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Summary 10 

AIMS: Drought-induced forest die-off and subsequent species replacement may modify 11 

environmental conditions and eventually affect litter decomposition. We aimed to disentangle 12 

the effects of tree species and die-off state on litter decomposition in a mixed forest where 13 

Pinus sylvestris populations experiencing severe drought-induced die-off are being replaced by 14 

Quercus ilex.  15 

METHODS: Litter bags with leaves and fine roots from both species were placed under 16 

canopies representing three habitats of the die-off and replacement process (healthy and dead 17 

P. sylvestris and healthy Q. ilex). Mass was assessed over three years. 18 

RESULTS: Species-specific chemistry of litter (C:N ratio) had a direct effect on mass loss, but 19 

also indirect effects, attributed to the decomposer microbial community associated with a 20 

given habitat-species. In their respective original habitats, oak leaves decomposed 44% faster 21 

than pine needles, whereas oak roots decomposed 46% slower than pine roots.  22 

CONCLUSIONS: Forest die-off and species replacement affected litter decomposition. This 23 

effect can have great implications in forest functioning, particularly if drought-induced die-off 24 

worsens in the next decades, according with the trend observed in the studied system. 25 
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Introduction 29 

The aerobic decomposition of dead organic matter is one of the main sources of CO2 emission 30 

from terrestrial ecosystems, consequently playing a critical role in their carbon (C) and nutrient 31 

balances at both local (Santa Regina 2001; Bonanomi et al. 2010) and global scales (Prentice et 32 

al. 2001; Canadell et al. 2007; Stocker et al. 2013). Therefore, in order to improve current 33 

predictions of ecosystem responses to climate change, it is crucial to understand the drivers 34 

controlling litter decomposition dynamics (Cao and Woodward 1998). Since the first half of the 35 

twentieth century, temperature, moisture and vegetation have been described as the main 36 

drivers of litter decomposition (Waksman and Gerretsen 1931). The key role of temperature 37 

and moisture is based on the well-known fact that the enzyme kinetics involved in microbial 38 

decomposition are very sensitive to both water and temperature (Davidson and Janssens 39 

2006).  40 

Furthermore, vegetation controls organic C decomposition in different ways. Firstly, vegetation 41 

determines decomposition via species-specific litter quality, because the differences in 42 

chemical litter composition between plant species imply different litter degradability, and 43 

hence different rates of decomposition. This influence of litter quality on litter decomposition 44 

has been described from local (Saura-Mas et al. 2012; Wang et al. 2014) to regional scales 45 

(Melillo et al. 1982; Vivanco and Austin 2006; Cornwell et al. 2008). Accordingly, different 46 

indicators of litter quality such as C:N ratio, nutrient (N and/or P) content, and the content of 47 

some structural molecules (e.g. lignin or holocellulose), have been correlated with litter 48 

decomposability (Gallardo and Merino 1993; Couteaux et al. 1995; Gholz et al. 2000; Vivanco 49 

and Austin 2006; Bonanomi et al. 2010)). More specifically, litter’s initial C:N ratio has been 50 

identified as one of the best chemicals predictors of litter decomposition (Melillo et al. 1982; 51 

Parton et al. 2007; Berg and McClaugherty 2008; Bonanomi et al. 2010). Moreover, for a given 52 

species, different organs (i.e. leaves, fine roots and twigs) present a different chemical 53 

composition and, therefore, different rates of decomposition (Vivanco and Austin 2006; 54 
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Freschet et al. 2013; Wang et al. 2014). Secondly, vegetation has the ability to modify 55 

environmental conditions, such as temperature and moisture (Binkley and Giardina 1998; Yuan 56 

et al. 2012), thus indirectly determining decomposition by affecting enzyme kinetics (Cornwell 57 

et al. 2008; Freschet et al. 2012) or photodegradation rates associated with exposure to 58 

radiation (Austin and Vivanco 2006). Thirdly, vegetation can influence litter decomposition via 59 

its co-evolution with the soil decomposer community (Vivanco and Austin 2008; Ayres et al. 60 

2009a), resulting in specific tree-species soil communities (Grayston and Prescott 2005; 61 

Waldrop and Firestone 2006; Curiel Yuste et al. 2012) with different functional diversity 62 

