brought to you by T CORE

Isabelle Laforest-L.

1	TYPE OF ARTICLE: Original Article
2	
3	TITLE: Intraspecific variability in functional traits matters: Scots pine as a case of study ¹
4	
5	Isabelle Laforest-L. ¹ *, Jordi Martínez-Vilalta ^{1,2} and Javier Retana ^{1,2}
6	¹ CREAF, Cerdanyola del Vallés, 08193, Catalonia, Spain
7	² Univ Autònoma Barcelona, Cerdanyola del Vallés 08193, Catalonia, Spain
8	
9	RUNNING TITLE: Intraspecific functional trait variation
10	cripi
11	* Correspondence: Isabelle Laforest-L., CREAF, Centre for Ecological Research and Forestry
12	Applications, Autonomous University of Barcelona, Bellaterra, Catalonia, E-08193, Spain. Email:
13	isabelle.laforest.lapointe@gmail.com
14	ooteu
15	The authors declare that the experiment comply with the current laws of the country in which the
16	experiment was performed. The authors declare that they have no conflict of interest.

Post-print of: Laforest-Lapointe, I., Martínez Vilalta, J. and Retana , Javier "Intraspecific variability in functional traits matters : case study of Scots pine" in Oecologia (Springer), vol. 175 issue 4 (August 2014) p. 1337-1348. The final version is available at DOI 10.1007/s00442-014-2967-x

¹ Author Contributions: ILL, JMV and JR conceived and designed the experiments. ILL analyzed the data. ILL, JMV and JR wrote the manuscript.

17 ABSTRACT

18	Introduction. Despite the fact that intraspecific trait variability is an important component of
19	species ecological plasticity and niche breadth its implications for community and functional
20	ecology have not been thoroughly explored.
21	Hypothesis/objective: We characterize the intraspecific functional trait variability of Scots pine
22	(Pinus sylvestris) in Catalonia (NE Spain), in order to: (1) compare it to the interspecific trait
23	variability of trees in the same region; (2) explore the relationships among functional traits and
24	between them and stand and climatic variables; and (3) study the role of functional trait variability
25	as a determinant of radial growth.
26	Methods. We considered five functional traits: wood density (WD), maximum tree height (H_{max}),
27	leaf nitrogen content (N_{mass}), specific leaf area (<i>SLA</i>) and leaf biomass-to-sapwood area ratio
28	$(B_L:A_S)$. A unique dataset was obtained from the Ecological and Forest Inventory of Catalonia
29	(IEFC) including data from 406 plots.
30	Results. Intraspecific trait variation was substantial for all traits, with coefficients of variation
31	ranging between 8% for WD and 24% for $B_L:A_S$. In some cases, correlations among functional
32	traits differed from those reported across species (e.g., H_{max} and WD were positively related, SLA
33	and N_{mass} were uncorrelated). Our results show a hierarchy of effects in which stand age and
34	climate affect stand structure, which is the main source of variation for functional traits, which, in
35	turn, have a large effect on Scots pine radial growth. Overall, our model accounted for 47% of the
36	spatial variability in Scots pine radial growth.
37	Conclusion. Our study emphasizes the hierarchy of factors determining intraspecific variation in
38	functional traits in Scots pine, and their strong association to spatial variability in radial growth.

39 We claim that intraspecific trait variation is an important factor determining plant responses to

- 40 changes in climate and other environmental factors, and should be included in predictive models
- 41 of vegetation dynamics.
- 42 Key words: Forest structure, Functional traits, Growth, Intraspecific variability and *Pinus*
- 43 sylvestris.

Accepted manuscript

44 INTRODUCTION

One of the main goals of functional ecology is to relate the key functional traits that influence the 45 organism's performance (e.g., survival or growth) to population, community and ecosystem 46 47 processes (McGill et al. 2006; Westoby & Wright 2006). To this day, much effort has been devoted to explore the correlations between plant traits, climatic conditions and fitness across 48 49 species (see Kattge *et al.* 2011 and Poorter *et al.* 2011 for a review), from which considerable insight has emerged into general functional relationships and convergent evolution among 50 51 different taxa across growth forms, biomes or climatic regions (Reich et al. 1997; Wright et al. 52 2004). Interspecific studies using global datasets have found a close coordination among traits, best exemplified by the leaf- (Wright et al. 2004) and wood economics spectra (Chave et al. 53 2009). These two spectra, describing global plant investment strategies, are thought to reflect a 54 mosaic of direct and indirect causal relationships among traits and have been found to be 55 decoupled from each other, at least in tropical trees (Baroloto et al. 2010). 56

57

The leaf economics spectrum, interpreted as the close coordination among leaf functional traits, 58 59 illustrates a classic continuum between species with fast return on investments of nutrients and dry 60 mass (high leaf nutrient concentrations, high rates of photosynthesis and respiration, short leaf life 61 span and low dry-mass investment per leaf area), to species with slow potential return, showing 62 opposite characteristics (Reich et al. 1997; Wright et al. 2004, 2005). On the other hand, the wood economics spectrum has been described as a trade-off "triangle" opposing three key attributes of 63 64 wood: conductive efficiency, resistance to hydraulic failure and mechanical strength (Chave et al. 65 2009). This spectrum has been defined around one single trait: wood density (WD), which integrates a substantial part of the variation in wood properties (Wright et al. 2010). 66

68	The relevance of functional traits arises from their potential impact on fitness, as it is generally
69	implied in their definition (Violle et al. 2007). However, our understanding of the relationships
70	among species-specific functional traits and plant demographic processes, such as growth or
71	mortality, has been quite limited and most of the evidence has been gathered in tropical
72	ecosystems (Poorter et al. 2008a, 2008b, 2010; but see Janse-Ten Klooster et al. 2007 and
73	Martínez-Vilalta et al. 2010 for studies on temperate and Mediterranean species, respectively).
74	Recent studies suggest that maximum plant height (H_{max}) and wood density (WD) are the traits
75	that best explain the variation in demographic rates across species. Tree height, defining
76	individual's capacity to intercept radiation, tends to be positively related to growth rate (Poorter et
77	al. 2008b; Martínez-Vilalta et al. 2010), but also involves costs in terms of construction and
78	maintenance of support and transport structures (Westoby et al. 2002; Mencuccini 2003). Wood
79	density is positively related to resistance to hydraulic failure (Hacke et al. 2001; Maherali et al.
80	2004) and survival, but negatively to radial growth rate (King et al. 2006a, 2006b; Poorter et al.
81	2008b; Martínez-Vilalta et al. 2010; Wright et al. 2010).
82	NCCEY

The fact that functional traits also vary widely within species has been recognized for a long time 83 (e.g., Clausen et al. 1948; Keddy 1992; Kleinschmit 1993) and explored by evolutionary 84 85 ecologists (Fox et al. 2001) and physiological ecologists (Lambers & Poorter 1992; Cordell et al. 86 1998; Diaz et al. 1998), but began only recently to be considered in studies of trait coordination 87 and community ecology. The use of average trait values to describe a given species is known to 88 hide much functional variation at two different ecological scales: within populations (Bolnick et 89 al. 2011) and across populations, particularly along environmental gradients (Albert et al. 2010a; 90 de Bello et al. 2010; Fajardo & Piper 2010; Hulshof & Swenson 2010). Besides the effects of 91 climate and resource availability, stand structure and development are also likely to be major

92 determinants of functional trait variability in trees, as they generate, and respond to, local

93 variations in climate and resource availability (e.g., Campetella et al. 2011). This aspect, however,

94 has received comparatively little attention in this context.

