4)

associated to system (3) where F0 : (0, d) → R is defined as

F0(r) =
1

2π

∫ 2π

0

Pn(r cos θ, r sin θ) cos θ +Qn(r cos θ, r sin θ) sin θ

(r cos θ + a)(r sin θ + b)(r cos θ + c)
dθ,

0 < r < d, then there exists a periodic orbit of the differential equation (3) which
tends to r = r0 as ε → 0.

In order to obtain lower and upper bounds of the maximum number of limit
cycles of differential system (2) bifurcating from the periodic orbits of the center
(1) using the averaging theory of first order, we need to control the number of
simple zeroes of the function F0(r). We note that F0(r) has the same zeroes as the
first-order Melnikov or Abelian integral associated to differential system (2), in the
interval (0, d), see for more details [5]. Also we note that in this interval the zeroes
of the function F0(r) coincide with the zeroes of the function rF0(r). Hence, in
order to simplify further computations we consider the function f0(r) = rF0(r).

Our main results are the following theorem and proposition.

Theorem 1. Consider system (2) with Pn and Qn polynomials of degree n and
with |a| 6= |b|, |a| 6= |c| and |b| 6= |c|. An upper bound for the maximum number
of limit cycles bifurcating from the period annulus of system (2) when ε = 0, and
using averaging theory of first order is 5[(n−1)/2]+14. Moreover there are systems
(2) with at least 4[(n− 1)/2] + 4 limit cycles bifurcating from the period annulus.

For the other values of the parameters a, b and c, upper and lower bounds are
also obtained. In the next proposition we summarize these results.

Proposition 2. Consider system (2) with Pn and Qn polynomials of degree n. It
is not restrictive to assume that a < 0, b < 0 and that |a| = min(|a|, |c|). In Table 1
we present the upper and lower bounds for the maximum number of limit cycles
bifurcating from the period annulus of system (2) when ε = 0, and either |a| = |b|,
or |a| = |c|, or |b| = |c|, using the averaging theory of first order. There are systems
(2) having at least the number of limit cycles given by the lower bounds.

The main idea for obtaining the lower bounds is to express the function f0(r) as
a linear combination of a minimal number of generating functions. These calcula-
tions start by writing the function f0(r) as a linear combination of some functions,
that we call generating functions, where these coefficients depend on the arbitrary
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Cases Lower bound Upper bound
a = b = −c 2N + 1 2N + 2
a = b = c 2N + 3 2N + 6
c = −b, b < a 3N + 2 4N + 6
c = −a, a < b
c = −a, b < a 3N + 3 4N + 6
c = b, b < a
a = b, c < −a

a = b, c < a 3N + 3 4N + 10

a = c, c < b

a = c, b < c 3N + 5 4N + 14

Table 1. Lower and upper bounds for the maximum number of
limit cycles bifurcating from system (2), using the averaging theory
of first order, under the assumptions of Proposition 2. Here N =
[n−1

2 ].

coefficients of the polynomial perturbation. In fact, for determining the function
f0(r) in terms of a minimal number of generating functions, two main strategies
are used. One for preserving the arbitrariness of the coefficients of such functions
and the other for obtaining some relations between the generating functions which
allow to clarify which coefficients are independent, and also to reduce their num-
ber. This is a laborious part of our study. Finally the lower bounds follow from
the calculation of the precise number of linearly independent generating functions
which appear in f0(r).

By comparing our results with the previous similar ones we point out that by
increasing the degeneracy of the center at the origin a higher lower bound for the
maximum number of limit cycles is obtained. For instance, by taking degree four
we obtain [(n− 1)/2] limit cycles more than the number of limit cycles obtained in
[6], where the degree of the unperturbed center was three.

In the proofs of the upper bounds for the maximum number of limit cycles and
in the more generic case we use the Variation of the Argument Principle applied
to a suitable complex extension of the function f0(r) plus some techniques of the
complex analysis. See [15] for a similar application of this principle.

The organization of the paper is as follows. In section 2 we introduce some
auxiliary functions and some relations between them that are used in section 3.
There we reduce the initial number of functions which generate the function f0(r).
In section 4 we use the Variation of the Argument Principle to obtain the upper
bound for the maximum number of limit cycles when |a| 6= |b|, |a| 6= |c| and |b| 6= |c|,
and also we obtain upper bounds for the rest of the cases. In section 5 we prove
Theorem 1 and Proposition 2. Finally in section 6 we provide some numerical
computations for the exact number of limit cycles, and we compare the lower and
upper bounds obtained with them. We do that for n = 4, . . . , 9.

2. Auxiliary functions

In this section we introduce a set of functions and relations that are useful in
the reduction process for obtaining the minimal number of generating functions for
the function f0(r).
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From equation (1) and for integers numbers i, j ≥ 0, we define the functions:

Ai,j = Ai,j(r) =

∫ 2π

0

cosi θ sinj θ

(r cos θ + a)
dθ,

Bi,j = Bi,j(r) =

∫ 2π

0

cosi θ sinj θ

(r sin θ + b)
dθ,

Ci,j = Ci,j(r) =

∫ 2π

0

cosi θ sinj θ

(r cos θ + c)
dθ,

ABi,j = ABi,j(r) =

∫ 2π

0

cosi θ sinj θ

(r cos θ + a)(r sin θ + b)
dθ, (5)

ACi,j = ACi,j(r) =

∫ 2π

0

cosi θ sinj θ

(r cos θ + a)(r cos θ + c)
dθ,

BCi,j = BCi,j(r) =

∫ 2π

0

cosi θ sinj θ

(r sin θ + b)(r cos θ + c)
dθ,

Ii,j = Ii,j(r) =

∫ 2π

0

cosi θ sinj θ

(r cos θ + a)(r sin θ + b)(r cos θ + c)
dθ.

For each integer p ≥ 0 we introduce the function

m(p) =
1

2π

∫ 2π

0

cosp θ dθ =





1 if p = 0,
(p− 1)!!

p!!
if p is even and p ≥ 2,

0 otherwise,

(6)

where p!! =
∏[ p2 ]−1

m=0 (p − 2m). We take 0!! = 1 and 1!! = 1. From the previous
definitions we obtain the next results.

Lemma 3. Functions (5) satisfy:

(i) AC0,0 =
1

c− a
(A0,0 − C0,0), if a 6= c,

(ii) I0,0 =
1

c− a
(AB0,0 −BC0,0), if a 6= c,

(iii) Ii,j+1 =
1

r
(ACi,j − b Ii,j),

(iv) Ii+1,j =
1

r
(ABi,j − c Ii,j),

(v) ABi,0 =
1

r
(Bi−1,0 − aABi−1,0),

(vi) ACi+1,j =
1

r
(Ai,j − cACi,j),

(vii) ACi,2j =

j∑

k=0

(
j
k

)
(−1)kACi+2k,0

(viii) Ii,2j =

j∑

k=0

(
j
k

)
(−1)kIi+2k,0,

(ix) Ai,0 =
1

r
(2πm(i− 1)− aAi−1,0),

(x) B2i,0 =
1

r2
(2πbm(2i− 2)− (b2 − r2)B2i−2,0),

(xi) Ii,0 =
1

r2
(c2 Ii−2,0 − (a+ c)ABi−2,0 +Bi−2,0), i ≥ 2,

for all integers i, j ≥ 0.
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Proof. These relations follow from the definitions of the corresponding functions
plus some additional considerations. For instance, we get the relations (vii) and

(viii) by using formula sin2i θ =

i∑

s=0

(
i
s

)
(−1)s cos2s θ. Relations (ix) and (x)

follow from the definition of m(p). To obtain relation (xi) we proceed as follows.
From relation (iv) we have

Ii,0 =
1

r
(ABi−1,0 − c Ii−1,0). (7)

Then, by using relation (v) we obtain

Ii,0 =
1

r
(
1

r
Bi−2,0 −

a

r
ABi−2,0 − c Ii−1,0).

Using (7) in this last expression the proof follows. �
In next lemma we present how to write some previous functions after an iterative

application of formulas given in Lemma 3.