(Waldrop and Zak 2004; Wallenstein et al. 2013). This co-evolution between tree species and 63 

their soil communities is reflected by the capacity of specific microbial community to 64 

decompose more efficiently the litter of the plant species from which is derived (Austin et al. 65 

2014). This effect, called home-field-advantage (HFA) (Ayres et al. 2009a; Ayres et al. 2009b; 66 

Austin et al. 2014), is widespread in forest ecosystems, enhancing  litter decomposition by 8% 67 

on average (Ayres et al. 2009b). However, how soil communities are able to efficiently 68 

decompose different substrates and how differences in litter degradability could influence the 69 

correct interpretation of HFA is still under debate (Freschet et al. 2012; Keiser et al. 2014).  70 

All these factors highlight the complexity of the controls of litter decomposition dynamics, 71 

which drives the C sink capacity of soils from terrestrial ecosystems, and the paucity of our 72 

knowledge of above-belowground interactions. Another major source of uncertainty, for 73 

instance, is that most research has focused on the decomposition patterns of above-ground 74 

litter (needles and/or leaves), whereas the decomposition of fine roots, which accounts for at 75 

least half of the litter produced by vegetation (Montero et al. 2005; Clemmensen et al. 2013), 76 

and for most of the C incorporated in soil in the long-term (Clemmensen et al. 2013) has been 77 

only marginally studied. In this regard, it is important to understand how climate change-78 

induced shifts in vegetation health (Lloret et al. 2012) may alter above-belowground 79 

interactions and hence rates of organic matter decomposition and nutrient turnover.  Drought- 80 
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and heat-induced tree die-off and mortality have been reported over the last few decades 81 

around the world (Allen et al. 2010), particularly in South Europe and the Mediterranean Basin 82 

(Lloret et al. 2004; Della-Marta et al. 2007; Briffa et al. 2009; Carnicer et al. 2011). Changes 83 

towards ecosystems with a more limited supply of water (Giorgi and Lionello 2008; Mariotti 84 

2010) have been associated with the decline of keystone species that have their southern limit 85 

of distribution in the Mediterranean Basin (Lenoir et al. 2010; Vayreda et al. 2013; Carnicer et 86 

al. 2014). This is the case with Pinus sylvestris L., which, in some areas of the Iberian peninsula, 87 

is being replaced by other species such as Quercus ilex L., which are better adapted to drought 88 

(Vilà-Cabrera et al. 2013; Carnicer et al. 2014). Whereas many studies have speculated about 89 

the possible significant impact on C and nutrients dynamics in vegetation shifts induced by 90 

climate change (Cornwell et al. 2008; Ayres et al. 2009a; Ball et al. 2009; Ayres et al. 2009b; 91 

Mclaren and Turkington 2010; Freschet et al. 2013), really few studies have been directly 92 

designed to estimate how climate-change-induced secondary succession may affect forest C 93 

dynamics and the capacity of terrestrial ecosystems to sequester C (Díaz-Pinés et al. 2014).  94 

The aim of this study is to assess how changes in litter quality associated with climate-change-95 

induced vegetation shifts affect litter decomposition rates. We addressed the climate-driven 96 

forest succession from P. sylvestris to Q. ilex occurring in the Prades Mountains (NE Iberian 97 

Peninsula). This information on litter decomposition in P. sylvestris forests is particularly 98 

relevant for regional assessment of the C and nutrient balance because this widely distributed 99 

species is experiencing severe die-off episodes in different regions (Martínez-Vilalta and Piñol 100 

2002; Bigler et al. 2006). Leaf (senescent) and fine-root (fresh) litter bags from both species 101 

were placed beneath healthy P. sylvestris, dead P. sylvestris and Q. ilex canopies in a fully 102 

crossed factorial design, and decomposition and C and N content over three years were 103 

measured. Specifically, we tested if drought-induced forest succession modifies litter 104 

decomposition through changes in litter quality (litter effects), changes in the soil environment 105 

(habitat effects) and their interaction.   106 
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Materials and methods 107 

Our experiment was performed in a mixed forest on the northwest-facing hillside in Titllar 108 

Valley, Prades Mountains (NE Iberian Peninsula; 41°13’N, 0°55’E; 1015 m asl). The climate is 109 

Mediterranean, with a mean annual temperature of 11.3°C and mean annual precipitation of 110 