95

The growing interest in the intraspecific variability of plant functional traits can be explained by at 96 97 least two reasons. Firstly, despite the multiple tradeoffs described by interspecific studies, some 98 doubt emerges upon their persistence when accounting for intraspecific variability (Cianciaruso et 99 al. 2009; Albert et al. 2010b; Hulshof & Swenson 2010). Factors shaping trait coordination may 100 be different within and between species, which could result in dissimilarities between trait 101 relationships at these two levels, asking for prudence in the interpretation of such correlations as true functional tradeoffs. Wright and Sutton-Grier (2012), for instance, found little support for the 102 leaf economics spectrum within local species pools in a controlled greenhouse experiment 103 examining the response of leaf traits of wetland species to environmental variability. Secondly, 104 not only the mean value, but also the overall variability (or plasticity) in functional traits is likely 105 to vary across species, with important implications for their response to changes in climate or 106 other environmental factors. Intraspecific trait variability defines the species' capacity to 107 maximize fitness along biotic and abiotic gradients and, ultimately, the breadth of its ecological 108 109 niche (Ackerly & Cornwell 2007; Cornwell et al. 2007; Martínez-Vilalta et al. 2009; Albert et al. 110 2010a). Functional trait variability within populations influences their ability to respond or evolve 111 in response to environmental changes (Nicotra et al. 2010). In this context, trait variability across 112 populations can be seen as an upper limit to the variability that could be realized within a given 113 population, and therefore could be used to constrain models in studies of vegetation responses to 114 directional environmental change (Wang et al. 2010; Benito Garzon et al. 2011; O'Neill & Night 115 2011).

117	Scots pine (Pinus sylvestris), with its extremely wide distribution from boreal regions to the
118	Mediterranean basin (Barbéro et al. 1998), is an ideal model for studies of intraspecific variability
119	of functional traits. In Europe there is a clear gradient between northern populations, mostly
120	limited by low temperatures (Hurme et al. 1997), and southern ones, where water availability
121	appears to be the critical ecological factor and records of drought-induced mortality are common
122	(Martínez-Vilalta & Pinol 2002; Bigler et al. 2006; Galiano et al. 2010). Several studies show, for
123	instance, that warmer conditions enhance Scots pine growth in northern latitudes or colder
124	populations, whereas they are detrimental in southern, Mediterranean areas (Martínez-Vilalta et al.
125	2008; Reich et al. 2008). Two main axes of variation have been defined that characterize
126	functional trait variability of Scots pine along wide climatic gradients. Firstly, needle lifespan
127	increases markedly and nutrient concentration in needles decreases with increasing latitude, a
128	pattern that has been linked to nutrient conservation (Oleksyn et al., 2003). Secondly, there is
129	structural acclimation through modification of the leaf-to-sapwood area ratio $(A_L:A_S)$, with lower
130	values in drier, southern sites (Palmroth et al. 1999; Mencuccini & Bonosi 2001; Martínez-Vilalta
131	et al. 2009). This pattern is consistent with the near isohydric behaviour of Scots pine to maintain
132	the integrity of the transpiration pathway (Irvine et al. 1998; Magnani et al. 2002; Zweifel et al.
133	2007; Poyatos et al. 2008) and with the lack of a strong physiological acclimatization to save
134	water through increased stomatal control (cf. Poyatos et al. 2007).

135

Here, we use a unique dataset compiled within the Ecological and Forest Inventory of Catalonia
(abbreviated IEFC; Burriel et al. 2000-2004; <u>http://www.creaf.uab.es/iefc/</u>) to study the variability
of key functional traits in Scots pine along a relatively wide environmental gradient. Specifically,
we hypothesized that (1) functional trait variability across Scots pine populations is not negligible,

140 and it is comparable in magnitude to interspecific trait variability of tree species found in the same 141 region; (2) intraspecific relationships among functional traits is not necessarily consistent with the 142 tradeoffs commonly reported across tree species, due to differences in the factors shaping trait 143 coordination within and between species; (3) spatial variability in functional traits is associated to 144 climatic differences but, also, to forest structural differences across sites; and (4) variability in 145 functional traits buffers tree response to climate or stand structure across sites, so that the direct 146 effects of climate and stand structure on radial growth are relatively small compared to the indirect 147 effects mediated by functional traits. d ter-148 149 **METHODS** 150

151 Study area and species

The area covered by this study includes all the forested territory of Catalonia (1.2 x 10^6 ha), NE 152 Spain. The relief rises from sea level to more than 3,000 m a.s.l. in the Pyrenees, the main 153 mountain system, including both coastal and continental land areas (Fig.1). Catalonia's climate is 154 155 diverse mainly due to its physiographic complexity, with typical Mediterranean climate in most of its coastal area, continental Mediterranean climate in the inner part and mountain to alpine 156 157 climates in the Pyrenees (Koppen's classification; Worldwide Bioclimatic Classification System 158 1996-2000). Vegetation types include Aleppo pinewoods, alpine pastures, deciduous woodlands, 159 Mediterranean maquis, non-Mediterranean coniferous woodlands and sclerophyllous woodlands 160 (Bolòs & Vigo 1984). The Iberian Peninsula constitutes the southwestern limit of Scots pine 161 distribution, with important populations in the Pyrenees and several smaller populations scattered 162 in southern and more arid locations (Castroviejo et al. 1986). Scots pine is the second most 163 abundant tree species in Catalonia (after *Pinus halepensis*), where it occurs naturally and currently

164	covers a total estimated area of 219,754 ha, distributed preferably on north-facing slopes between
165	800-1600 m a.s.l. Catalan populations of Scots pine are distributed across a wide range of climatic
166	conditions (mean annual temperature from 3.6 to 14.6°C and mean annual precipitation from 413-
167	1268 mm; Table 1). Spanish populations of Scots pine are known to be genetically different from
168	the populations of Northern Europe (Alia et al. 2001).
169	
170	Data sources
171	The database of functional traits and growth of Scots pine is part of the Ecological and Forest
172	Inventory of Catalonia (IEFC), carried out by the Center for Ecological Research and Forestry
173	Applications (CREAF) between 1988 and 1998 (Burriel et al. 2000-2004;
174	http://www.creaf.uab.es/iefc/). This inventory sampled the whole forested area of Catalonia, NE
175	Spain. Plots were randomly selected within a grid including all forest areas for each county in
176	Catalonia. Plots were circular, had a radius of 10 m and were distributed with a density of one plot
177	per km ² . The sampling consisted in identifying and measuring all trees with diameter at breast
178	height $(DBH) > 5$ cm in each plot. An extended supplementary sampling was conducted on a
179	random subsample of 20% of the plots, carried out on one or two representative individuals of
180	each 5 cm diameter class of the dominant tree species in the plot. From each of these individuals,
181	stem wood cores and fully exposed branches of different sizes and order were sampled (N=1-11
182	per plot) and taken to the laboratory to determine wood density (WD), needle nutrient composition
183	and specific leaf area (SLA) (see methods below). Additionally, allometric relationships were used
184	to estimate the ratio of leaf biomass to sapwood area $(B_L:A_S)$ at the tree level. Because of the
185	limited number of branches sampled per plot these relationships were calculated by combining
186	data from neighbouring plots (N=30-79). Since only one or few trees were sampled per plot, trait
187	variability within populations could not be characterized. In addition, low replication within plots

reduces the precision of our trait estimates at this level, although this limitation is contrasted by the relatively large amount of sampling plots covering the whole distribution of Scots pine in the study region.