Lemma 4. Let i be a positive integer number. Functions A2i,0, AR2i,0, B2i,0,
AB2i,0 and I2i,0 satisfy:

(i) r2iA2i,0 = a2iA0,0 − 2π
∑i

j=1 a
2j−1m(2i− 2j)r2i−2j ;

(ii) r2AC2,0 = 2π − (a+ c)A0,0 + c2 AC0,0, and if i ≥ 2 then

r2iAC2i,0 =
c2i − a2i

a− c
A0,0 + c2i AC0,0 + 2π

i−1∑

j=1

m(2j)c2(i−j−1)r2j

+ 2π(a+ c)

i−1∑

j=1

c2(i−j−1)

j∑

k=1

a2k−1m(2j − 2k)r2j−2k;

(iii) r2iB2i,0 = 2πb
∑i

j=1(−1)j−1(b2 − r2)j−1r2(i−j)m(2i− 2j)

+(−1)i(b2 − r2)iB0,0;
(iv) r2 AB2,0 = a2 AB0,0 − aB0,0, and if i ≥ 2 then

r2iAB2i,0 = a2i−1(aAB0,0 −B0,0) + a(b2 − r2)
(r2 − b2)i−1 − a2i−2

a2 + b2 − r2
B0,0

− 2πb
i−1∑

j=1

i−j∑

k=1

(−1)k−1a2j−1(b2 − r2)k−1m(2(i− j − k))r2(i−j−k) ;

(v) r2I2,0 = −(a+ c)AB0,0 +B0,0 + c2 I0,0, and if i ≥ 2 then

r2iI2i,0 = −a2i − c2i

a− c
AB0,0 + P i−1

a,b,c(r
2)B0,0 +Qi−2

a,b,c(r
2) + c2i I0,0,

where P i−1
a,b,c(r

2) (resp. Qi−2
a,b,c(r

2)) is a polynomial of degree i − 1 (resp.

i− 2) in r2, with no arbitrary coefficients.

Proof. The proof of statements (i) and (iii) follows easily from direct computations.
To get (ii) we iteratively apply (vi) and (ix) of Lemma 3 for obtaining only the even
first subindex for the Ai,0 functions. Finally we use equality (i) and statement (ii)
follows.

For obtaining (iv) we iteratively apply Lemma 3(v) and, as B2i+1,0 = 0, only
the functions B2i,0 remain. Finally we use (iii) and we get statement (iv).

For having (v) we iteratively apply Lemma 3(xi), obtaining

r2iI2i,0 = −(a+ c)
i∑

j=1

c2j−2(AB2i−2j,0 +B2i−2j,0)r
2i−2j + c2i I0,0.
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Finally by using (iii) and (iv) the proof of statement (v) follows. �

In next lemma for a particular choice of the parameters a, b and c, we obtain
the values of functions A0,0, B0,0, C0,0, AB0,0 and BC0,0 and some new relations
between them.

Lemma 5. Let a, b and c be non-zero real numbers. We assume that a ≤ −1,
b ≤ −1, |c| ≥ 1 and r ∈ (0, d), where d = min{|a|, |b|, |c|}.

(i) The following equalities hold:

A0,0 = − 2π√
a2 − r2

, B0,0 = − 2π√
b2 − r2

, C0,0 = ± 2π√
c2 − r2

,

AB0,0 = − 2π(a
√
a2 − r2 + b

√
b2 − r2)

(a2 + b2 − r2)
√
a2 − r2

√
b2 − r2

,

BC0,0 =
2π(±b

√
b2 − r2 + c

√
c2 − r2)

(b2 + c2 − r2)
√
b2 − r2

√
c2 − r2

,

where in ± we take the plus (resp. minus) sign when c ≥ d (resp. c ≤ −d).
(ii) For any real polynomial P (r2) of degree m in the variable r2, we have

P (r2)AB0,0 = p0 AB0,0 + P1(r
2)A0,0 + P2(r

2)B0,0,

P (r2)BC0,0 = q0 BC0,0 +Q1(r
2)B0,0 +Q2(r

2)C0,0,

where p0 and q0 are arbitrary constants depending linearly on the indepen-
dent term of P (r2), and Pi(r

2) and Qi(r
2) for i = 1, 2 are polynomials of

degree m− 1 in the variable r2.
(iii) If a = c then for any real polynomial P (r2) of degree m in the variable r2

we have

AC0,0 =
−2πa

(a2 − r2)3/2
,

I0,0 =
−2π((a2 − r2)3/2(a2 − b2 + r2) + ab(b2 − r2)1/2(3a2 − b2 + 3r2))

(a2 − r2)3/2(b2 − r2)1/2(a2 + b2 − r2)2
,

P (r2)AC0,0 = p0 AC0,0 + P1(r
2)A0,0,

P (r2) I0,0 = P1(r
2)B0,0 + P2(R

2)A0,0 + p0 AC0,0 + p1 I0,0 + p2 r
2I0,0,

where pi for i = 0, 1, 2, are arbitrary constants depending linearly on the
independent term of P (r2), and Pi(r

2) for i = 1, 2 is a polynomial of degree
m− i in the variable r2.

Proof. Formulas of (i) follow easily from the residue integration method.
From (i) we obtain

r2AB0,0 = (a2 + b2)AB0,0 − aB0,0 − bA0,0, (8)

r2BC0,0 = (b2 + c2)BC0,0 − cB0,0 − b C0,0. (9)

Equalities (ii) follow from a recursive use of formulas (8) and (9).
The first two formulas of (iii) follow again from the residue integration method.
As in the proof of the first equality of (ii), we can obtain the third equality of

(iii) from a recursive use of

r2 AC0,0 = −aA0,0 + a2 AC0,0. (10)

This expression is obtained from the first two formulas of (iii) and (i).
We prove the last formula of (iii). From the expression of I0,0 and using the

expressions of AC0,0 and (i), we get

(a2 + b2 − r2)2 I0,0 = (a2 − b2 + r2)B0,0 + b(3a2 − b2 + 3r2)AC0,0.
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From this equality, by using expression (10), we obtain

r4I0,0 =− (a2 + b2)2I0,0 + 2(a2 + b2)r2I0,0 + (a2 − b2 + r2)B0,0

− 3abA0,0 + b(6a2 − b2)AC0,0.

By using recursively this expression combined with formula (10), we obtain the last
formula of (iii). Concerning the arbitrariness of pi for i = 0, 1, 2, we note that it is
a consequence of the arbitrariness of the coefficient of degree i in P (r2). �

Remark 6. Under the hypotheses of Lemma 5 we have that

AB0,0 =
a

a2 + b2 − r2
B0,0 +

b

a2 + b2 − r2
A0,0,

BC0,0 =
−c

b2 + c2 − r2
B0,0 +

b

b2 + c2 − r2
C0,0.

3. The generating functions of the function f0(r)

The objective of this section is to obtain the minimum number of generating
functions for the function f0(r).

In equation (2) we write

Pn(x, y) =

n∑

k=0

∑

i+j=k

pi,jx
iyj , Qn(x, y) =

n∑

k=0

∑

i+j=k

qi,jx
iyj,

where the coefficients pi,j and qi,j are arbitrary. We can express the function f0(r)
as

f0(r) =
1

2π

n∑

k=0

∫ 2π

0

fk(θ)r
k+1

(r cos θ + a)(r sin θ + b)(r cos θ + c)
dθ, (11)

where

fk(θ) = cos θ
∑

i+j=k

pi,j cos
i θ sinj θ + sin θ

∑

i+j=k

qi,j cos
i θ sinj θ.

Using the functions Ii,j we obtain

f0(r) =

n∑

i+j=k

k=0

(pi,jIi+1,j + qi,jIi,j+1)r
k+1, (12)

where for simplicity we renamed the coefficients pi,j/(2π) and qi,j/(2π) as pi,j and
qi,j , respectively.

