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Abstract.  We consider the MHD equations for real gases described bynad¥a

Waals equation of state. We present an explicit calculatibthe spectral decom-
position of the Jacobian of the fluxes and we propose a claistot-based upwind
numerical scheme to approximate the solution of the systieegwations in the one
dimensional case. We show a numerical example where weabsg&ve dynamics
significantly stronger than the one obtained for the idealD/itdse.

1. Introduction

The magnetohydrodynamics (MHD) system of equations fof gaaes can be ex-

pressed as
pt+V(v) = 0
(o) + V(pVVT +(P+ %BZ)I - BBT) =0
Bi-Vx(vxB) = 0
Ei+V((E+P)V-(vxB)xB) = 0

wherep, v, B andE denote the mass density, the velocity field, the magnetid &atl
the total energy respectively. The energy is expressdsl a%pqz + %BZ + pe where
g? andB? are the squares of the magnitudes of the velocity field anchtgnetic field
respectively and the specific internal energye* = P + %Bz is the total pressure and
P = P(p, €) the hydrodynamic pressure defined through a real gas equetistate
(EQS).

The study of wave dynamics in real gases under severe redjlkedbe ones en-
countered in astrophysical scenarios is a field of incrgasiterest. The deviation of
real gases from the ideal gas case is significant and therafanore general analytic
expression of the EOS permitting the development of spefgfitures is necessary.
Van der Waals EOS is a powerful and versatile mathematicaleinallowing strong
complex wave dynamics including thermodynamic phase ahé@ingndau & Lifschitz
(1987); Thompson (1971); Menikof & Plohr (1989)). The bdabawf shock waves in
real gases described by the Euler equations ruled by a Vawalals EOS (Thompson
(1971); Thompson & Lambrakis (1973)) represents an ingiap for the analysis of
the wave dynamics arising in real plasmas.
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In order to explore the complex dynamics of MHD equationsréal gases we
consider a numerical scheme that is designed considerinigflrmation of the wave
structure of the system through the spectral decomposdfoiine Jacobians of the
fluxes. We propose a complete system of eigenvectors andthesponding eigen-
values of the Jacobian for the MHD fluxes in terms of the thelynamic magnitudes
of the Van der Waals EOS. We then design a characteristiedbaamerical scheme
following a similar approach as the one proposed in Sern@9Rfor ideal MHD. We
perform computations for a one dimensional shock tube probdhowing a signifi-
cantly stronger wave dynamics than the one obtained fordibed MHD case.

2. Local characteristic approach for Van der Waals plasmas

We consider the hyperbolic system of equations for the MH& ¢a divergent form in
one dimension

OU+0xf(u)=0 D
whereu is the vector of conserved variables
u = (p’ pU, pV’ pW, By, BZ’ E)T (2)

andf(u) the flux vector represented as
fu) = (ou, pu? + P* — B2, puv— ByBy, puw— ByB,, uB, — VB,
uB; — wBy, U(E + P*) — Byx(uBy + VB, + WBZ))T 3)

whereu, v, w represent the velocity field components d@ydB,, B, the magnetic field
ones. We assumi®y constant.
The pressure is defined from the expression of the Van dersViZ2@6

P
1-nwo

whereR is the gas constanGy is the specific heat at constant volume agd> 0 and
np > 0 are positive constants accounting for the intermoledolaes and the molecule
size respectively.

Hyperbolicity of a system of the form (1) of dimensiomimplies that the diag-
onalization of the Jacobian of the flux decouples the orldimyaerbolic system irm
scalar conservation laws defining the so-called charatitefields and the correspond-
ing characteristic fluxes.