191

192 Scots pine was dominant in 1,962 plots (18.4% of all sampled plots) in which it had an average density of 903 trees ha⁻¹, an average basal area of 21.6 m²ha⁻¹, an average canopy height of 13.1 193 194 m, and an average tree age of 49 years (Burriel et al. 2000-2004). Since species were sampled 195 proportionally to their abundance in each plot, and to make sure that our study included only those 196 plots that where representative of Scots pine populations in Catalonia, we included in the analysis 197 only those plots where Scots pine accounted for > 15% of the total tree basal area. Moreover, and since the inclusion of young (immature) stands could affect the conclusions of the study, we 198 199 excluded all plots where stand age information was missing or where maximum Scots pine age 200 was lower than 20 years, as Scots pine sexual maturity (measured as the presence of cones) is at c. 15-20 years of age (Vilà-Cabrera et al. 2011a; 2014). This very conservative approach reduced the 201 total number of plots covered in this study to 406, although not all variables were measured in all 202 203 plots (see Table 1). In all cases, the main model results remained similar if all the analyses were 204 conducted using all the plots (not shown).

205

To estimate radial tree growth, the absolute growth rate of the 5 years before sampling (ΔR_5) was measured by core extraction and tree ring analysis in 1-10 trees per plot. The basal area increment (*BAI*) was calculated from the individual tree *DBH* at the time of sampling and ΔR_5 as:

$$BAI_{annual} = \pi \left(R^2 - (R - \Delta R_5)^2 \right) / 5$$

210 where *R* corresponds to DBH/2.

212 On the basis of previous studies, we selected five traits (see Table 1 and Figure S1 in Supporting 213 Information) that cover the most relevant dimensions of leaf and the wood economics spectra as 214 well as the major axes of variation describing Scots pine acclimation along environmental gradients (cf. Introduction section): maximum tree height (H_{max} , m), wood density (WD, g cm⁻³), 215 specific leaf area (SLA, $\text{cm}^2 \text{ mg}^{-1}$), nitrogen content of leaves (N_{mass}, % mass), and the ratio of leaf 216 biomass to sapwood area at the tree level ($B_L: A_S$, Mg m⁻²). These traits are among the most widely 217 218 studied in functional ecology (e.g.; Westoby et al. 2002; Westoby & Wright 2006; Wright et al. 219 2007), thus facilitating comparisons between studies. 220 Individual values for all studied functional traits were obtained as follows (see the IEFC webpage, 221 http://www.creaf.uab.es/iefc/, for additional technical details): (1) H_{max} , which was defined as the 222 height of the tallest tree in the plot. Tree height was measured with a clinometer for each tree present in the plot. (2) WD, calculated as the ratio of dry weight to fresh wood volume, was 223 measured on one wood core per plot taken on the stem of a representative tree. Fresh volume was 224 established by measuring precisely the dimensions of the cores. Samples were then weighted to a 225 precision of 0.001 g after having been oven dried for 48 h at 75°C. Please note that we could not 226 227 use the more broadly used term basic specific gravity because wood was dried below 100°C. (3) N_{mass} was measured on a dried and ground subsample of sunlit needles (Cyclotec Foss Tecator 228 229 1093-001 grinder, Foss Analytical, Hilleroed, Denmark) from one tree per plot, representing all 230 cohorts present in the stems proportionally to their abundance. Chemical analyses were carried out 231 at the Scientific-Technical Service of the University of Barcelona using an elemental analyzer 232 (C.E. Instruments, Wigan, UK). (4) SLA, calculated as the ratio of fresh leaf surface to dry weight, 233 was also obtained from the same needle samples as N_{mass}. One-sided, projected needle surface was 234 obtained measuring precisely the length and width of the needles. Needles were then weighted to a 235 precision of 0.001 g after having been oven dried for 48 h at 75°C. (5) Tree-level $B_L:A_S$ ratios were

236	obtained from independent estimates of leaf biomass and sapwood area. The ratio of leaf biomass
237	(or area) to sapwood area is considered as a key factor for characterizing the hydraulic architecture
238	of trees in general and Scots pine in particular (Zweifel et al. 2007; Martínez-Vilalta et al. 2009).
239	We had branch level values of $B_L: A_S$ for 1-2 trees per plot for some of the plots and had access to
240	the size distribution of the primary branches in all sampled trees (N=6-10 trees per plot). Thus, we
241	calculated mean tree-level $B_L:A_S$ ratios per plot. First, we estimated the leaf biomass (B_L) of each
242	sampled tree by summing the leaf biomass of its branches, obtained multiplying the basal area of
243	each primary branch by the corresponding branch-level $B_L: A_S$ ratio, which was obtained by
244	combining allometric data from neighboring plots. Then, the stem sapwood area (A_S) of each tree
245	was estimated from its sapwood depth at breast height (visually estimated from wood cores).
246	Finally, tree-level estimates of B_L were divided by their corresponding A_S and averaged per plot.
247	allu
248	A set of six variables, also collected within the IEFC framework, were selected to represent plot
249	characteristics, competition and forest structure: terrain slope (S , °), average diameter at breast
250	height of Scots pine (DBH, cm), total tree density (Dens, tree ha ⁻¹), maximum age of Scots pine
251	trees in the plot (Age, year), total plot basal area (BA, $m^2 ha^{-1}$) and percentage basal area belonging
252	to Scots pine (%BA, %). Soil characteristics were not included in the IEFC database nor were they
253	available from other sources.
254	
255	The climatic data for each studied plot were obtained from the Climatic Digital Atlas of Catalonia

The climatic data for each studied plot were obtained from the Climatic Digital Atlas of Catalonia (CDAC). We included 6 climate variables: mean annual precipitation (P, mm), mean annual temperature (T, °C), thermal amplitude (Amp, °C), annual potential evapotranspiration (PET, mm),

the ratio of annual precipitation to potential evapotranspiration (*P:PET*), and the ratio of summer

259 (June–August) precipitation to potential evapotranspiration (*P:PET_{sum}*).