A direct calculation shows that not all the coefficients pi,j and qi,j are necessary
to express f0(r) as an arbitrary linear combination of functions Ii,j . In fact, we
can write f0(r) as

n∑

k=0

(pk,0Ik+1,0 +
∑

i+j=k

j 6=0

(pi,j + qi+1,j−1)Ii+1,j + q0,kI0,k+1)r
k+1. (13)

In this last expression, without loss of generality, we rename the coefficient pi,j +
qi+1,j−1 as pi,j and the coefficient q0,k as p−1,k+1. Hence f0(r) writes as

f0(r) =
n∑

k=0

k+1∑

j=0

pk−j,jIk−j+1,jr
k+1. (14)

Note that all coefficients pi,j remain arbitrary. Hence, according to the goal of this
section, f0(r) is a linear combination with arbitrary coefficients of the functions

Ik−j+1,jr
k+1, 0 ≤ k ≤ n, 0 ≤ j ≤ k + 1.
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Now we shall reduce the number of functions needed to express the function f0(r)
given in (14). To achieve it we do several reductions. First, by using Lemma 3(iii)
we transform f0(r) in

f0(r) = (p0,1AC1,0 − (bp0,1 − p0,0)I1,0 + p−1,1I0,1)r

+

N∑

s=1

s∑

i=0

(p2s−2i−1,2i+1AC2s−2i,2ir
2s + p2s−2i,2i+1AC2s−2i+1,2ir

2s+1) (15)

+

N+1∑

s=1

s∑

i=0

p2s−2i−1,2iI2s−2i,2ir
2s +

N∑

s=1

s∑

i=0

p2s−2i,2iI2s−2i+1,2ir
2s+1,

where N = [(n− 1)/2].
Second, we shall do all the second subscripts of the functions involved in expres-

sion (15) equal to zero. We do it by using formulas (vii) and (viii) of Lemma 3.
Hence (15) becomes

f0(r) = p−1,1(AC0,0 − bI0,0) + (p0,1AC1,0 − (bp0,1 − p0,0)I1,0)r

+AC0,0

N∑

s=1

c1,1s,0r
2s +

N∑

t=1

AC2t,0(

N∑

s=t

c1,1s,t r
2s−2t)r2t

+AC1,0

N∑

s=1

c0,1s,0r
2s+1 +

N∑

t=1

AC2t+1,0(

N∑

s=t

c0,1s,t r
2s−2t)r2t+1 (16)

+ I0,0

N+1∑

s=1

c1,0s,0r
2s +

N+1∑

t=1

I2t,0(

N+1∑

s=t

c1,0s,t r
2s−2t)r2t

+ I1,0

N∑

s=1

c0,0s,0r
2s+1 +

N∑

t=1

I2t+1,0(
N∑

s=t

c0,0s,t r
2s−2t)r2t+1,

where

cu,vs,t =

s∑

j=s−t

(−1)j−s+tp2s−2j−u,2j+v

(
j

j − s+ t

)
. (17)

Collecting the coefficients of the same powers in the variable r (16) writes as

f0(r) = p−1,1(AC0,0 − bI0,0) + (p0,1AC1,0 − (bp0,1 − p0,0)I1,0)r

+AC0,0P
N
0 (r2) +AC1,0P

N
1 (r2)r + I0,0Q

N+1
0 (r2) + I1,0Q

N
1 (r2)r

+

N∑

t=1

[
AC2t,0P

N−t
2t (r2)r2t +AC2t+1,0P

N−t
2t+1(r

2)r2t+1 (18)

+ I2t,0Q
N−t+1
2t (r2)r2t + I2t+1,0Q

N−t
2t+1(r

2)r2t+1
]

+ I2N+2,0Q
0
2N+2(r

2)r2N+2,

where PN−t
2t (r2), PN−t

2t+1 (r
2) and QN−t

2t+1(r
2) are real polynomials in the variable r2,

of degree N − t for each t = 0, . . . , N and QN−t+1
2t (r2) also is a real polynomial

in the variable r2, but of degree N − t + 1. We point out that PN
0 (r2), PN

1 (r2),

QN+1
0 (r2) and QN

1 (r2) have no independent term. More precisely

PN
0 (r2) =

N∑

s=1

c1,1s,0r
2s, PN

1 (r2) =

N∑

s=1

c0,1s,0r
2s,

QN+1
0 (r2) =

N+1∑

s=1

c1,0s,0r
2s, QN

1 (r2) =
N∑

s=1

c0,0s,0r
2s,
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PN−t
2t (r2) =

N∑

s=t

c1,1s,t r
2s−2t, PN−t

2t+1 (r
2) =

N∑

s=t

c0,1s,t r
2s−2t, (19)

QN−t+1
2t (r2) =

N+1∑

s=t

c1,0s,t r
2s−2t, QN−t

2t+1(r
2) =

N∑

s=t

c0,0s,t r
2s−2t,

for t = 0, . . . , N , except for the polynomial QN−t+1
2t (r2) which also is defined when

t = N+1. We shall prove that all the coefficients cu,vs,t defined in (17), are arbitrary.
Hence, as a consequence, we will get that all polynomials in expression (18) are,
also, arbitrary. We note that the coefficients cu,vs,t depend only on the coefficients of
the polynomial perturbation, i.e. on Pn(x, y) and Qn(x, y).

Lemma 7. From expression (17), we have that cu1,v1
s1,t1 = cu2,v2

s2,t2 if and only if
(s1, t1) = (s2, t2).

Proof. From expression (17), if either u1 6= u2 or v1 6= v2, as ui, vi ∈ {0, 1},
i ∈ {0, 1}, then we have that cu1,v1

s1,t1 6= cu2,v2
s2,t2 . Hence, it is enough to prove our

result only when (u, v) = (u1, v1) = (u2, v2) and (s1, t1) 6= (s2, t2). Without loss
of generality we may assume that s1 + t1 ≥ s2 + t2. We prove that in the sum
defining the coefficient cu,vs1,t1 , given by (17), there is a term whose corresponding
p2s1−2j−u,2j+v is such that it does not appear in the sum defining the coefficient
cu,vs2,t2 .

In the expression of cu,vs1,t1 we consider the first term of the sum, i.e. the term
corresponding to j = s1 − t1. In this term p2s1−2j−u,2j+v = p2t1−u,2(s1−t1)+v. If in
the expression of the coefficient cu,vs2,t2 there is, for some j0 ∈ {s2− t2, ..., s2}, a term
in the sum containing p2t1−u,2(s1−t1)+v, then we should have p2s2−2j0−u,2j0+v =
p2t1−u,2(s1−t1)+v. Hence s2 = s1 and j0 = s1− t1. Therefore, since s2− t2 ≤ j0 ≤ s2
we get t1 ≤ t2.

From the hypothesis, i.e. since (s1, t1) 6= (s2, t2) then, necessarily, t1 < t2. This
contradicts our hypothesis, s1 + t1 ≥ s2 + t2. �

One step more in the reduction of the number of functions involved in expression
(18) is to get only even subscripts in the functions ACp,0 and Ip,0. We do it by
using formulas (iv) and (vi) of Lemma 3. Hence, expression (18) writes as

f0(r) = (p0,1 + PN
1 (r2))A0,0 + (−cp0,1 + p−1,1 + PN

0 (r2)− cPN
1 (r2))AC0,0

+ (−bp0,1 + p0,0 +QN
1 (r2))AB0,0 + (bcp0,1 − bp−1,1 − cp0,0 +QN+1

0 (r2)

− cQN
1 (r2))I0,0 + I2N+2,0Q

0
2N+2(r

2)r2N+2

+

N∑

t=1

PN−t
2t+1(r

2)A2t,0r
2t +

N∑

t=1

(PN−t
2t (r2)− cPN−t

2t+1 (r
2))AC2t,0r

2t

+
N∑

t=1

QN−t
2t+1(r

2)AB2t,0r
2t +

N∑

t=1

(QN−t+1
2t (r2)− cQN−t

2t+1(r
2))I2t,0r

2t,

or equivalently

f0(r) = PN
1 (r2)A0,0 + PN

0 (r2)AC0,0 +QN
1 (r2)AB0,0 +QN+1

0 (r2)I0,0

+

N∑

t=1

PN−t
2t+1 (r

2)A2t,0r
2t +

N∑

t=1

PN−t
2t (r2)AC2t,0r

2t (20)

+
N∑

t=1

QN−t
2t+1(r

2)AB2t,0r
2t +

N+1∑

t=1

QN−t+1
2t (r2)I2t,0r

2t
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where PN
0 (r2), PN

1 (r2), QN+1
0 (r2), QN

1 (r2), PN−t
2t (r2) and QN−t+1

2t (r2) are new
polynomials in the variable r2 with arbitrary coefficients except the polynomial
QN+1

0 (r2) which has no arbitrary independent term.
The next step in the reduction process is to reduce the number of generating

functions of f0(r). In (20) f0(r) is given by a lineal combinations of the func-
tions r2iA2t,0, r

2iAC2t,0, r
2iAB2t,0, r

2iI2t,0 for suitable integers i ≥ 0 plus some
polynomial. In the next proposition we express f0(r) in terms of a less number of
generating functions, namely we express f0(r) as an arbitrary lineal combination of
the functions r2iA0,0, r

2iB0,0, r
2iC0,0, r

2iAB0,0 and r2iBC0,0 for suitable integrers
i ≥ 0 plus some polynomial. This is performed, basically by applying Lemmas 3
and 4 and by taking care of the coefficients.