664 mm (period 1951-2010) (Ninyerola et al. 2007a; Ninyerola et al. 2007b). The experimental 111 

area was located on a 35° hill slope, on metamorphic schist substrate that outcrops onto a 112 

large part of the study site. Soils are xerochrepts with clay loam texture and high gravel 113 

content (46% volume). Organic horizons cover most of the soil and outcrops with variable 114 

thickness. For more information about the studied area, see Hereter & Sánchez (1999) and 115 

Barba et al. (2013). The mixed forest, which has not been managed for the last 30 years (Hereş 116 

et al. 2012), is mainly composed of Pinus sylvestris L. (Scots pine) (54% of the forest basal area 117 

and mean diameter at breast height [DBH] of 0.32 m) and Quercus ilex L. ssp ilex (Holm oak) 118 

(41% of the total BA and DBH of 0.15 m). The study area has been affected by several drought 119 

events since the 1990s, particularly the P. sylvestris population (Martínez-Vilalta and Piñol 120 

2002), producing an average mortality of 12% of standing trees and mean crown defoliation of 121 

52% (Vilà-Cabrera et al. 2013). This situation, coupled with contrasted recruitment rates 122 

between both species (low rates in P. sylvestris and high rates in Q. ilex) (Vilà-Cabrera et al. 123 

2013), is leading to a progressive replacement of P. sylvestris by Q. ilex as the dominant over-124 

storey species. 125 

The decomposition experiment considered three types of trees, representing different stages 126 

of the ongoing forest succession (Healthy P. sylvestris [HPs], Dead P. sylvestris [DPs] and Q. ilex 127 

[Qi]). We established two meters around trees as the respective rhizosphere-influence area on 128 

soil environment (hereafter, habitat). Five replicates (hereafter, microsites) of each of these 129 

three habitat types were selected on a 1-ha study site. Microsites of the three habitat types 130 

were spatially randomized since die-off pattern was diffused. Selected dead pines had died in 131 

the nineties as consequence of serve drought events (Martínez-Vilalta and Piñol 2002).      132 
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To assess litter mass loss over time we use the litter bags method. Despite the suitability of 133 

this method for separating the effects of litter decomposition from microbially-stabilized plant-134 

derived tissue or loses of fragmented tissues through the mesh pores is under debate (Cotrufo 135 

et al. 2013), is the most used method to study litter decomposition (Cotrufo et al. 2009), 136 

specially indicated for field experiments allowing a large number of replicates. 137 

Freshly senescent needles, leaves and living fine roots (diameter thinner than 2 mm) from P. 138 

sylvestris and Q. ilex were collected from the same study area and oven-dried at 60°C for 24h. 139 

Litter bags (0.5 mm nylon mesh and size 7.5 cm X 8.5 cm) were filled with a known dry-weight 140 

amount of litter (0.5-1 g) (Ps needles, Qi leaves, Ps roots and Qi roots). Mesh size was large 141 

enough to allow microbial and fungi activity as well as small access by arthropods, but small 142 

enough to avoid major losses of the smallest litter portions (Killham 1994). Six litter bags 143 

containing each litter type were placed on each microsite, with a total of 360 litter bags (3 144 

habitat types X 5 microsite replicates X 4 litter types X 6 litter-type replicates). A square metal 145 

fence (1 m X 1 m) was installed on each microsite and litter bags were placed inside to avoid 146 

disturbances from wild boars during the experiment. Leaf litter bags were placed on the 147 

surface and fine-root litter bags were buried at a depth of 5-10 cm. We did not remove either 148 

the organic horizons underneath the litter bags at the beginning of the experiment or the 149 

litterfall during the experiment - as commonly done (i.e. Vivanco & Austin 2008) - since we 150 

wanted to mimic the natural conditions of the decomposition process as accurate as possible. 151 

Litter bags were placed in the field in July 2011 and collected 0.16, 0.5, 1, 1.5, 2 and 3 yrs after 152 

bags bury and oven-dried at 60°C for 24h. The remaining litter was dry cleaned with a brush 153 

and weighed. Each individual sample was ground and analysed for total carbon [%C] content 154 

by CHNS organic microanalysis, using combustion coupled with gas chromatography 155 

(EUROVECTOR, EA3011, Milano, Italy). Similarly, initial litter quality (%N and %C) was assessed 156 

for three samples of each litter type. 157 
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To control the possible effects of the microsites’ environmental differences on decomposition 158 

process, soil water content (SWC) and soil temperature were measured every two weeks from 159 

