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Abstract. We consider the MHD equations for real gases described by a Van der
Waals equation of state. We present an explicit calculationof the spectral decom-
position of the Jacobian of the fluxes and we propose a characteristic-based upwind
numerical scheme to approximate the solution of the system of equations in the one
dimensional case. We show a numerical example where we observe wave dynamics
significantly stronger than the one obtained for the ideal MHD case.

1. Introduction

The magnetohydrodynamics (MHD) system of equations for real gases can be ex-
pressed as

ρt + ∇(ρv) = 0

(ρv)t + ∇
(
ρvvT + (P+

1
2

B2)I − BBT
)
= 0

Bt − ∇ × (v × B) = 0

Et + ∇
((

E + P∗)v − (v × B) × B
)
= 0

whereρ, v,B andE denote the mass density, the velocity field, the magnetic field and
the total energy respectively. The energy is expressed asE = 1

2ρq2 + 1
2B2 + ρε where

q2 andB2 are the squares of the magnitudes of the velocity field and themagnetic field
respectively andε the specific internal energy.P∗ = P + 1

2B2 is the total pressure and
P = P(ρ, ε) the hydrodynamic pressure defined through a real gas equation of state
(EOS).

The study of wave dynamics in real gases under severe regimeslike the ones en-
countered in astrophysical scenarios is a field of increasing interest. The deviation of
real gases from the ideal gas case is significant and therefore a more general analytic
expression of the EOS permitting the development of specificfeatures is necessary.
Van der Waals EOS is a powerful and versatile mathematical model allowing strong
complex wave dynamics including thermodynamic phase change (Landau & Lifschitz
(1987); Thompson (1971); Menikof & Plohr (1989)). The behavior of shock waves in
real gases described by the Euler equations ruled by a Van derWaals EOS (Thompson
(1971); Thompson & Lambrakis (1973)) represents an initialstep for the analysis of
the wave dynamics arising in real plasmas.
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In order to explore the complex dynamics of MHD equations forreal gases we
consider a numerical scheme that is designed considering full information of the wave
structure of the system through the spectral decompositionof the Jacobians of the
fluxes. We propose a complete system of eigenvectors and the corresponding eigen-
values of the Jacobian for the MHD fluxes in terms of the thermodynamic magnitudes
of the Van der Waals EOS. We then design a characteristic-based numerical scheme
following a similar approach as the one proposed in Serna (2009) for ideal MHD. We
perform computations for a one dimensional shock tube problem showing a signifi-
cantly stronger wave dynamics than the one obtained for the ideal MHD case.

2. Local characteristic approach for Van der Waals plasmas

We consider the hyperbolic system of equations for the MHD case in divergent form in
one dimension

∂tu + ∂xf (u) = 0 (1)

whereu is the vector of conserved variables

u = (ρ, ρu, ρv, ρw, By, Bz, E)T (2)

andf (u) the flux vector represented as

f (u) =
(
ρu, ρu2 + P∗ − B2

x, ρuv− BxBy, ρuw− BxBz, uBy − vBx,

uBz− wBx, u(E + P∗) − Bx(uBx + vBy + wBz)
)T (3)

whereu, v,w represent the velocity field components andBx, By, Bz the magnetic field
ones. We assumeBx constant.

The pressure is defined from the expression of the Van der Waals EOS

P =
R

CV
(ε + ηaρ)

ρ

1− ηbρ
− ηaρ

2 (4)

whereR is the gas constant,CV is the specific heat at constant volume andηa > 0 and
ηb > 0 are positive constants accounting for the intermolecularforces and the molecule
size respectively.

Hyperbolicity of a system of the form (1) of dimensionm implies that the diag-
onalization of the Jacobian of the flux decouples the original hyperbolic system inm
scalar conservation laws defining the so-called characteristic fields and the correspond-
ing characteristic fluxes.

The eigenvalues of the Jacobianf ′(u) are denoted asλ1(u), · · · , λm(u) counting
each one as many times as its multiplicity. The complete system of right and left eigen-
vectors are defined asR = {r1(u), · · · , rm(u)} andL = {l1(u), · · · , lm(u)} diagonalizing
f ′(u) such thatr i · l j = δi j and

L(u) f ′(u) R(u) = Λ = diag(λ1(u), · · · , λm(u)) (5)

Next we propose the spectral decomposition of the Van der Waals MHD equa-
tions. Let us define (bx, by, bz) = (Bx, By, Bz)/

√
ρ andb2 = b2

x + b2
y + b2

z. The general
expression of the square of the acoustic sound speed is givenas

a2 = Pρ +
PPε
ρ2

(6)
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wherePρ represents the partial derivative ofP with respect toρ and Pε the partial
derivative ofP with respect toε.