Proposition 8. The function f0(r) can be written in the following way.

(i) If a 6= c, then

f0(r) = P
N
(r2)A0,0 + SN (r2)B0,0 +QN(r2)C0,0

+ S
N+1

(r2)AB0,0 + TN+1(r2)BC0,0 + UN−1(r2),

(ii) If a = c, then

f0(r) = PN (r2)A0,0 +QN (r2)AC0,0 +RN (r2)AB0,0 + SN (r2)B0,0

+ TN+1(r2) I0,0 + UN−1(r2),

where the functions: PN , P
N
, QN , RN , SN , S

N+1
, TN+1 and UN−1 are real

polynomials in the variable r2, whose degree is the corresponding superindex and

with arbitrary coefficients, except the leading term of S
N+1

which is not.

Proof. The idea of the proof is to apply Lemma 4 to expression (20) and to make
a suitable election of the coefficients of each one of the polynomials multiplying
the functions A0,0, B0,0, AB0,0, AC0,0 and I0,0, to ensure arbitrariness of their
coefficients. By applying Lemma 4 to expression (20) we get

N∑

t=1

PN−t
2t+1 (r

2)A2t,0r
2t = SN−1

1,1 A0,0 + SN−1
1,2 ,

N∑

t=1

PN−t
2t (r2)AC2t,0r

2t = SN−1
2,1 A0,0 + SN−1

2,2 AC0,0 + SN−1
2,3 ,

N∑

t=1

QN−t
2t+1(r

2)AB2t,0r
2t = SN−1

3,1 AB0,0 + SN−1
3,2 B0,0 + SN−2

3,3 , (21)

N+1∑

t=1

QN−t+1
2t (r2)I2t,0r

2t = SN
4,1AB0,0 + SN

4,2B0,0 + SN
4,3I0,0 + SN−1

4,4 ,

where SN−k
i,j is a real polynomial in the variable r2 of degree N − k.

From Lemma 4(i) we have

SN−1
1,2 = −2π

N∑

t=1

PN−t
2t+1 (r

2)
t∑

j=1

a2j−1m(2t− 2j)r2t−2j .

Hence the arbitrariness of the coefficients of the polynomial SN−1
1,2 is a consequence

of the arbitrariness of the coefficients of the polynomial PN−1
3 (r2), which includes

an arbitrary independent term. About the arbitrariness of the coefficients of the
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polynomial SN
4,2 from Lemma 4(v), we have

SN−1
4,2 = QN

2 (r2) +
N+1∑

t=2

QN−t+1
2t (r2)P t−1

a,b,c(r
2).

It follows from the arbitrariness of the coefficients of the polynomial QN
2 (r2), which

also includes an arbitrary independent term.
From (20) and (21) we obtain

f0(r) = PN (r2)A0,0 +QN (r2)AC0,0 +RN(r2)AB0,0 + SN (r2)B0,0

+ TN+1(r2) I0,0 + UN−1(r2),
(22)

for some real polynomials PN , QN , RN , SN , TN+1 and UN−1 in the variable r2,
whose degree is the corresponding superindex. The arbitrariness of the coefficients
of these polynomials is based on the arbitrariness of the coefficients of the polyno-
mials PN

1 , PN
0 , QN

1 , SN
4,2, Q

N+1
0 and SN−1

1,2 , respectively. It is important to remark

that, as the polynomial QN+1
0 has no independent term, the existence of arbitrary

independent term for polynomial TN+1 is guaranteed from the existence of arbi-
trary independent term in SN

4,3. Check this fact from (21). This proves statement
(ii) of this proposition.

If we assume a 6= c then, from (22) and by using (i) and (ii) of Lemma 3, we

obtain statement (i), where P
N

and S
N+1

are new real polynomials in the variable
r2 satisfying the requirements of the statement of this proposition. �

The last step in this reduction process is next result. For a particular choice of
the parameters a, b and c in equation (2), we use the residue integration method
applied to the functions involved in Proposition 8(i) and (ii). In this way we get
new relations between these functions that provide a new expression of the function
f0(r). This is the goal of next proposition.

Proposition 9. We consider the function f0(r) and we assume that a ≤ −1,
b ≤ −1 and |c| ≥ 1. Then f0(r) can be written in the following way.

(i) If a 6= c, then

f0(r) = PN (r2)A0,0 +QN (r2)B0,0 +RN (r2)C0,0 + s0 AB0,0

+ t0 BC0,0 + UN−1(r2),

(ii) If a = c, then

f0(r) = PN (r2)A0,0 +QN (r2)B0,0 + r0 AB0,0 + s0 AC0,0

+ t0 I0,0 + u0 I0,0r
2 + UN−1(r2),

where the functions: PN , QN , RN and UN−1 are real polynomials in the variable
r2, whose degree is the corresponding superindex and with arbitrary coefficients.
Here r0, s0, t0 and u0 are arbitrary costants.

Proof. We consider a 6= c. In this case function f0(r) is given in Proposition 8(i).
If we express AB0,0 and BC0,0 as they are given in Lemma 5(ii), then statement
(i) is obtained with new polynomials PN (r2), QN (r2) and RN(r2), and where s0
and t0 are constants.

In case a = c the function f0(r) is given by Proposition 8(ii). By using AB0,0,
AC0,0 and I0,0 given in Lemma 5, we obtain

f0(r) = PN (r2)A0,0 +QN (r2)B0,0 + r0 AB0,0 + s0 AC0,0

+ t0 I0,0 + u0 I0,0r
2 + UN−1(r2),

with new polynomials PN(r2) and QN (r2), and where r0, s0, t0 and u0 are con-
stants. �
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In next result we give the exact number of generating functions of f0(r), i.e.
the basis in which the function f0(r) can be expressed as a linear combination. Its
proof follows straightforward from Proposition 9.

Proposition 10. We consider differential system (2). Assume that a ≤ −1, b ≤
−1, |c| ≥ 1, b 6= a and b 6= c. A basis for the generating functions of f0(r) is given
by the following system of linearly independent functions, where the functions A0,0,
B0,0, C0,0, AB0,0, AC0,0, BC0,0 and I0,0 are given in Lemma 5.

(i) If |a| 6= |c| then a basis is given by the following 4N + 5 functions:

{A0,0, A0,0r
2, A0,0r

4, . . . A0,0r
2N , B0,0, B0,0r

2, B0,0r
4, . . . B0,0r

2N ,

C0,0, C0,0r
2, C0,0r

4, . . . C0,0r
2N , AB0,0, BC0,0, 1, r

2, r4, . . . r2(N−1)}.
(ii) If a = c then a basis is given by the following 3N + 6 functions:

{A0,0, A0,0r
2, A0,0r

4, . . . A0,0r
2N , B0,0, B0,0r

2, B0,0r
4, . . . B0,0r

2N ,

AB0,0, AC0,0, I0,0, I0,0r
2, 1, r2, r4, . . . r2(N−1)}.

(iii) If a = −c then a basis is given by the following 3N + 4 functions:

{A0,0, A0,0r
2, A0,0r

4, . . . A0,0r
2N , B0,0, B0,0r

2, B0,0r
4, . . . B0,0r

2N ,

AB0,0, BC0,0, 1, r
2, r4, . . . r2(N−1)}.