January 2012 to July 2013 at each microsite. SWC was measured by time domain reflectometry 160 

(TDR) (Tektronix 1502C, Beaverton, Oregon, USA). One TDR probe 15cm long was permanently 161 

installed in the upper soil on each microsite. In order to correct the SWC measurements for 162 

stone content, gravimetrical SWC was regressed against TDR measurements (for more 163 

information, see Poyatos et al (2013). Soil temperature was measured at 10 cm, using a 164 

thermometer (OMEGA, HH806AU, Stamford, USA). Additional information about soil 165 

properties such as pH, N availability, SOM content, soil bacterial community composition at 166 

the different habitats could be found in Curiel Yuste et al (2012). 167 

To assess the mass loss for litter and habitat types, we used a general linear model (GLM) 168 

coupled with an exponential decay equation (expressed as ln (Mt / Mo), where Mt is the 169 

remaining dry mass of each sample on the sampled date and M0 is the initial dry mass) for 170 

each litter type (fixed factor) and habitat type (fixed factor) (Saura-Mas et al. 2012), and we 171 

included time as an additional variable in the model. Since the ln (Mt / M0) divided by time has 172 

been defined as the decomposition constant (k) (Olson 1963), the modelled slope for each pair 173 

of combinations (4 litter types X 3 habitat types) represents the decomposition constant k of 174 

each combination. As all the litterbags were collected on the same microsites throughout the 175 

experiment, microsite was also included in the model as a random factor. The model also 176 

contained the interactions between litter type, habitat type and time. Since this interaction 177 

was significant, the effect of litter was analysed separately in an additional model that included 178 

microsite and habitat type as random factors and time. Similarly, a model for habitat type was 179 

built, including microsite and litter type as random factors and time. 180 

Moreover, the remaining mass (%) was analysed by GLM models. The temporal pattern of 181 

remaining mass was analysed separately for litter and habitat types in different models, which 182 

also included microsite as a random factor and time. These models also tested differences 183 
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between litter and habitat types, respectively, for each collection event. Overall differences 184 

between litter or habitat types for the whole period of time were analysed with similar GLM 185 

models, but considering time as a random factor. A log-odd transformation was applied to 186 

achieve normal distribution in the % of remaining mass (i.e. log[x/(1-x)]).   187 

To test the possible effect of initial litter quality on the decomposition process, linear 188 

regression was fitted with the mean (± SE) of the k values obtained in each habitat type (n=3) 189 

and mean (± SE) C:N values obtained in three samples analysed at the start of the experiment. 190 

All the analyses were carried out using R 3.0.3. (R Foundation for Statistical Computing, Vienna, 191 

Austria). The mixed-effects models were performed using the R packages nlme and lme4 192 

(Pinheiro et al. 2009; Bates et al. 2014).  193 
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Results 194 

Litter decomposition rates 195 

The decomposition rate of the different litter types varied between habitats, as supported by a 196 

significant interaction between litter and habitat effects (Table 1, adjusted R2 of the model was 197 

0.75). All litter types were decomposed with a similar k in HPs habitat, but there were 198 

differences in the DPs and Qi habitats (Fig. 1). In both the DPs and Qi habitats, Qi leaves and Ps 199 

roots showed consistently higher decomposition rates than Ps needles and Qi roots. In the Qi 200 

habitat, Qi leaves showed the highest decomposition rate, followed by Ps roots, and Qi roots 201 

showed the lowest decomposition rates, whereas Ps needles showed intermediate rates 202 

between the Ps roots and Qi roots. The Ps needle k was higher in HPs than in DPs habitats and 203 

showed intermediate values in the Qi habitat. Similarly, Qi leaves were decomposed faster in 204 

Qi habitats than in Ps habitats. The k of Ps roots did not show any significant differences in any 205 

of the habitats, and Qi roots showed higher k in both the Ps habitats (HPs and DPs) than in the 206 

Qi habitat. Overall, decomposition rates varied across the different litter origins: in Ps litter, 207 

the decomposition rates were higher in needles (0.14 ± 0.01 yr-1) than in roots (0.17 ± 0.01 yr-1), 208 

while the opposite trend was observed for Qi leaves (0.19 ± 0.02 yr-1) and root (0.13 ± 0.01 yr-1) 209 