-00	
261	Data analysis
262	We compared the ranges and coefficients of variation of the distributions of the five studied traits
263	$(H_{max}, WD, SLA, N_{mass}, B_L: A_S)$ for Scots pine with those of the same traits measured across species
264	for the 44 most abundant forest trees in Peninsular Spain. The data on interspecific variability was
265	also obtained from the IEFC dataset, either specifically for this study $(B_L:A_S)$ or taken from
266	Martínez-Vilalta et al. (2010). Pearson correlation coefficients were used to assess the
267	relationships among functional traits. Additional linear models were fitted for each pairwise
268	relationship between traits including the effect of stand age (maximum Scots pine age), to assess
269 270	the effect of this variable on trait relationships.
271	Since climate and stand descriptors were highly correlated, we used principal components analysis
272	(PCA) to aid the selection of variables to be included in our final models within each group of
273	potential explanatory variables (climatic and stand characteristics). On the basis of those PCAs
274	(see Figure S2 in Supporting Information), two climatic variables (P and T) and two stand
275	variables (Dens and DBH) were retained as relatively independent descriptors of climate and
276	forest structure, respectively.
277	

To explore the relationships between each functional trait and climatic and forest structural variables (*T*, *P*, *Dens* and *DBH*), we fitted linear models using each of the five functional traits as dependent variables. We also included the squared mean annual temperature (T^2) in the models to account for possible non-linear effects of temperature. Finally, we included maximum age of Scots pine trees in the plot (*Age*), to control for the effect of stand age. Since not all plots were sampled the same year, sampling year was included as an additional explanatory factor in each

284 attribute model to control for temporal changes in the value of functional traits. Spatial 285 autocorrelation of the residuals was accounted for by using generalized least squares (GLS) with 286 either linear or spherical spatial autocorrelation structures. These models were similar in terms of 287 the fitted coefficients to the equivalent general linear models (GLM). Therefore, we only present 288 the GLS results here. Additionally, since linear and spherical spatial autocorrelation structures 289 gave nearly identical results and the former tended to fit the data better in terms of AIC (Akaike 290 Information Criterion) we only present the models corresponding to the linear autocorrelation 291 structures.

292

293 GLS models were also used to explore the determinants of spatial variation in radial growth. In these models, BAI was the dependent variable, and four functional traits (H_{max} , WD, N_{mass} and 294 $B_L:A_S$) plus stand age and climatic and forest structural variables (T, T^2 , P, Dens and DBH) were 295 included as explanatory variables. We did not include SLA in this analysis because it reduced 296 considerably the number of complete data points (from 202 to 84). Again, we conducted 297 298 preliminary analyses including sampling year as a fixed factor in the model. As no significant effect of the sampling year was found, the year effect was removed from the final BAI models. As 299 300 before, spatial autocorrelation of the residuals was accounted for by using linear autocorrelation 301 structures. All analyses were conducted with R (R 2.13.0; The R Foundation for Statistical 302 Computing).

303

In addition, we used structural equation modeling (SEM) to compare alternative conceptual
 models of the way growth was affected by functional traits, climate and stand characteristics. The
 statistical advantage of using both GLS and SEM modeling is that GLS permits to measure
 residuals spatial autocorrelation, while the latter can include direct and indirect relationships

308	among the variables. We compared three nested models: one with only stand age and climate
309	variables (P and T), a second one with stand age, climate and stand structure variables (P , T , $Dens$
310	and <i>DBH</i>) and a final one adding also the functional traits that were significantly (or marginally)
311	related to BAI in the previous GLS analysis. The models included covariation between the two
312	climate variables, between stand structure variables and among functional traits. The latter and
313	most comprehensive model was simplified stepwise until the fit of the model did not increase
314	further in terms of the Bayesian Information Criterion (BIC). All variables were standardized prior
315	to fitting the path models using the AMOS package (SPSS Inc., Chicago, IL, USA).
316	*
317	RESULTS
318	Intraspecific versus interspecific variability in functional traits
319	All studied traits showed substantial intraspecific variability (see Figure 2), with coefficients of
320	variation (<i>CV</i>) ranging from 7.6 % for <i>WD</i> to 23.8 % for $B_L:A_S$ (Table 2). In particular, <i>WD</i> and
321	N_{mass} showed the lowest differences in CVs within- and among species. Although intraspecific
322	variability of Scots pine was clearly lower than the variability found across species (Kolmogorov
323	Smirnov tests showed significant differences within- and among species for all five traits,
324	p< 0.001), its CV was remarkably high for a single species.
325	
326	Relationships among functional traits

As expected, the functional traits studied did not vary independently of each other. H_{max} emerged as a key trait, showing significant correlations with all the functional traits considered in this study except N_{mass}. H_{max} had positive relationships with *SLA* and *WD*, and correlated negatively to $B_L:A_S$ (Fig. 3). *WD*, related positively to H_{max} and negatively to N_{mass}, was not correlated to *SLA* or $B_L:A_S$ (Fig. 3). In addition to its correlation to *WD*, N_{mass} showed a negative relationship with $B_L:A_S$ (Fig.

332 3). Leaf traits (*SLA* and N_{mass}) were not correlated with each other (Fig. 3). All the previous 333 relationships remained significant and with similar sign and magnitude if the effect of stand age 334 was accounted for, with the exception of the relationship between H_{max} and wood density, which 335 was no longer significant (P=0.81).

336

337 Determinants of functional traits

338 The GLS models allowed us to explore the effects of climate and stand variables on the spatial 339 variability of the studied functional traits (Table 3). For H_{max} , tree density and DBH explained more than a half of the variation in the data (model $R^2=0.53$). H_{max} was related positively to both 340 341 density and DBH, which implied that H_{max} always increased with competition intensity. WD was positively related to stand age and precipitation (model $R^2=0.26$) (Table 3). The explanatory 342 variables included in the N_{mass} model explained poorly the variation in the data (model $R^2=0.11$), 343 and this functional trait was only related to DBH (positively) and to stand age (negatively). $B_L:A_S$ 344 was negatively related to both stand age, *DBH* and density (model $R^2=0.33$). Finally, *SLA* 345 variation was significantly explained by three variables (model $R^2=0.15$), being positively related 346 to DBH and Dens and negatively related to P (Table 3). The sampling year factor affected $B_L:A_S$, 347 348 SLA and H_{max} .