Proof. We prove only statement (i). Similar arguments can be followed for proving
(ii) and (iii). In the case a2 6= c2 we take an arbitrary linear combination of the
functions given in (i), as

pN (r2)A0,0 + qN (r2)B0,0 + rN (r2)C0,0 + s0AB0,0 + t0BC0,0 +UN−1(r
2) = 0, (23)

for all r ∈ (0, d) and where d is defined as in (3). Hence pN (r2), qN (r2) and rN (r2)
are arbitrary real polynomials of degree N , s0 and t0 are arbitrary real constants
and UN−1(r

2) is an arbitrary real polynomial of degree N − 1. We shall prove that
pN (r2) = qN (r2) = rN (r2) = s0 = t0 = UN−1(r

2) = 0.
Without loss of generality we may assume that the period annulus of equation (1)

is the open disc of radius either a or b. We assume that the radius of this disc is a.
Analogous considerations can be done otherwise.

From Remark 6, (23) writes

(pN (r2) +
bs0

a2 + b2 − r2
)A0,0 + (rN (r2) +

bt0
b2 + c2 − r2

)C0,0

+(qN(r2) +
as0

a2 + b2 − r2
− ct0

b2 + c2 − r2
)B0,0 + UN−1(r

2) = 0.

(24)

By passing to the limit (24) when r ր |a|, we get that pN(r2) = s0 = 0. Now if we
use the change of variables t2 = b2−r2 in (24), we get (c2+ t2)rN (b2− t2)+ t0b = 0.
This equality forces that rN (r2) = 0 and t0 = 0. Finally, since B0,0 is not a rational
function, from (24) we obtain qN (r2) = 0 and UN−1(r

2) = 0. �

Remark 11. The number of elements of a basis for the generating functions of
f0(r) when a ≤ −1, b ≤ −1 and |c| ≥ 1, and when the squares of two of these
parameters coincide, also can be obtained from Proposition 9 by using analogous
arguments as in Proposition 10. More precisely, the number of independent func-
tions of a basis is

(i) 3N + 4 if either a = b 6= c or b = c 6= a;
(ii) 3N + 3 if a = b = −c;
(iii) 2N + 4 if a = b = c;
(iv) 2N + 2 if c = −d and b < a.
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4. Upper bounds

To give an upper bound for the maximum number of limit cycles of equation (2)
via the averaging theory of first order, we need to bound the number of real zeroes
of the function f0(r).

A first approximation to this bound is given in the next Proposition 13 which is
useful to prove Proposition 2. In a further step, see Proposition 16, we refine this
upper bound when the parameters a, b, and c are pairwise different. In the next
lemma we give an equation satisfied for the zeroes of the function f0(r) when the
parameters a, b, and c are pairwise different.

Lemma 12. We consider differential system (2). Assume that a ≤ −1, b ≤ −1,
|c| ≥ 1, |a| 6= |c|, |b| 6= |a| and |b| 6= |c|. Then the zeroes of the function f0(r)
satisfy equation

PN+2(r2)
√
b2 − r2

√
c2 − r2 +QN+2(r2)

√
a2 − r2

√
c2 − r2+

RN+2(r2)
√
a2 − r2

√
b2 − r2 + UN+1(r2)

√
a2 − r2

√
b2 − r2

√
c2 − r2 = 0,

(25)

where PN+2, QN+2, RN+2 and UN+1 are real polynomials in the variable r2, whose
degree is the corresponding superindex and with arbitrary coefficients.

Proof. From Proposition 9(i) we have that

f0(r) = PN (r2)A0,0 +QN (r2)B0,0 +RN (r2)C0,0 + s0 AB0,0

+ t0 BC0,0 + UN−1(r2),

where the functions: PN , QN , RN and UN−1 are real polynomials in the variable
r2, whose degree is the corresponding superindex.

From Remark 6 and the expressions of A0,0, B0,0 and C0,0 given in Lemma 5(i),
for each r ∈ (0, |a|), we obtain that the zeroes of the function f0(r) satisfy the
equation

(a2 + b2 − r2)(b2 + c2 − r2)f0(r) = PN+2(r2)
1√

a2 − r2

+QN+2(r2)
1√

b2 − r2
+RN+2(r2)

1√
c2 − r2

+ UN+1(r2),

where the functions: PN , QN , RN and UN−1 are real polynomials in the variable
r2, whose degree is the corresponding superindex. Hence an upper bound for the
number of zeroes of f0(r) is an upper bound for the number of solutions of the
equation (25), as we would prove. �
Proposition 13. Let a, b and c be real numbers such that a ≤ −1, b ≤ −1, |c| ≥ 1,
and |a| = min(|a|, |c|). An upper bound for the maximum number of real zeroes of
f0(r) is given in Table 2.

Proof. We prove the upper bounds given in Table 2 when |a| 6= |c|, |b| 6= |a| and
|b| 6= |c|. To prove the rest of the cases one can proceed in an analogous way.
We additionally assume that a > b. If a < b, then by exchanging the roles of a
and b the proof also follows. From Lemma 12 the zeroes of function f0(r) satisfy
the equation (25). Hence an upper bound for the number of zeroes of f0(r) is an
upper bound for the number of solutions of equation (25). Therefore the zeroes of
f0(r) are among the zeroes of some polynomial of degree 8N + 24. This can be
seen eliminating the squareroots of (25), after raising to the square two times the
expression (25). �

As it will be seen in Proposition 16 our objective now is to improve the former
upper bound, when the parameters satisfy that |a| 6= |c|, |b| 6= |a| and |b| 6= |c|. This
result will allow to prove Theorem 1. The main tool in the proof of Proposition 16
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Cases Upper bound
a = b = −c 2N + 2
a = b = c 2N + 6
c = −b, b < a
c = −a, a < b

c = −a, b < a 4N + 6

c = b, b < a
a = b, c < −a

a = b, c < a 4N + 10

a = c, c < b

a = c, b < c 4N + 14

|a| 6= |b| 6= |c| 8N + 24

Table 2. Upper bounds for the maximum number of real roots of
f0(r). Here N = [n−1

2 ].

is the next theorem of complex analysis, known as the Variation of the Argument
Principle. We start by recalling some useful definitions and results. For more details
see for instance [1].

A continuous function γ : [0, 1] → C \ {0} is called a path in C \ {0}. The index
(or winding number) of a path γ in C \ {0} with respect to 0 is defined by

w(γ, 0) =
1

2πi

∫

γ

dz

z
.

In case that γ is a piecewise smooth path, then the index can be calculated as

w(γ, 0) =
1

2πi
log

γ(1)

γ(0)
+

1

2π
∆arg(γ), (26)

where ∆arg(γ) denotes the variation of the argument on the curve γ. In case that
γ is a closed curve, then we have that

w(γ, 0) =
1

2π
∆arg(γ).

Theorem 14. Let G be a Jordan closed curve and we denote by D its interior. Let
f be a holomorphic function in a neighborhood of D̄ and such that it has no zeroes
on G. We denote N0(f) the number of zeroes of f in D. Then

N0(f) = w(f(G), 0) =
1

2πi

∫

f(G)

dz

z
=

1

2πi

∫

G

f ′(z)
f(z)

dz.

Proposition 15 ([6]). Let γ and γ1 be two paths in C \ {0} such that

|γ(t)− γ1(t)| ≤ |γ1(t)| for all t ∈ [0, 1]. (27)

Then connecting the points P = γ(0) with P1 = γ1(0), and Q = γ(1) with Q1 =
γ1(1) by a segment having these endpoints, we obtain a closed curve that does not
contain the origin inside. Moreover

w(γ, 0) = w(γ1, 0) + w(PP1, 0)− w(QQ1, 0).

We obtain a new lower upper bound of the number of zeroes of f0(r) in a complex
domain that includes the real interval where f0(r) defined. To do this we consider
the complex extension of the function defined by the left-hand side of (25). By
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taking the following holomorphic branch of the complex square root function,

√
z =

{ √
(|z|+Re z)/2 + i

√
(|z| − Re z)/2, if 0 ≤ arg z < π,√

(|z|+Re z)/2− i
√
(|z| − Re z)/2, if − π ≤ arg z < 0,

in the domain C\{z ∈ C : Im z = 0 and Re z ≤ 0}, the complex extension of f0(r)
given in (25) is

f(z) = PN+2(z)
√
b2 − z

√
c2 − z +QN+2(z)

√
a2 − z

√
c2 − z+

RN+2(z)
√
a2 − z

√
b2 − z + UN+1(z)

√
a2 − z

√
b2 − z

√
c2 − z,

(28)

which is holomorphic in the domain

Ω = C \ {z ∈ C : Im z = 0 and Re z ≥ d},
where d = min{a2, b2, c2}. Note that |z| = r2.