(GLM with litter type as predictor and microsite and habitat type as random factors and time, 210 

p<0.05) (Fig. 2a). Furthermore, when considering all three habitats together, litter composition 211 

(k) almost significantly correlated (R2=0.76; p=0.081) with the initial litter quality (C:N ratio) 212 

(Fig. 3). When the four litter types were considered together, no differences appeared in 213 

decomposition rates between habitat types (Fig. 2b) (GLM with habitat type as predictor and 214 

microsite and litter type as random factors, p>0.05). No differences were found in the 215 

measured environmental conditions between habitat types (GLM with soil temperature or soil 216 

water content as independent variables, habitat type as predictor and microsite as random 217 

factor; p=0.94 for soil temperature and p=0.16 for soil water content). Additionally, seasonal 218 
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patterns of soil temperature and SWC did not show differences among the different habitats 219 

(Supplementary Material, Figure 1).   220 

Since HPs and Qi represented the two forest successional extremes, the Ps needles and roots 221 

decomposition rates beneath HPs were compared with the Qi leaves and roots decomposition 222 

rates beneath Qi. Ps needles in the HPs habitat showed on average of 44% lower k than Qi 223 

leaves in the Qi habitat (p=0.046). Ps roots in the HPs habitat showed on average 46% higher k 224 

than Qi roots in the Qi habitat (p=0.046).  225 

 226 

Mass remaining over time 227 

The mass remaining over time decreased for all litter types (Fig. 4a) and habitats (Fig. 4b). Its 228 

temporal evolution varied between litter types (F=16.58, p<0.001) but no significant 229 

differences were found between habitat types for the whole time period (F=1.56, p=0.250, 230 

GLMs with litter types and habitat types as predictors and microsite and time as random 231 

factors). Qi roots maintained the highest remaining mass throughout the studied period, while 232 

Qi leaves presented an accelerated biomass loss in comparison to the other litter types around 233 

1.5 years after starting. The biomass loss of the two types of Ps litter remained quite similar 234 

over the three years, with a tendency towards an increase in roots after 1.5 years.  235 

  236 
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Discussion 237 

Here, we show that drought-induced secondary succession from P. sylvestris to Q. ilex may 238 

substantially alter patterns of litter decomposition and N dynamics in Mediterranean forests. 239 

This alteration may be due to both differences in litter quality between these two tree species 240 

and the differential capacities of the microbial communities associated with the habitats to 241 

decompose the different litter types.  242 

Litter quality exerted a major control over litter decomposition, which is something that has 243 

already been widely observed both at local (Gallardo and Merino 1993; Bonanomi et al. 2010; 244 

Aponte et al. 2012) and regional scales (Couteaux et al. 1995; Vivanco and Austin 2006; 245 

Cornwell et al. 2008). In our study, initial litter C:N ratio appeared as a good predictor of litter 246 

quality since it correlated quite well with the decomposition rate constant (k) of the litter types, 247 

independently of habitat. However, other chemical controls on litter decomposition may also 248 

be important - for instance, initial lignin content, which is usually negatively correlated with 249 

decomposition constant (Cornwell et al. 2008). In fact, lignin content in Ps needles has been 250 

reported to be higher than in Qi leaves (Kattge et al. 2011; Mediavilla et al. 2011), in 251 

agreement with our observations of the lower decomposition rates of Ps needles. Other 252 

physical controls could also underlie the differences in litter decomposition observed 253 

(Cornwell et al. 2008). Qi leaves show higher area/volume ratio than Ps needles (Kattge et al. 254 

2011), enhancing microbial accessibility and consequently decomposition rates. Leaf litter 255 

usually decomposes better than fine-root litter (Gholz et al. 2000; Vivanco and Austin 2006; 256 

Freschet et al. 2013) due to its better quality (i.e. low C:N) (Bird and Torn 2006; Wang et al. 257 

2010), as we observed in Q. ilex, but not for P. sylvestris, although the latter’s needles showed 258 

higher C:N than fine roots. 259 

The lack of any significant differences in the abiotic environmental variables between habitats 260 

points to the role of habitat specificities of soil decomposer communities as major controllers 261 

of the observed differences between habitats in decomposition rates (Curiel Yuste et al. 2012; 262 
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Keiser et al. 2014). This statement is partially supported by the habitat-specific soil bacterial 263 

community found at the same study site (Curiel Yuste et al. 2012). It has been hypothesized 264 

elsewhere that soil decomposer communities associated with the distinct stages of forest 265 

succession exhibit a specific capacity to decompose litter of varying quality (Freschet et al. 266 