The eigenvalues of the Jacobiéifu) are denoted ag;(u),-- -, Am(u) counting
each one as many times as its multiplicity. The completeesystf right and left eigen-

R
P==—(c+mnap) — nap® (4)
\V

vectors are defined & = {r1(u),---,rm(u)} andL = {lI1(u),-- -, n(u)} diagonalizing
f’(u) such thar; - | = ¢;; and
L(u)f'(u) R(u) = A = diag@da(u), - - -, Am(U)) ®)

Next we propose the spectral decomposition of the Van dedsANBID equa-
tions. Let us definetg, by, b;) = (Bx. By, B,)/ yp andb? = bZ + b? + bZ. The general
expression of the square of the acoustic sound speed is@sven

PP,
=P, +—" (6)
P
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where P, represents the partial derivative Bfwith respect topo and P, the partial
derivative ofP with respect tc.

In our case, considering defined from the Van der Waals EOS (4) the expression
for a° reads as

, R 1
a’= —
Cv1-npp\1l-npp

(e +nap) +1ap + ) 2nap (7)

The Alfven velocityc, = |by| and the fast and slow velocities are given by

oo L
f,s = 2

The seven characteristic velocities associated to themyate:11(u) = u—c¢, A2(U) =
U — Ca, A3(U) = U—Cg, A4(U) = U, A5(U) = U+ Cg, A5(U) = U + Cg, A7(U) = U + C5.

We define sgrtf = 1 fort > 0 and sgrt) = —1 otherwise and s@, andg; values
from the expressions

(82 + D7) + /(a2 + bP)? — 40203 )

By 2, p2 B, . 2, B2
B-{ VB B0 { B By B2
sgn(B) -+ 5+ otherwise sgn(BZ)\/lz; otherwise

The eigenvectors associatediig 1, and g are

201 T
rg = (1,u,v,w,0,0,—%(%—q2—M))
1 1,a%(1- 1
ly = T(; + E(w - ; - qz), u, v, w, By, By, B, _1)
rp = (00 —Bzsgn(By), Bysgn(By), - B Py —Sgn(B()[ﬁzV—ﬁyW])T
«F "
o = (oo -Psqn(@). fysan(e). L2 iy_ —san(B)Bv - ﬁyW])
1
= (Goan@isy - sl ~san(@). Fsan) 5 5, fO)
1
o = (Foan@isy - syl Zsan@). Fsan@). by )
where
_ P _R
T T permP-RA-mpp M kTG,

The eigenvectors associated Ag 13, A5 and A7, can be expressed in an unified
way fork =1,3,5,7 as

r« = |a a(u+c), av-acsgn(é - &) sgn(B)By, aw — a ¢ sgn(é — &)
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sgn(BJ)B.. &% sgn(é - 2)B,. &% sgn(é - 2)B,.

E+P _
a ; —a? + ¢ + uc) - sgn(é - &)a ¢ sgn(B)(vBy + Wp,)
1 ak 1 5, a&@1-np) ak
= 2a2( Tl el By s wer e
—_v - atsgn(é - &) sgn(BJ)By.
1-npp
—_w - acsgn(@ - &) sgn(BJBz.
1-nwo
—aK _
+ +paa sgn(€ — &)By,
1-— 7bP By \/IB g ( )ﬂy
—aK — aK
B, + vpaasgn(é — & —)
T 2+ o gn( )52 1= mp
wherec andc ande anda are determined as:
e fork =1 andk = 7,c = ¥c¢, C = Fcg and
oo arsanB); & <bf —_ [ as-son(B); & <bg
as; otherwise as, otherwise
e for k =3 andk = 5, ¢ = Fcg, C = Fcf and
_ [ as-sgn(B); a2> b2 — [ as-sgn(B); a>b2
N as; otherwise = as; otherwise

at andag are defined from the following expressions,

V&, po 2 2, a2 N
s + B2 # 00rB2 # pa X BZ2+B2#00rB2 # pa?
af:{ /C%l_cg By z X a’s:{ 2 By z x * P
V2 ,
The proposed complete system of eigenvectors guarantaéeuity with respect

et
to the conserved variables as defended in Serna (2009).