Proposition 16. Let a < 0, b < 0 and c 6= 0 be real numbers such that: |a| 6= |b|,
|a| 6= |c|, |b| 6= |c| and |a| = min(|a|, |c|). Let f : Ω → C be the function defined in
(28) and N0(f) be the number of zeroes of f in Ω. Then N0(f) ≤ 5N + 13.

Proof. First we assume that a > b. If a < b, then by exchanging the roles of a and
b the proof also follows. The zeroes of the function f are among the zeroes of some
polynomial of degree 8N +24, as it was proved in Proposition 13. Hence, as N0(f)
is finite, there exists a closed curve whose interior is included in Ω and contains
all the zeroes of f0(r). The idea is to use Theorem 14 applied to this curve for
obtaining a lower upper bound of N0(f).

From now on we will denote by ρ a positive real number large enough and ε a
positive real number small enough. Let Cρ be the circle centered at the origin and
radius ρ and consider the points A,A′ ∈ Cρ where A = (xA, ε), A

′ = (xA,−ε). Let
Cρ,ε be the curve obtained by removing the arc AA′ of the circle Cρ, and let Cε

be the arc B̂B′ of the circle with center at (a2, 0) and radius ε, where B = (a2, ε),
B′ = (a2,−ε). The segment joining A and B (respectively A′ and B′) is denoted
by Lε

+ (respectively Lε
−) and also we introduce the piece of curve Iρ,ε given by

Iρ,ε = Lε
+ ∪ Cε ∪ Lε

−.

A
B

A′
B′

Cε

Cρ,ε

Lε
+

Lε
−

(a2,0)

Figure 1. Graph of the closed curve G.

We define the closed curve

G = Cρ,ε ∪ Iρ,ε

on the complex plane and denote by D its interior. Consider the counterclockwise
orientation on G. See Figure 1.
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Note that since N0(f) is finite, for ρ sufficiently large and ε sufficiently small, all
the zeroes of f are in D. By applying Theorem 14 to the closed curve G we get

N0(f) =
1

2πi

∫

f(G)

dz

z

and by denoting

Z1 =
1

2πi

∫

f(Cρ,ε)

dz

z
,

Z2 =
1

2πi

∫

f(Iρ,ε)

dz

z
,

we have that

N0(f) = Z1 + Z2 = w(f(Cρ,ε), 0) + w(f(Iρ,ε), 0). (29)

First we will estimate an upper bound for Z1. From (28) we obtain

f(z) = α0z
N+3 + α1z

N+5/2 + ℓ.o.t., (30)

when |z| → +∞, with α0, α1 ∈ C and where ℓ.o.t. denotes lower order terms in z,
as usual. Furthermore

|f(z)− α0z
N+3| ≤ |α0z

N+3| for z ∈ Cρ,ε.

If we denote by g(z) = α0z
N+3, then the hypotheses of Proposition 15 are fulfilled

for the curves γ = f(Cρ,ε) and γ1 = g(Cρ,ε). In that case P = f(A), Q = f(A′),
P1 = g(A) and Q1 = g(A′), where A =

√
ρ2 − ε2 + εi and A′ =

√
ρ2 − ε2 − εi.

Note that A′ = A and then Q1 = P1 and Q = P . Therefore |P | = |Q|, |P1| =
|Q1|. Then, by applying Proposition 15, we get

w(f(Cρ,ε), 0) = w(g(Cρ,ε), 0) + w(PP1, 0)− w(QQ1, 0), (31)

where

w(PP1, 0) =
1

2πi
log

∣∣∣∣
P1

P

∣∣∣∣+
1

2π
angle(P̂OP1),

and

w(QQ1, 0) =
1

2πi
log

∣∣∣∣
Q1

Q

∣∣∣∣+
1

2π
angle(Q̂OQ1).

So, since Q1 = P1 and Q = P , we have

log

∣∣∣∣
P1

P

∣∣∣∣ = log

∣∣∣∣
Q1

Q

∣∣∣∣ .

From straightforward computations we get that

angle(P̂OP1) = arg

(
f(A)

g(A)

)
= O(1/ρ),

and

angle(Q̂OQ1) = arg

(
f(A′)

g(A′)

)
= O(1/ρ),

where O(1/ρ) denotes some function that goes to 0 when ρ → ∞. Therefore

w(PP1, 0)− w(QQ1, 0) = O(1/ρ). (32)

For the estimation of the term w(g(Cρ,ε)), a direct calculation shows that

w(g(Cρ,ε), 0) =
1

2πi

∫

Cρ,ε

g′(z)
g(z)

dz = N + 3 +O(ε/ρ), (33)

where O(ε/ρ) denotes some function that goes to 0 when ε → 0 and ρ → ∞.
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Substituting (32) and (33) in (31), we obtain that

Z1 ≤ N + 3 +O(ε/ρ) +O(1/ρ). (34)

The next step is to give an upper bound for Z2. We note that

Z2 =
1

2πi

∫

f(Iρ,ε)

dz

z
=

∫

Iρ,ε

f ′(z)
f(z)

dz = w(f(Iρ,ε), 0).

By taking account that Iρ,ε = Lε
+ ∪ Cε ∪ Lε

−, we get

Z2 = w(f(Lε
+), 0) + w(f(Lε

−), 0) +
1

2πi

∫

Cε

f ′(z)
f(z)

dz. (35)

To obtain an estimation on the number of zeroes of Z2 we introduce the functions
γ± : [a2,∞) → C given by

γ±(x) = lim
ε→0

f(x± iε), for x ≥ a2.

Therefore γ−(x) = γ+(x), for all x ≥ a2, and the explicit expression for γ+(x) is
given by

−i
√
x− a2

√
c2 − xQN+2(x) − i

√
x− a2

√
b2 − xRN+2(x)

−i
√
x− a2

√
b2 − x

√
c2 − xUN+1(x) +

√
b2 − x

√
c2 − xPN+2(x)

for a2 ≤ x ≤ b2,

−i
√
x− b2

√
c2 − xPN+2(x) − i

√
x− a2

√
c2 − xQN+2(x)

−
√
x− a2

√
x− b2 RN+2(x) −

√
x− a2

√
x− b2

√
c2 − xUN+1(x) (36)

for b2 < x ≤ c2,

+i
√
x− a2

√
x− b2

√
x− c2 UN+1(x) −

√
x− b2

√
x− c2 PN+2(x)

−
√
x− a2

√
x− c2 QN+2(x)−

√
x− a2

√
x− b2

√
x− c2 RN+2(x)

for c2 < x.

Case 1. γ+(x
∗) 6= 0 for all x∗ ∈ [a2,∞).

We take the parametrization f(x+ iε) (resp. f(x− iε)), x ∈ [a2, ρ], for the curve
f(Lε

+) (resp. −f(Lε
−)). Since γ+ is continuous on [a2, ρ] and γ+(x) 6= 0 for all

x ∈ [a2, ρ], there exists η such that infx|γ+(x)| = η > 0, x ∈ [a2, ρ].
By direct calculations we get that

|f(x+ iε)− γ+(x)| ≤ O(ε),

for all x ∈ [a2, ρ]. This property means that the convergence {f(x± iε)} → γ±(x)
as ε → 0, is uniform on ε in the interval [a2, ρ]. Then, for the previous η, there
exists ε0 such that, for all 0 < ε ≤ ε0,

|f(x+ iε)− γ+(x)| < η ≤ |γ+(x)|, x ∈ [a2, ρ].

By applying Proposition 15 to the curves f(·+ iε) and γ+, we get

w(f(Lε
+), 0) = w(γ+, 0) + w(PP1, 0)− w(QQ1, 0), (37)

where P = f(a2 + iε), Q = f(ρ+ iε), P1 = γ+(a
2) and Q1 = γ+(ρ).