2012; Keiser et al. 2014). In our case, we observed that soil decomposer communities under 267 

HPs habitats were able to decompose litter of differing quality to similar rates, whereas soil 268 

decomposer communities under DPs and Qi were more selective and significantly capable of 269 

decomposing better litter of higher quality. Thus, these functional differences along the 270 

drought-induced successional gradient endorse the existence of a concomitant microbial 271 

succession in such habitats, as reported for soil bacteria communities in the studied forest 272 

(Curiel Yuste et al. 2012) and in other ecosystems (Waldrop and Firestone 2006; Wickings et al. 273 

2012; Keiser et al. 2014). Despite information of fungal diversity and composition associated at 274 

the different stages of pines die-off and Holm oak replacement at the study site is not available, 275 

soil fungal communities are usually even more tree-species specific than bacterial communities 276 

(Urbanová et al. 2015), reinforcing the idea that every habitat has a specific soil microbial 277 

community (both bacterial and fungal).     278 

Therefore, litter decomposition rates in forest subjected to drought-induced species 279 

replacement would be modified not only by alterations in litter quantity and quality, but also 280 

by changes in the decomposer community associated with tree replacement.  281 

However, despite the differences in litter decomposition between microbial communities 282 

seem quite clear, some uncertainties on the bacterial vs. fungal relative contribution remained 283 

still unsolved, especially in a drying context. While soils of Scots pines forests have been found 284 

more dominated by fungus than by bacteria compared to Quercus forests in a similar forest 285 

succession type (Díaz-Pinés et al. 2014), fungal communities have been reported to be more 286 

drought-resistant than bacterial communities (Wilkinson et al. 2002; Curiel Yuste et al. 2011; 287 

Flores-Rentería et al. 2015; Tardy et al. 2015) and thus, fungal relative proportion increases in 288 
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drier conditions (Jensen et al. 2003). How these changes in bacterial-fungal communities due 289 

to drought-induced shifts may affect ecosystem functioning such as litter decomposition is still 290 

unclear and deserves further studies.    291 

Our results only partially supported the HFA hypothesis, which proposes higher litter mass loss 292 

under the species producing a given litter type (at home) than under other species (away). Qi 293 

leaves were more efficiently decomposed under "home" (Qi) than under "away" habitats (HPs 294 

or DPs ; 36% difference, on average). Soil decomposer community under Qi seems, therefore, 295 

more specialized in the decomposition of higher quality organic matter (lower C:N ratio), such 296 

as Qi leaves. However, the decomposer community in the HPs habitat seemed to be generalist, 297 

and thus able to decompose litter of very different quality at similar rates (Figure 1) refuting a 298 

potential local adaptation of the decomposer communities, as suggested by HFA hypothesis. . 299 

Moreover, Ps roots showed similar decomposition rates across habitats, and for Qi roots, the 300 

decomposition rates were actually higher in HPs than in Qi habitats. Overall, these results do 301 

not support the HFA hypothesis, whereby the HFA should be, according to theory, more 302 

pronounced in more recalcitrant litter (Strickland et al. 2009; Milcu and Manning 2011; 303 

Strickland et al. 2013). Our results do concur, however, with 25% of the experiments that 304 

performed reciprocal litter transplants between tree species without observing any 305 

stimulation of decomposition at home (Ayres et al. 2009b).  306 

The comparison of litter decomposition between the two forest succession extremes can help 307 

to predict future trends in the C dynamics of these forests. While Qi leaves decompose faster 308 

than Ps needles beneath their respective species, for fine roots the opposite trend was 309 

observed: rates of fine-root decomposition in the HPs habitat were higher than the rates of Qi 310 

fine-root decomposition in the Qi habitat, suggesting that secondary succession may produce a 311 

substantial decoupling of above- and belowground trends in organic matter decomposition. 312 