349

355

350 Determinants of radial growth

The GLS including climatic, stand development and functional traits variables explained 47% of the variation in growth (*BAI*). In this model, *BAI* was positively related to N_{mass}, $B_L:A_S$, *Hmax* and *P*, and negatively related to *Age* and *Dens* (Table 4). Interestingly, *BAI* was unrelated to *WD*, *DBH*, *T* or T^2 . The results of the path analysis strengthened the interpretation of the previous

relationships. The final path model including climate, stand structure, stand age and functional

356	traits provided a good fit to the data (χ^2 =15.6, N=202, P=0.212) and explained a similar
357	percentage (43%) of the variation in BAI as the GLS model. The path diagram of this model (Fig.
358	4) shows the significant direct effect of the four functional traits, precipitation, stand age, DBH
359	and tree density on BAI. It also indicates indirect effects of temperature, precipitation, stand age,
360	DBH and density mediated by their effects on functional traits. The overall fit and explained
361	variance in <i>BAI</i> declined if functional traits were removed from the previous path model: $R^2=22\%$
362	for the model including only climatic variables and stand age (χ^2 =0.0, P=0.999) and R^2 =34% for
363	the model including climate, stand structure variables and stand age (χ^2 =0.3, P=0.559).
364	DISCUSSION
365	Confirming our first hypothesis, variability in Scots pine functional traits across populations was
366	high, with some traits showing a particularly large variation, resulting either from local adaptation
367	or from a high plasticity of form and function among populations associated to environmental
368	gradients (Albert et al. 2010a). For all five traits, intraspecific trait variability was lower than the
369	interspecific variability observed across the 44 most abundant tree species in Spain (Martínez-
370	Vilalta et al. 2010). However, the intraspecific variation is remarkable considering it represented
371	the variation of only one against 44 species and that it excluded variation within populations. This
372	is in agreement with the growing consensus that within species variation in functional traits is not
373	negligible (Albert et al. 2010b; de Bello et al. 2010; Fajardo & Piper 2010). In fact, trait
374	variability across species would have been even smaller had we used only species coexisting with
375	Scots pine, reinforcing our conclusion. The large intraspecific variation observed in this study
376	supports the recent claim that representing functional trait variation of woody species by a single
377	species-specific value could be hardly adequate for vegetation models and functional studies (cf.
378	Albert et al. 2010b; Kattge et al. 2011), at least for widely distributed tree species such as Scots
379	pine.

381	With regards to the second hypothesis, similar to interspecific studies using global datasets, our
382	intraspecific study found a close coordination among functional traits (Messier et al. 2010).
383	However, some relationships differed from those commonly reported across species, particularly
384	regarding the leaf- (Wright et al. 2004) and wood economics spectra (Chave et al. 2009).
385	Interestingly, pairwise trait correlations reported in this study were robust to differences in stand
386	age (the only exception being the relationship between H_{max} and WD). The differences in
387	correlations between traits at the intra- and interspecific levels could arise from the discrepancies
388	in the forces shaping the relationships among traits within- and among species. Although there is
389	no strong reason to expect intra-specific relationships to be a better indication of true functional
390	tradeoffs than inter-specific relationships, the fact that some functional relationships are not
391	consistent across ecological scales implies that they are likely to be mediated by indirect effects
392	involving third variables, and should thus be interpreted with caution. For example, we found a
393	positive relationship between H_{max} and WD , contrary to the negative relationship usually found
394	across species (Chave et al. 2009). This negative relationship was suggested to be mediated by the
395	opposition of WD and hydraulic efficiency (Wright et al. 2007). Our results show that this trade-
396	off is not necessarily apparent when comparing different populations of the same species.
397	Similarly, we did not find the usual relationship between SLA and N_{mass} described at the
398	interspecific level, which is one of the central tenets of the leaf economics spectrum (Wright et al.
399	2004, 2005). This lack of direct relationship between SLA and N_{mass} could be in principle related
400	to limited variation in leaf lifespan across the studied populations (cf., Janse-Ten Klooster et al.
401	2007; Lusk et al. 2008).
402	

403 The main explanation behind the different relationships among traits within- and among species is 404 likely to be the combined effect of stand development, including age heterogeneity (e.g., WD and 405 stand age association) and variable availability to resources along environmental gradients (cf. 406 van Noordwijk & de Jong 1986). In our study, forest structure, climate and resource availability 407 were not constant across sites. A similar situation occurs in many interspecific studies, where 408 different species are sampled from different locations. Since functional traits are affected by 409 resource availability and may respond differently to climate and biotic interactions within- (e.g. 410 Fajardo & Pipper 2010; this study) and among species (e.g., Niinemets & Kull 2003; Wright et al. 411 2005), these effects have the potential to confound some of the relationships commonly reported 412 among traits. Our own results clearly show that functional traits vary across populations along environmental gradients, even after accounting for differences in stand age. Climate and, 413 particularly, stand attributes explained a substantial proportion of the spatial variation in the 414 studied traits, ranging from 11% for N_{mass} to 53% for H_{max} . The effect of microhabitat-level 415 variation and variable availability of resources is difficult to control in field studies (but see e.g. 416 Cornwell & Ackerly 2009), as it would affect even trait relationships found within populations 417 418 (Bolnick et al. 2003; Messier et al. 2010), and this is clearly a line of research that requires further 419 attention.

420

Our results showed that $B_L:A_S$ has a key role in coordination among traits (Fig. 3) and as a determinant of radial growth (Fig. 4) (cf. Sterck et al. 2012), which is consistent with previous studies highlighting the importance of this trait (or $A_L:A_S$) in tree acclimation along climatic gradients, being one of the most plastic hydraulic properties in pines in general (DeLucia *et al.* 2000) and Scots pine in particular (Martínez-Vilalta *et al.* 2009). We did not find, however, the expected negative relationship with evaporative water demand (best represented by annual

427 temperature in our analysis) (Mencuccini & Bonosi 2001; Martínez-Vilalta et al. 2009). This 428 discrepancy is likely due to the fact that, unlike previous studies, we sampled a wide range of 429 stand structures, which explained most of the spatial variation in $B_L:A_S$ in our case. This, together 430 with the narrower range of environmental conditions covered in our study may explain also the 431 lack of relationship between temperature (or latitude) and N concentration in needles, as reported 432 in previous studies (Oleksyn *et al.* 2003).

433

434 Concerning our last hypothesis, one of the main findings of our study is that intraspecific variation 435 in functional traits explained a larger part of the spatial variation in radial growth rate than climate 436 or stand attributes per se. This is consistent with previous studies; for instance, Wright et al. (2010) found that functional traits explain a considerable part of the interspecific variation in the 437 growth-mortality trade-off. It should be noted, however, that the factors considered in our study 438 439 explained only 47% of the variation in growth. This figure is comparable to those reported in a previous study of Scots pine growth variability at larger regional scales (Vilà-Cabrera et al. 440 441 2011b), and it suggests that key variables were not included in our model or that measurement errors were large, which can not be completely ruled out due to the extensive nature of the 442 443 sampling scheme. Plot-level functional trait variation emerged as a key aspect allowing Scots pine 444 individuals to buffer the effects of variability in biotic and abiotic conditions (King et al. 2005, 445 2006b; Poorter et al. 2006, 2008b; Martínez-Vilalta et al. 2010). The patterns we observed are 446 better described by a hierarchy of effects in which stand age and climate affect stand structure, 447 which is the main source of variation for functional traits, which, in turn, have a large effect on 448 Scots pine radial growth. This study adds a new dimension, intraspecific functional trait variation, 449 to previous work showing that the spatial variation in demographic rates of Scots pine is mostly 450 associated to stand structure (Vilà-Cabrera et al. 2011b). It remains to be explored whether the