Applying formula (26) we get

w(PP1, 0) =
1

2πi
log

∣∣∣∣
γ+(a

2)

f(a2 + iε)

∣∣∣∣−
1

2π
arg(f(a2 + iε))

and

w(QQ1, 0) =
1

2πi
log

∣∣∣∣
γ+(ρ)

f(ρ+ iε)

∣∣∣∣−
1

2π
arg(f(ρ+ iε)).
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From the series expansion in ε of the former functions we obtain that

w(PP1, 0)− w(QQ1, 0) = O(ε).

Then from (37) we get

w(f(Lε
+), 0) = w(γ+, 0) +O(ε). (38)

Applying similar arguments to the curves f(· − iε) and γ− we obtain

w(f(Lε
−), 0) = −w(γ−, 0) +O(ε). (39)

By writing γ+(x) = r(x)exp(iθ(x)) then γ−(x) = r(x)exp(−iθ(x)) and using
again formula (26) we have

w(γ+, 0) =
1

2πi
log

∣∣∣∣
r(ρ)

r(a2)

∣∣∣∣+
1

2π
[θ(ρ) − θ(a2)],

and

w(γ−, 0) =
1

2πi
log

∣∣∣∣
r(ρ)

r(a2)

∣∣∣∣−
1

2π
[θ(ρ)− θ(a2)],

where [θ(ρ)−θ(a2)] is the variation of the argument on the curve γ+([a
2, ρ]). Then,

by (38) and (39), we get that

w(f(Lε
+), 0) + w(f(Lε

−), 0) =
1

π
[θ(ρ)− θ(a2)] +O(ε).

Then we have that (35) can be written as

Z2 =
1

π
[θ(ρ)− θ(a2)] +

1

2πi

∫

Cε

f ′(z)
f(z)

dz +O(ε).

But, since
1

2πi

∫

Cε

f ′(z)
f(z)

dz =
1

2πi

∫

f(Cε)

dz

z
= w(f(Cε), 0),

by formula (26), we get

w(f(Cε), 0) =
1

2πi
log

∣∣∣∣
f(1 + εi)

f(1− εi)

∣∣∣∣

+
1

2π
(arg(f(1 + εi))− arg(f(1− εi))) = O(ε),

and, hence

Z2 =
1

π
[θ(ρ) − θ(a2)] +O(ε),

where the difference θ(ρ) − θ(a2) is the variation of the argument on the curve
γ+([a

2, ρ]). We observe that the starting point of γ+ is on the real axis. About
its ending point we can say that either it is very close to the real axis or to the
imaginary one. Hence, if we define

R = #{z ∈ D : Re(γ+)(z) = 0} and

I = #{z ∈ D : Im(γ+)(z) = 0},
then we have that

|θ(ρ)− θ(a2)| ≤ min{R, I + 1} π + O(1/ρ).

As usual # denotes the cardinal of a set. As a consequence

Z2 ≤ 4N + 9 +O(ε) +O(1/ρ). (40)

Finally, using the upper bounds obtained in (34) and (40), from (29) we get the
estimation for N0(f) given by

N0(f) ≤ 5N + 12. (41)
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Case 2. Suppose there exists some x∗ ∈ [a2,∞) such that γ+(x
∗) = 0.

For each x∗ ∈ (a2,∞) such that γ+(x
∗) = 0 we shall define a function h∗.

(i) If x∗ ∈ (a2, b2) ∪ (b2, c2) ∪ (c2,∞), then h∗(z) = (z − x∗)k∗ , where k∗ ≥ 1
is the multiplicity of x∗ as zero of γ+ in (a2, b2) ∪ (b2, c2) ∪ (c2,∞). Note
that γ+ is analytic in this domain of definition.

(ii) If x∗ = a2, then we take h∗(z) = (
√
a2 − z)ka , where

ka = 2 min{ka1 , ka2 + 1/2}.

Here ka1 is the multiplicity of a2 as a zero of PN+2, while ka2 is the multi-
plicity of a2 as a zero of the function
√
c2 − xQN+2(x) +

√
b2 − xRN+2(x) +

√
c2 − x

√
b2 − xUN+1(x).

Since a2 is a zero of γ+, we have that ka1 ≥ 1.

(iii) If x∗ = b2, then we take h∗(z) = (
√
b2 − z)kb , where

kb = 2 min{kb1 + 1/2, kb2 , kb3 + 1/2}.
In this case kb1 is the multiplicity of b2 as a zero of PN+2, kb2 is the
multiplicity of b2 as a zero of QN+2, while kb3 is the multiplicity of b2 as a

zero of the function RN+2(x) +
√
c2 − xUN+1(x). Since b2 is a zero of γ+,

we obtain that kb2 ≥ 1.

(iv) If x∗ = c2, then we take h∗(z) = (
√
c2 − z)kc , where

kc = 2min{kc1 , kc2 + 1/2, kc3 + 1/2}.
Here kc1 is the multiplicity of c2 as a zero of RN+2, kc2 is the multiplicity
of c2 as a zero of UN+1, while kc3 is the multiplicity of c2 as a zero of the

function
√
x− a2 QN+2(x) +

√
x− b2 PN+2(x). Since c2 is a zero of γ+, we

get that kc1 ≥ 1.

It is clear that γ+ has finitely many zeroes in [a2,∞). So we choose ρ sufficiently
large in order that all the zeroes of γ+ in [a2,∞) are contained in [a2, ρ]. We
define the function h as the product of all the functions h∗ defined before, for each
x∗ ∈ [a2,∞) zero of γ+, and the function f1 as

f1(z) =
f(z)

h(z)
.

Both h and f1 are holomorphic in Ω and the number of zeroes of f in D is equal
to the number of zeroes of f1 in D, i.e.

N0(f) = N0(f1) =
1

2πi

∫

f1(G)

dz

z
.

If we denote by

Y1 =
1

2πi

∫

f1(Cρ,ε)

dz

z
and Y2 =

1

2πi

∫

f1(Iρ,ε)

dz

z
,

then we have that

N0(f1) = Y1 + Y2 = w(f1(Cρ,ε), 0) + w(f1(Iρ,ε)). (42)

Since f(z) = h(z)f1(z) we have that Z1 can be written as

Z1 = Y1 +
∑

x∗

1

2πi

∫

Cρ,ε

(h∗)′(z)
h∗(z)

dz. (43)
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Moreover the expression (h∗)′/h∗ is either k∗/(z − x∗) or kd/(2(d2 − z)), where
d ∈ {a, b, c}. We note that (h∗)′/h∗ is continuous on Cρ. Then we can write

1

2πi

∫

Cρ,ε

(h∗)′(z)
h∗(z)

dz =
1

2πi

∫

Cρ

(h∗)′(z)
h∗(z)

dz + O(ε) = k̃ + O(ε),

where k̃ ∈ {k∗, ka/2, kb/2, kc/2}.
Denote by k the sum with respect to all zeroes of γ+ for all positive numbers of

the form: k∗, ka/2, kb/2, kc/2.
From (34) and (43), we get that

Y1 ≤ N + 3− k +O(ε) +O(1/ρ). (44)

In order to give an estimation for Y2, we define h+(x) = limε→0 h(x+iε), h−(x) =
limε→0 h(x − iε), β+(x) = limε→0 f1(x + iε) and β−(x) = limε→0 f1(x − iε) for all

x ≥ a2. It is not difficult to check that h−(x) = h+(x) and, as a consequence,

β−(x) = β+(x).
Since N0(f) = N0(f1), we shall give an estimation for Y2 considering an analo-

gous function to the function γ+ associated to Z2 would be the function β+, but
now associated to Y2. We note that, as in Case 1, the function β+ has no zeroes on
[a2,∞).

We note that by construction of the function h, all zeroes of γ+ in [a2,∞) are
zeroes of h+ with the same multiplicity. Consequently, the function β+ has no
zeroes and is continuous in [a2,∞).

Note that the upper bound for the maximum number of zeroes of β+ is optimal
when the function h is composed by only one factor whose zero is z = d, d ∈
{a2, b2, c2}. In that case the degree of β+ decreases only in one half correspondind
to square root, while in the other cases the degree of β+ decreases in a natural
number n, n ≥ 1. Hence it is enough to study only the cases

(c1) x∗ = a2, with h(z) =
√
a2 − z,

(c2) x∗ = b2, with h(z) =
√
b2 − z,

(c3) x∗ = c2, with h(z) =
√
c2 − z.