Thus, P. sylvestris replacement by Q. ilex would imply a faster decomposition of superficial 313 

leaf-derived soil layers but a slower decomposition of root-derived material, which is generally 314 
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the major contributor to soil organic matter (Clemmensen et al. 2013). Nevertheless, the 315 

amount of litter produced above and belowground by the different species was not measured 316 

in this study, and the final C balance would ultimately depend on both, the decomposition 317 

rates and the contribution of the above- and belowground biomass of the different species to 318 

the C pool (Berg 2000; Bardgett et al. 2013).  319 

  320 
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Conclusions 321 

In this study, we are the first, to our knowledge, to use a real-case scenario of the effects of 322 

die-off-driven forest succession on litter decomposition and N dynamics. Our study shows that  323 

besides changes in soil temperature and moisture availability, climate change-driven 324 

succession from P. sylvestris to Q. ilex is responsible for modifying both leaf and fine-root 325 

decomposition through changes in the chemical nature of the litter and the relationship 326 

between above-ground vegetation species and the belowground environment, including local 327 

decomposer communities. In this particular study, drought-induced replacement of Scots pines 328 

by Holm oaks seems to provoke significant changes, firstly in the chemical composition of litter 329 

and secondly in the ability of different microbial communities to decompose organic matter. 330 

The result should be a net increase in the decomposition rates of the "above-ground" litter 331 

(moving from recalcitrant Ps needles to more palatable Qi leaves) but a net reduction in the 332 

rates of "belowground" litter decay, largely due to the lower capacity of the microbial 333 

communities under colonizer Holm-oaks to decompose root material as compared with those 334 

under pines. Our results also suggest, therefore, that in order to correctly predict the effects of 335 

climate change effects on C dynamics on forests, models should closely examine changes in 336 

both the chemical composition and functioning of the decomposer communities associated 337 

with drought-induced secondary successions.  338 

 339 
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Figure legends 558 

Fig. 1. Decomposition constants (k) of Pinus sylvestris and Quercus ilex litter (leaves and fine 559 

roots) across three habitats obtained by the GLM. The lower case indicates significant 560 

differences in k between litter types within each habitat and the capital letters indicate 561 

significant differences in k between habitats within each litter type (p<0.05). 562 

 563 

 564 
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Fig. 2. Effects of litter type (a) and habitat (b) on the decomposition constant (k) (mean ± SE) 566 

obtained by the GLM. The lower case indicates significant differences in k between litter types 567 

(a) and habitats (b) (p<0.05). Significant differences between litter types and habitat types 568 

were obtained from GLMs that considered only the respective variables as fixed factors (see 569 

text).     570 

571 
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Fig. 3. Relationship between the initial C:N ratio of litter (leaves and fine roots from Pinus 573 

sylvestris and Quercus ilex) and decomposition constant (k) (mean ± SE), calculated as the 574 

mean of k considering the three habitat types. 575 

 576 

 577 
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Fig. 4. Mass remaining (mean ± SE) for each litter type (a) and habitat type (b) at 6 collection 579 

times (0.16, 0.5, 1, 1.5, 2 and 3 years, n=5). The lower case indicates significant differences in 580 

remaining mass between litter types (panel a) within collection times. The capital letters 581 

indicate significant differences in remaining mass significant over time within litter types 582 

(panel a) and within habitat types (panel b). No significant differences were found in remaining 583 

mass between microsites within collection times (b). Comparisons were made with GLMs, with 584 

microsite as a random factor (p<0.05). Statistical analyses were performed with remaining 585 

mass log-odd transformed to achieve normality.      586 
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Tables 589 

Variables   df F-value p-value 

Litter 3 7.701 <0.001 

Habitat 6 1.753 0.175 

Litter  X  Habitat 6 2.244 0.039 
 590 

Table1. Results of the general linear model (GLM) testing for the effects of litter and microsite, 591 

and their interaction, on the decomposition constant (Yr-1). 592 

 593 

 594 

 595 

  Ps needles Qi leaves Ps roots Qi roots 

 C (%) 52.51 a ± 0.50 50.79 b ± 0.11 48.62 c ± 0.17 48.20 c ± 0.31 

 N (%) 0.67 b ± 0.02 0.93 a ± 0.01 0.69 b ± 0.01 0.65 b ± 0.01 

 C:N 80.02 a ± 2.61 54.90 c ± 0.35 70.16 b ± 0.96 74.45 ab ± 1.08 
 596 

Table 2. Initial litter quality on the study site. The different letters indicate differences from 597 

litter from the post-hoc analysis (Tukey test) (P<0.05). 598 
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