- 451 central importance of functional traits observed for Scots pine growth would also emerge for452 mortality rates or recruitment, and whether it applies to other tree species.
- 453

454 The implications of our results are substantial in the context of recently observed episodes of 455 widespread forest decline (Allen et al. 2010; Martínez-Vilalta et al. 2012; see also Martínez-456 Vilalta & Piñol 2002 and Galiano et al. 2010 for episodes affecting Scots pine within the region 457 covered in this study) and for the prediction of species and community changes as a result of 458 climate change. The association among functional traits and climate enables species to buffer the 459 effects of climate on performance (Martínez-Vilalta et al. 2009). However, we show evidence here 460 supporting that this effect is likely to be more complex than previously regarded, at least for radial growth, as it is mediated by stand structure. In any case, variation in functional attributes within a 461 species (including plasticity and other sources of variation within and across populations) is key to 462 understand niche segregation (cf. Sterck et al. 2013) and species' capacity to respond to biotic and 463 abiotic changes in the environment (Nicotra et al. 2010). Further studies are needed to disentangle 464 the effects of genetic variability, plasticity and local adaptation in these processes. Including a 465 466 proper characterization of this variability in vegetation models is essential to represent the true acclimation and adaptation potential of species and should allow for improved predictions of 467 468 compositional and functional changes in plant communities in response to environmental changes, 469 compared to models using constant species-specific traits (Albert et al. 2010; Hulshof & Swenson 470 2010; Kattge et al. 2011).

- Ackerly DD & Cornwell WK (2007) A trait-based approach to community assembly: partitioning
 of species trait values into within- and among-community components. *Ecology Letters*10:135–145
- 476 Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010a)
- 477 Intraspecific functional variability: extent, structure and sources of variation. *Journal of*478 *Ecology* 98:604–613
- 479 Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S (2010b) A multi-trait
- 480 approach reveals the structure and the relative importance of intra- vs. interspecific
- 481 variability in plant traits. *Functional Ecology* 24:1192–1201
- 482 Alia R, Moro-serrano J, Notivol E (2001) Genetic variability of Scots pine (*Pinus Sylvestris*).
 483 Growth Traits and Survivals, *Silva Fennica* 35:27-38
- 484 Allen CD, Macalad AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T,
- 485 Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J,
- 486 Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global
- 487 overview of drought and heat-induced tree mortality reveals emerging climate change risks
- 488 for forests. *Forest Ecology and Management* 259:660–684
- 489 Baroloto C, Marcon E, Morneau F, Pavoine S, Roggy JC (2010) Integrating functional diversity
- 490 into tropical forest plantation designs to study ecosystem processes. *Annals of Forest*
- 491 *Science* 67:303
- 492 Barbéro M, Loisel R, Quézel P, Richardson DM, Romane F (1998) *Pines of the Mediterranean*493 *Basin*. Cambridge: Cambridge University Press
- 494 de Bello F, Lavorel S, Diaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP, Cipriotti P,
- 495 Feld CK, Hering D, Marins da Silva P, Potts SG, Sandin L, Sousa JP, Storkey J, Wardle

496	DA, Harrison PA (2010) Towards an assessment of multiple ecosystem processes and
497	services via functional traits. Biodiversity and Conservation 19:2873-2893
498	Benito Garzon M, Alia R, Robson TM, Zavala MA (2011) Intra-specific variability and plasticity
499	influence potential tree species distribution under climate change. Global Ecology and
500	Biogeography 20: 766-778
501	Bigler C, Bräker OU, Bugmann H, Dobbertin M & Rigling A (2006) Drought as an inciting
502	mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9(3):330-343
503	Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forrister ML (2003) The
504	ecology of individuals: incidence and implications of individual specialization. American
505	Naturalist 161:1-28
506	Bolnick DI, Amarasekare P, Araujo MS, Bürger R, Levine J, Novak M, Rudolf VHW, Schreiber
507	SJ, Urban MC, Vasseur DA (2011) Why intraspecific trait variation matters in community
508	ecology. Trends in Ecology and Evolution 26: 183-192
509	Bolòs O, Vigo J (1984) Flora dels Països Catalans, Vol. I. Editorial Barcino, Barcelona, Spain
510	Burriel JA, Gracia C, Ibanez JJ, Mata T, Vayreda J (2000-2004) Inventari Ecologic i Forestal de
511	Catalunya, 10 volumes. CREAF, Bellaterra, Spain
512	Campetella G, Botta-Dukát Z, Wellstein C, Canullo R, Gatto S, Chelli S, Mucina L & Bartha S
513	(2011) Patterns of plant trait-environment relationships along a forest succession
514	chronosequence. Agriculture, Ecosystems & Environment 145(1):38-48
515	Castroviejo S, Lainz M, López González G, Montserrat P, Muñoz Garmendia F, Paiva J, Villar L,
516	Editors (1986) Flora ibérica: plantas vasculares de la Península Ibérica e Islas Baleares,
517	Vol.1. C.S.I.C., Madrid, Spain

518	Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide
519	wood economics spectrum. Ecology Letters 12:351-366
520	Cianciaruso MV, Batalha MA, Gaston KJ, Petchey OL (2009) Including intraspecific variability
521	in functional diversity. <i>Ecology</i> 90:81–89
522	Clausen J, Keck DD, Hiesey WM (1948) Experimental studies on the nature of species. III.
523	Environmental responses of climatic races of Achillea. Carnegie Institution, Washington,
524	DC
525	Cordell S, Goldstein G, Mueller-Dombois D, Webb D, Vitousek PM (1998) Physiological and
526	morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species,
527	along an altitudinal gradient: the role of phenotypic plasticity. Oecologia, 113: 188-196
528	Cornwell WK, Bhaskar R, Sack L, Cordell D, Lunch CK (2007) Adjustment of structure and
529	function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Functional
530	Ecology 21:1063–1071
531	Cornwell WK, Ackerly DD (2009) Community assembly and shifts in the distribution of
532	functional trait values across an environmental gradient in coastal California. Ecological
533	Monographs 79: 109-126
534	DeLucia EH, Maherali H, Carey EV (2000) Climate-driven changes in biomass allocation in
535	pines. Global Change Biology 6:587–593
536	Fajardo A, Piper FI (2011) Intraspecific trait variation and covariation in a widespread tree species
537	(Nothofagus pumilio) in southern Chile. New Phytologist 189:259–271
538	Fox CW, Roff DA, Fairbairn DJ (2001) Evolutionary Ecology: Concepts and Case Studies. New
539	York: Oxford University Press