In our case, consideringP defined from the Van der Waals EOS (4) the expression
for a2 reads as

a2 =
R

CV

1
1− ηbρ

(
1

1− ηbρ
(ε + ηaρ) + ηaρ +

P
ρ

)
− 2ηaρ (7)

The Alfven velocityca = |bx| and the fast and slow velocities are given by

cf ,s =

√
1
2

[
(a2 + b2) ±

√
(a2 + b2)2 − 4a2b2

x

]
(8)

The seven characteristic velocities associated to the system are:λ1(u) = u−cf , λ2(u) =
u− ca, λ3(u) = u− cs, λ4(u) = u, λ5(u) = u+ cs, λ6(u) = u+ ca, λ7(u) = u+ cf .

We define sgn(t) = 1 for t ≥ 0 and sgn(t) = −1 otherwise and setβy andβz values
from the expressions

βy =

{ By√
B2

y+B2
z

; B2
y + B2

z , 0

sgn(By) 1√
2
; otherwise

βz =

{ Bz√
B2

y+B2
z

; B2
y + B2

z , 0

sgn(Bz) 1√
2
; otherwise

The eigenvectors associated toλ4, λ2 andλ6 are

r4 =

(
1, u, v,w, 0, 0,−1

2

(1
τ
− q2 − a2(1− ηbρ)

κ

))T

l4 = τ

(
1
τ
+

1
2

(a2(1− ηbρ)
κ

− 1
τ
− q2

)
, u, v,w, Bx, By, Bz,−1

)

r2 =

(
0, 0,−βzsgn(Bx), βysgn(Bx),− βz√

ρ
,
βy√
ρ
,−sgn(Bx)[βzv− βyw]

)T

r6 =

(
0, 0,−βzsgn(Bx), βysgn(Bx),

βz√
ρ
,− βy√

ρ
,−sgn(Bx)[βzv − βyw]

)T

l2 =

(
1
2

sgn(Bx)[βzv − βyw],−βz

2
sgn(Bx),

βy

2
sgn(Bx),−βz

√
ρ

2
, βy

√
ρ

2
, 0

)

l6 =

(
1
2

sgn(Bx)[βzv − βyw],−βz

2
sgn(Bx),

βy

2
sgn(Bx), βz

√
ρ

2
,−βy

√
ρ

2
, 0

)

where

τ =
κρ

2κρε + 2κP− a2(1− ηbρ)ρ
and κ =

R
CV

The eigenvectors associated toλ1, λ3, λ5 andλ7, can be expressed in an unified
way for k = 1, 3, 5, 7 as

rk =

(
α, α(u+ c), αv− ᾱc̄sgn(c2 − a2) sgn(Bx)βy, αw − ᾱ c̄, sgn(c2 − a2)
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sgn(Bx)βz, ᾱ
a√
ρ

sgn(c2 − a2)βy, ᾱ
a√
ρ

sgn(c2 − a2)βz,

α
(E + P

ρ
− a2 + c2 + uc

)
− sgn(c2 − a2)ᾱ c̄ sgn(Bx)(vβy + wβz)

)

lk =
1

2a2

(
− ακ

2(1− ηbρ)

(1
τ
− q2 − a2(1− ηbρ)

κ

)
,− ακ

1− ηbρ
u+ αc,

−ακ
1− ηbρ

v− ᾱc̄sgn(c2 − a2) sgn(Bx)βy,

−ακ
1− ηbρ

w− ᾱc̄sgn(c2 − a2) sgn(Bx)βz,

−ακ
1− ηbρ

By +
√
ρaᾱ sgn(c2 − a2)βy,

−ακ
1− ηbρ

Bz+
√
ρaᾱ sgn(c2 − a2)βz,

ακ

1− ηbρ

)

wherec andc̄ andα andᾱ are determined as:

• for k = 1 andk = 7, c = ∓cf , c̄ = ∓cs and

α =

{
α f · sgn(By); a2 < b2

x
α f ; otherwise ᾱ =

{
αs · sgn(By); a2 < b2

x
αs; otherwise

• for k = 3 andk = 5, c = ∓cs, c̄ = ∓cf and

α =

{
αs · sgn(By); a2 > b2

x
αs; otherwise

ᾱ =

{
α f · sgn(By); a2 > b2

x
α f ; otherwise

α f andαs are defined from the following expressions,

α f =

{
√

a2−c2
s√

c2
f −c2

s

; B2
y + B2

z , 0 orB2
x , ρa2

1√
2
; otherwise

αs =

{
√

c2
f−a2

√
c2

f−c2
s

B2
y + B2

z , 0 orB2
x , ρa2

1√
2
; otherwise

The proposed complete system of eigenvectors guarantees continuity with respect
to the conserved variables as defended in Serna (2009).