For each case we can consider the associated function h+ to obtain the corre-
sponding β+ = γ+/h+ function.

By repeating the same arguments as the ones used to get the upper bound for
Z2, we obtain

Y2 =
1

π
[θ(ρ)− θ(a2)] +O(ε),

where [θ(ρ) − θ(a2)] is the variation of the argument on the curve β+([a
2, ρ]). We

observe that the starting point of β+ is on the real axis. About its ending point we
can say that either it is very close to the real axis, or to the imaginary one. Hence
if we define R = #{z ∈ D : Re(β+)(z) = 0} and I = #{z ∈ D : Im(β+)(z) = 0},
then we have that

[θ(ρ)− θ(a2)] ≤ min{R, I + 1} π + O(1/ρ).

By doing a particular study for the considered cases, we get an upper bound for
the number of zeroes of Y2. That is,

Y2 ≤





(4N + 10) +O(ε) +O(1/ρ), for (c1),
(4N + 8) +O(ε) +O(1/ρ), for (c2),
(4N + 7) +O(ε) +O(1/ρ), for (c3).

Then, by taking the greatest of these bounds and from the estimation of Y1 given
in (44), we obtain that the upper bound for the maximum number of zeroes of the
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function f in (c2) is

N0(f) = N0(f1) = Y1 + Y2 ≤ 5N + 13. (45)

Finally from expressions (41) and (45), the upper bound for N0(f) is given by
N0(f) ≤ 5N + 13. �

5. Proof of the main results

We consider differential system (2), where a, b, c ∈ R\{0} are such that |a| 6= |b|,
|a| 6= |c| and |b| 6= |c| and Pn(x, y), Qn(x, y) ∈ Rn[x, y]. First we do some restrictions
on the set of parameters a, b and c that, without loss of generality, will allow to
simplify the proof.

We can assume that b < 0. If it is not the case we obtain it doing the change
of variables (x, y, t) 7→ (x,−y, t). We assume that the parameter a is such that
|a| = min(|a|, |c|). Furthermore we can take a < 0, if not then we apply the change
of variables (x, y, t) 7→ (−x, y,−t). In the proof of the theorem we will use next
lemma.

Lemma 17 ([10]). Consider p+1 linearly independent analytical functions fi : U ⊂
R → R, i = 0, 1, . . . , p, where U ⊂ R is an interval. If there exists j ∈ {0, 1, . . . , p}
such that fj |U has constant sign, then it is possible to get an f given by f(x) :=∑p

i=0 Cifi(x), such that it has at least p simple zeroes in U .

Proof of Theorem 1. To obtain bounds of the maximum number of limit cycles of
differential system (2), applying the averaging theory of first order, we need to
control the number of simple zeroes of the function f0(r).

To get a lower bound, we need to prove that there exists a basis of the generating
functions of f0(r) having at least 4[(n−1)/2]+4 simple zeroes for |ε| small enough.
From Proposition 5(i), f0(r) is an arbitrary linear combination of 4[(n− 1)/2] + 5
independent functions. As all these functions are analytic in U = (0, d), where
d = min{|a|, |b|}, and some of them are strictly positive on U , the result follows as
a consequence of Lemma 17. Hence there are systems (2) with at least 4[(n−1)/2]+4
limit cycles bifurcating from the period annulus around the origin for ε = 0.

Now we shall get an upper bound. Clearly f0(0) = 0 and hence, from Proposition
9(i) and Lemma 12, the following relation must hold,

PN+2(0)|b| |c|+QN+2(0)|a| |c|+RN+2(0)|a| |b|+ UN+1(0)|a| |b| |c| = 0.

Therefore from expression (28), also we have that f(0) = 0. By applying Proposi-
tion 16, we deduce that an upper bound for the number of zeroes of f0(r) in (0, d)
is 5N + 14. �

Proof of Proposition 2. From the considerations on the set of parameters a, b and
c at the beginning of this section, it is not restrictive to assume that a < 0, b < 0
and that |a| = min(|a|, |c|).

The lower bounds of Table 1 follow from the study of the number of generat-
ing functions of f0(r) in the same way as we proved Theorem 1, and using from
Lemma 10 and Remark 11. The upper bounds again can be obtained as in Theorem
1 using Proposition 13. �

We point out that the lower bounds of Proposition 13 are smaller than the lower
bound given in Theorem 1. See Remark 11.
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6. Numerical Computations

In order to show how accurate are the bounds provided, we present some nu-
merical computations, performed with the algebraic manipulator Mathematica.

We consider system (2), with a = −1 and being b < −1, c > 1. In this case the
period annulus of system (2) for ε = 0 is given by the the disc r < 1. For each
n = 4, . . . , 9 we obtain the function f0(r), that we call f0

n(r), associated to (2):

f0
n(r) =

7∑

i=1

pin(r
2)fi(r), (46)

where for i = 1, . . . , 7, pin(r
2) depends on b and c and it is a real polynomial in

the variable r2, whose coefficients are linear combinations of the coefficients of
Pn(x, y) and Qn(x, y). To simplify notation we rename these coefficients as ci for
i = 1, . . . , (n2 + 5n)/2 and we denote by c = (c1, . . . , ck), where k = (n2 + 5n)/2.
The functions fi(r) are defined as follows,

f1(r) =
1√

b2 − r2(1 + c)r(b2 + c2 − r2)
,

f2(r) =

√
b2 − r2

(1 + c)r(b2 + c2 − r2)
,

f3(r) =
1√

c2 − r2r(1 + c2 − r2)(b2 + c2 − r2)
,

f4(r) =

√
c2 − r2

r(1 + c2 − r2)(b2 + c2 − r2)
,

f5(r) =
1√

b2 − r2(1 + c)r(1 + c2 − r2)
,

f6(r) =

√
b2 − r2

(1 + c)r(1 + c2 − r2)
,

f7(r) =
1

r
.

For each value of n we define N(n) as the total number of monomials of all the
polynomials pin(r

2). In this way we have that

f0
n(r) =

N(n)∑

i=1

Bi(c1, c2, . . . , ck)ϕi(r), (47)

where k = (n2 + 5n)/2, Bi(c1, c2, . . . , ck) is the coefficient of the corresponding
monomial and ϕi(r) stands for the product of some power of r2 times fj(r

2) for
some j = 1, . . . , 7. We remark that Bi(c1, c2, . . . , ck) is a linear combination of the
ci.

From Proposition 18(ii) we get the minimum number for the maximum number
of limit cycles of system (2) obtained using the averaging theory of first order. This
number is denoted by z(n). We note that z(n) is equal to the number of linearly
independent generating functions of f0

n(r) in expression (47) minus one. From this
proposition also we can deduce that, in any case, z(n) ≤ N(n)− 1.

Proposition 18 ([16]). Let f(x) be a function of the form

f(x) =

m∑

i=1

Bi(c1, c2, . . . , ck)ϕi(x),

where ϕ1, . . . , ϕm are linearly independent solutions of a linear homogeneous or-
dinary differential equation of finite order and defined on an open interval J, and
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B = (B1, . . . , Bm) is a linear map with rankc(B) = z(n)+1, where z(n) is a positive
integer number. Then,

(i) For almost any choice of z(n)+ 1 points in J, say x0, x1, . . . , xz(n), and for
arbitrary real numbers y0, . . . , yz(n), the linear system

f(xi) = yi, i = 0, . . . , z(n),

has exactly one solution.
(ii) There are functions f(x) not identically zero and having at least z(n) zeros

in J. Moreover if the function f(x) is analytic we can take these z(n) zeros
having odd multiplicity.

In Table 3 for each value of n we compare: N(n) − 1 which is the maximum
number of zeroes of the function f0(r), z(n) that gives the minimum number of
limit cycles of system (2) obtained by using Proposition 18(ii) and 4[(n− 1)/2]+ 4,
i.e. the lower bound that we have obtained in Theorem 1 for the number of zeroes
of the function f0(r).

n 4 5 6 7 8 9
N(n)− 1 18 19 22 23 26 27

z(n) 11 13 17 19 20 23
4[(n− 1)/2] + 4 8 12 12 16 16 20

Table 3. Value of z(n) in comparison with the lower bound in
Theorem 1.
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