540	Galiano L, Martínez–Vilalta J, Lloret F (2010) Drought-Induced Multifactor decline of Scots pine
541	in the Pyrenees and potential vegetation change by the expansion of co-occurring Oak
542	species. Ecosystems 13:978–991
543	Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and
544	structure are linked to prevention of xylem implosion by negative pressure. Oecologia
545	126:457–461
546	Hulshof CM, Swenson NG (2010) Variation in leaf functional trait values within and across
547	individuals and species: an example from a Costa Rican dry forest. Functional Ecology
548	24:217–223
549	Hurme P, Repo T, Savolainen O & Pääkkönen T (1997) Climatic adaptation of bud set and frost
550	hardiness in Scots pine (Pinus sylvestris). Canadian Journal of Forest Research
551	27(5):716–723
552	Irvine J, Perks MP, Magnani F & Grace J (1998) The response of Pinus sylvestris to drought:
553	stomatal control of transpiration and hydraulic conductance. Tree physiology 18(6):393-
554	402
555	Janse- Ten Klooster SH, Thomas EJ & Sterck FJ (2007) Explaining interspecific differences in
556	sapling growth and shade tolerance in temperate forests. Journal of ecology 95(6):1250-
557	1260
558	Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, et al. (2011) TRY - a
559	global database of plant traits. Global Change Biology, 17(9), 2905–2935.
560	doi:10.1111/j.1365-2486.2011.02451.x
561	Keddy PA (1992) A pragmatic approach to functional ecology. Functional Ecology, 6:621-626

562	King DA, Davies SJ, Nur Supardi MN, Tan S (2005) Tree growth is related to light interception
563	and wood density in two mixed dipterocarp forests of Malaysia. Functional Ecology
564	19:445–453
565	King DA, Davies SJ, Nur Supardi MN (2006a) Growth and mortality are related to adult tree size
566	in a Malaysian mixed dipterocarp forest. Forest Ecology and Management 223:152-158
567	King DA, Davies SJ, Tan S, Nur Supardi MN (2006b) The role of wood density and stem support
568	costs in the growth and mortality of tropical trees. Journal of Ecology 94:670-680
569	Kleinschmit J (1993) Intraspecific variation of growth and adaptive traits in European oak species.
570	Annals of Forest Science, 50 (Supplement 1): 166-185
571	Lambers H, Poorter H (1992) Inherent variation in growth-rate between higher-plants - a search
572	for physiological causes and ecological consequences. Advances in Ecological Research,
573	23:187-261
574	Laughlin DC, Joshi C, Bodegom PM, Bastow ZA & Fulé PZ (2012) A predictive model of
575	community assembly that incorporates intraspecific trait variation. Ecology letters
576	15(11):1291–1299
577	Lusk CH, Reich PB, Montgomery RA, Ackerly DD & Cavender-Bares J (2008) Why are
578	evergreen leaves so contrary about shade?. Trends in Ecology & Evolution 23(6):299-303
579	Magnani F, Grace J & Borghetti M (2002) Adjustment of tree structure in response to the
580	environment under hydraulic constraints. Functional Ecology 16(3):385-393
581	Maherali H, Pockman WT, Jackson RB (2004) Adaptive variation in the vulnerability of woody
582	plants to xylem cavitation. <i>Ecology</i> 85:2184–2199
583	Martínez-Vilalta J, Piñol P (2002) Drought-induced mortality and hydraulic architecture in pine
584	populations of the NE Iberian Peninsula. Forest Ecology and Management 161:247-256

585	Martínez-Vilalta J, López BC, Adell N, Badiella L & Ninyerola M (2008) Twentieth century
586	increase of Scots pine radial growth in NE Spain shows strong climate interactions. Global
587	Change Biology 14(12):2868–2881
588	Martínez-Vilalta J, Cochard H, Mencuccini M, Sterck F, Herrero A, Korhonen JFJ, Llorens P,
589	Nikinmaa E, Nolè A, Poyatos R, Ripullone F, Sass-Klaassen U, Zweifel R (2009)
590	Hydraulic adjustment of Scots pine across Europe. New Phytologist 184:353-364
591	Martínez-Vilalta J, Mencuccini M, Vayreda J, Retana J (2010) Interspecific variation in functional
592	traits, not climatic differences among species ranges, determines demographic rates across
593	44 temperate and Mediterranean tree species. Journal of Ecology 98:1462–1475
594	Martínez-Vilalta J, Lloret F & Breshears DD (2012) Drought-induced forest decline: causes, scope
595	and implications. <i>Biology Letters</i> 8(5):689–691
596	McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from
597	functional traits. Trends in Ecology and Evolution 21:178–185
598	Mencuccini M, Bonosi L (2001) Leaf/sapwood area ratios in Scots pine show acclimation across
599	Europe. Canadian Journal of Forest Research 31:442-456
600	Mencuccini M (2003) The ecological significance of long-distance water trans- port: short-term
601	regulation, long-term acclimation and the hydraulic costs of stature across plant life forms.
602	Plant, Cell and Environment 26:163–182
603	Messier J, McGill BJ, Lechowicz MJ (2010) How do traits vary across ecological scales? A case
604	for trait-based ecology. Ecology Letters 13:838-848
605	Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan
606	MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a
607	changing climate. Trends in Plant Science 15:684

608	Niinemets U & Kull K (2003) Leaf structure vs. nutrient relationships vary with soil conditions in
609	temperate shrubs and trees. Acta Oecologica 24:209–219

- van Noordwijk AJ, de Jong G (1986) Acquisition and allocation of resources: their influence on
 variation in life history tactics. *American Naturalist* 128:137–142
- 612 Oleksyn J, Reich PB, Zytkowiak R, Karolewski P & Tjoelker MG (2003) Nutrient conservation
- 613 increases with latitude of origin in European Pinus sylvestris populations. *Oecologia*614 136(2):220–235
- 615 O'Neill GA, Nigh G (2011) Linking population genetics and tree growth models to predict
- 616 impacts of climate change on species' growth and distribution. *Journal of Applied Ecology*
- 617 45: 1040-1049
- 618 Palmroth S, Berninger F, Nikinmaa E, Lloyd J, Pulkkinen P & Hari P (1999) Structural adaptation
- 619 rather than water conservation was observed in Scots pine over a range of wet to dry
 620 climates. *Oecologia* 121(3):302–309
- 621 Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Moomer L (2011) Biomass allocation to
- leaves stems and roots: meta-analysis of interspecific variation and environmental control.
 New Phytologist, doi: 10.1111/j.1469-8137.2011.03952.x
- Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain
 forest species. *Ecology* 87:1733–1743
- 626 Poorter L (2008a) The relationships of wood-, gas-, and water fractions of tree stems to
- 627 performance and life history variation in tropical trees. *Annals of Botany* 102:367–375
- 628 Poorter L, Paz H, Wright SJ, Ackerly DD, Condit R, Ibarra-Manríquez G, Harms KE, Licona JC,
- 629 Martínez-Ramos M, Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO, Wright IJ
- 630 (2008b) Are functional traits good predictors of demographic rates? Evidence from 5
- 631 neotropical forests. *Ecology* 89:1908–1920