otherwise 1. i
v otherwise

3. High order numerical approximation

A scheme in conservation form for a system of conservatios ia written as

At -~ =
n+1 _  n_ = _
up = =uj AX(fH% fj—%) 9)
whereu’j‘ ~ U(X;j, tn) is @ numerical approximation of the solution in the compateal

cell xj = jh, t, = nAt whereh andAt are the spatial and time step sizes respectively and
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fl represents the numerical flux. We perform the local charigtite decomposition

of the system decoupling the equations in linearly indepatdharacteristic fields. We
approximate the numerical fluxes at cell interfaces by medrtwo linearizations at
each side of the interface following the interface splgtstrategy used in the Marquina
flux formula (Donat & Marquina (1996)). Numerical schemesdshin one lineariza-
tion might be convenient when exact formulas to satisfy Resklugoniot relations
are available (Roe (1981)). That is the case for ideal gaamigs and the case for
adiabatic exponent = 2 in ideal MHD (Brio & Wu (1988)). In the case of non-ideal
gases and plasmas Marquina’s flux splitting procedure alkovsatisfy approximately
Rankine-Hugoniot relations at interfaces. The procedvoila arbitrary averaging and
therefore thermodynamic inconsistencies at intermediaties.

To computd in terms of two linearizations at each interface we use tis¢dirder
flux splitting formula

fioy =fhul,) = Z[% rp(u]) +uPrp(ul, )| (10)

wherey? andy P represent the lateral numerical characteristic fluxes s&lae com-
puted at the interface following the entropy-fix upwind prdare proposed in Serna
(2009) from the local characteristic fluxes and variables

o0 = () 1p(u) ¢,+l H(U?, ) - 1p(u, )

p n n p n n

for p = 1,2,---,7. Due to page limitation we will not detail the procedure &-c
culate the lateral numerical characteristic fluxes. Werrefe reader to the extended
description presented in Serna (2009).

Third order accuracy in space is achieved by applying a mgoaction function on
local characteristic fluxes and variables. This is perfatraealuating at the interface
the reconstruction function that is determined via privaitfunction and satisfies the
conservation property ( Shu & Osher (1989)). We use a thidéroaccurate piecewise
hyperbolic reconstruction procedure as used in Serna J26@9the integration in time
we use a third order Runge-Kutta time stepping procedure.

3.1. Brio-Wu shock tube problem

We perform a numerical experiment consisting of the appnaxion of the solution of
the one dimensional Brio-Wu (Brio & Wu (1988)) shock tubeR&n problem for the
Helium Van der Waals EOS with parametggs= 0.03412,n, = 0.23,R = 0.0821 and
Cyv = 20.81.

The two initial constant stateg, andug are

_{(1,0,0,0,1,0,1); x<0
(0. v, W, By, B F) ‘{ (0.1250,0,0,-1,0,0.1); x>0

and By = 0.75 constant at both sides. We solve the one-dimensional My4ies
for x € [-1,1] with N = 800 equally spaced grid points. We evolve the numerical
scheme using a CFL number 6f= 0.5 such thaiAt = C—2%_ and compute the

max(u|+cs)
approximate solution dt= 0.2.
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Figure 1.  Brio-Wu Riemann MHD problem for Van der Waals egurabf state
for Helium : (left) density, (middle) pressure, (riglyfcomponent of magnetic field
attimet = 0.2

This example was proposed in Brio & Wu (1988) for ideal MHD em$0 show
the formation of a compound wave. In Figure 1 we display thesig¢ pressure and
y-component of the magnetic field profiles at titne 0.2. We observe stronger dy-
namics than the one for the ideal MHD case as shown in Brio & Y838). We obtain
two fast rarefaction waves and a slow compound wave iniegagtith the tail of the
left rarefaction. The right hand slow shock wave shows athi@se structure with a
significant increment of the density.

4. Conclusion

With the aim of studying the wave dynamics of the MHD equaionder a real gas
described by a Van der Waals type equation of state, we usearaathristic based
numerical scheme to approximate the numerical solutiomefsystem of equations.
We propose a complete system of eigenvectors for the MHDtiemsafor the Van der
Waals equation of state. We present a numerical experinmeahé dimension that
shows stronger dynamics than the ones for the ideal MHD cHss.results represent
an initial step for an extended study in progress dfedént problems in multidimen-
sions.
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