3. High order numerical approximation

A scheme in conservation form for a system of conservation laws is written as

un+1
j = un

j −
∆t
∆x

(
f̃ j+ 1

2
− f̃ j− 1

2

)
(9)

whereun
j ≈ u(x j , tn) is a numerical approximation of the solution in the computational

cell x j = jh, tn = n∆t whereh and∆t are the spatial and time step sizes respectively and
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f̃n
j+ 1

2

represents the numerical flux. We perform the local characteristic decomposition

of the system decoupling the equations in linearly independent characteristic fields. We
approximate the numerical fluxes at cell interfaces by meansof two linearizations at
each side of the interface following the interface splitting strategy used in the Marquina
flux formula (Donat & Marquina (1996)). Numerical schemes based in one lineariza-
tion might be convenient when exact formulas to satisfy Rankine-Hugoniot relations
are available (Roe (1981)). That is the case for ideal gas dynamics and the case for
adiabatic exponentγ = 2 in ideal MHD (Brio & Wu (1988)). In the case of non-ideal
gases and plasmas Marquina’s flux splitting procedure allows to satisfy approximately
Rankine-Hugoniot relations at interfaces. The procedure avoids arbitrary averaging and
therefore thermodynamic inconsistencies at intermediatestates.

To computẽf in terms of two linearizations at each interface we use the first order
flux splitting formula

f̃ j+ 1
2
= f̃ (un

j , u
n
j+1) =

7∑

p=1

[
ψ

p
+r p(un

j ) + ψ
p
−r p(un

j+1)
]

(10)

whereψp
+ andψp

− represent the lateral numerical characteristic fluxes. These are com-
puted at the interface following the entropy-fix upwind procedure proposed in Serna
(2009) from the local characteristic fluxes and variables

φ
p
j = f (un

j ) · lp(un
j ) φ

p
j+1 = f (un

j+1) · lp(un
j+1)

wp
j = un

j · lp(un
j ) wp

j+1 = un
j+1 · lp(un

j+1)

for p = 1, 2, · · · , 7. Due to page limitation we will not detail the procedure to cal-
culate the lateral numerical characteristic fluxes. We refer the reader to the extended
description presented in Serna (2009).

Third order accuracy in space is achieved by applying a reconstruction function on
local characteristic fluxes and variables. This is performed evaluating at the interface
the reconstruction function that is determined via primitive function and satisfies the
conservation property ( Shu & Osher (1989)). We use a third order accurate piecewise
hyperbolic reconstruction procedure as used in Serna (2009). For the integration in time
we use a third order Runge-Kutta time stepping procedure.

3.1. Brio-Wu shock tube problem

We perform a numerical experiment consisting of the approximation of the solution of
the one dimensional Brio-Wu (Brio & Wu (1988)) shock tube Riemann problem for the
Helium Van der Waals EOS with parametersηa = 0.03412,ηb = 0.23,R= 0.0821 and
CV = 20.81.

The two initial constant states,uL anduR are

(ρ, u, v,w, By, Bz,P) =

{
(1, 0, 0, 0, 1, 0, 1); x ≤ 0
(0.125, 0, 0, 0,−1, 0, 0.1); x > 0

and Bx = 0.75 constant at both sides. We solve the one-dimensional MHD system
for x ∈ [−1, 1] with N = 800 equally spaced grid points. We evolve the numerical
scheme using a CFL number ofC = 0.5 such that∆t = C ∆x

max(|u|+cf ) and compute the
approximate solution att = 0.2.
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Figure 1. Brio-Wu Riemann MHD problem for Van der Waals equation of state
for Helium : (left) density, (middle) pressure, (right)y-component of magnetic field
at timet = 0.2

This example was proposed in Brio & Wu (1988) for ideal MHD gases to show
the formation of a compound wave. In Figure 1 we display the density, pressure and
y-component of the magnetic field profiles at timet = 0.2. We observe stronger dy-
namics than the one for the ideal MHD case as shown in Brio & Wu (1988). We obtain
two fast rarefaction waves and a slow compound wave interacting with the tail of the
left rarefaction. The right hand slow shock wave shows a blast wave structure with a
significant increment of the density.

4. Conclusion

With the aim of studying the wave dynamics of the MHD equations under a real gas
described by a Van der Waals type equation of state, we use a characteristic based
numerical scheme to approximate the numerical solution of the system of equations.
We propose a complete system of eigenvectors for the MHD equations for the Van der
Waals equation of state. We present a numerical experiment in one dimension that
shows stronger dynamics than the ones for the ideal MHD case.This results represent
an initial step for an extended study in progress of different problems in multidimen-
sions.
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