632	Poorter L, McDonald I, Alarcón A, Fichtler E, Licona J-C, Peña-Claros M, Sterck F, Villegas Z,
633	Sass-Klaassen U (2010) The importance of wood traits and hydraulic conductance for the
634	performance and life history strategies of 42 rainforest tree species. New Phytologist
635	185:481–492
636	Poyatos R, Martínez-Vilalta J, Čermák J, Ceulemans R, Granier A, Irvine J, Köstner B, Lagergren
637	F, Meiresonne L, Nadezhdina N, Zimmermann R, Llorens R & Mencuccini M (2007)
638	Plasticity in hydraulic architecture of Scots pine across Eurasia. Oecologia 153(2):245-
639	259
640	Poyatos R, Llorens P, Piñol J & Rubio C (2008) Response of Scots pine (Pinus sylvestris L.) and
641	pubescent oak (Quercus pubescens Willd.) to soil and atmospheric water deficits under
642	Mediterranean mountain climate. Annals of forest science 65(3):306–306
643	Reich PB, Walters MB & Ellsworth DS (1997) From tropics to tundra: global convergence in
644	plant functioning. Proceedings of the Natural Academy of Science (USA) 94:13730–13734
645	Reich PB & Oleksyn J (2008) Climate warming will reduce growth and survival of Scots pine
646	except in the far north. Ecology letters 11(6):588–597
647	Sterck FJ, Martínez- Vilalta J, Mencuccini M, Cochard H, Gerrits P, Zweifel R, Herrero A,
648	Korhonen JFJ, Llorens P, Nikinmaa E, Nolè A, Poyatos R, Ripullone F & Sass- Klaassen
649	U (2012) Understanding trait interactions and their impacts on growth in Scots pine
650	branches across Europe. Functional Ecology 26(2):541–549
651	Sterck FJ, Duursma RA, Pearcy RW, Valladares F, Cieslak M, Weemstra M (2013) Plasticity
652	influencing the light compensation point offsets the specialization for light niches across
653	shrub species in a tropical forest understorey. Journal of Ecology 101(4):971-980

654	Vilà-Cabrera A, Rodrigo A, Martínez–Vilalta J, Retana J (2011a) Lack of regeneration and
655	climatic vulnerability to fire of Scots pine may induce vegetation shifts at the southern
656	edge of its distribution. Journal of Biogeography 39:488-496
657	Vilà-Cabrera A, Martínez–Vilalta J, Vayreda J, Retana J (2011b) Structural and climatic
658	determinants of demographic rates of Scots pine forests across the Iberian Peninsula.
659	Ecological Applications 21:1162–1172
660	Vilà-Cabrera A, Martínez–Vilalta J, Retana J (2014) Variation in reproduction and growth in
661	declining Scots pine populations. Perspectives in Plant Ecology, Evolution and
662	Systematics in press.
663	Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the
664	concept of trait be functional! <i>Oikos</i> 116:882–892
665	Violle C, Enquist BJ, Mcgill BJ, Jiang L, Albert CH, Hulshof C, Jung V & Messier J (2012) The
666	return of the variance: intraspecific variability in community ecology. Trends in ecology &
667	evolution 27(4):244–252
668	Wang T, O'Neill GA, Aitken SN (2010) Integrating environmental and genetic effects to predict
669	responses of tree populations to climate. Ecological Applications 20: 153-163
670	Westoby M, Falster DS, Moles A, Vesk PA, Wright IJ (2002) Plant ecological strategies: some
671	leading dimensions of variation between species. Annual Review of Ecology and
672	Systematics 33:125–159
673	Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends in
674	Ecology and Evolution 21:261–268
675	Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin

676 T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K,

677	Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J,
678	Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG,
679	Veneklaas EJ, Villar R (2004) The world- wide leaf economics spectrum. Nature 428:821-
680	827
681	Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH,
682	Niinemets U, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005) Modulation
683	of leaf economic traits and trait relationships by climate. Global Ecology and
684	Biogeography 14: 411–421
685	Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-Manriquez G, Martinez-Ramos M, Mazer
686	SJ, Muller-Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF,
687	Webb CO, Westoby M, Wright SJ (2007) Relationships among ecologically important
688	dimensions of plant trait variation in 7 Neotropical forests. Annals of Botany 99:1003-
689	1015
690	Wright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW,
691	Davies SJ, Diaz S, Engelbrecht BMJ, Harms KE, Hubbell SP, Marks CO, Ruiz-Jaen MC,
692	Salvador CM, Zanne AE (2010) Functional traits and the growth-mortality tradeoff in
693	tropical trees. <i>Ecology</i> 91:3664–3674
694	Wright IP Sutton-Grier A (2012) Does the leaf economic spectrum hold within local species
695	pools across varving environmental conditions? <i>Functional Ecology</i> 26:1390–1398
075	pools deloss varying environmental conditions. T anenonal Ecology 20.1590 1590
696	Zweifel R, Steppe K, Sterck FJ (2007) Stomatal regulation by microclimate and tree water
697	relations: interpreting ecophysiological field data with a hydraulic plant model. Journal of
698	Experimental Botany 58: 2113-2131

700 ACKNOWLEDGEMENTS

- 701 We thank Jordi Vayreda for his help querying the IEFC database and the elaboration of Figure 1.
- 702 Financial support was obtained from the Spanish Ministry of Education and Sciences via
- competitive grants CGL2007-60120, CGL2010-16373, CSD2008-0004 (Consolider Program).

704

Accepted manuscript

- 705 ELECTRONIC SUPPLEMENTARY MATERIAL
- The additional electronic supplementary material may be found in the online version of this article:707
- **Figure S1.** Geographic distribution of the five studied functional traits in Catalonia: (a) H_{max} , (b)
- 709 WD, (c) N_{mass} , as Leaf Nitrogen Concentration, (d) $B_L:A_S$ and (e) SLA.
- 710
- Figure S2. Principal component analysis (PCAs) of (a) functional traits, (b) climatic variables and
 (c) forest structural attributes.

Accepted manuscript

714 **TABLE 1.** Descriptive statistics of the variables analyzed in this study. Transformations applied

to achieve normality are specified in the last column.

Variable	Acronym	Units	Range	N	Transformation
Growth					
Annual basal area increment	BAI	cm^2	1.05-34.13	406	Log _e
Traits					
Maximum tree height	H_{max}	m	8.51-24.98	403	Log _e
Wood density	WD	g cm ⁻³	0.35-0.79	369	+
Nitrogen content of leaves	N _{mass}	%	0.54-2.27	364	-rip-
Leaf-biomass-to-sapwood area	$B_L:A_S$	t m ⁻²	0.002-0.09	251	Log _e
ratio	2 0	5	SIL		
Specific leaf area	SLA	cm ² mg ⁻¹	0.03-0.07	214	
Climatic variables					
Mean annual precipitation	Р	mm	486.8-1231.0	406	
Mean annual temperature	Т	°C	4.90-14.0	406	
Thermal amplitude	Amp	°C	7.93-14.28	406	
Potential evapotranspiration	PET	mm	708.41-1117.57	406	
Annual precipitation to potential	P·PET		0 48-1 63	406	
evapotranspiration ratio	1.1.21		0.10 1.00	100	
Summer precipitation to					
potential evapotranspiration	P:PET _{sum}		0.23-1.21	406	
ratio					

Forest structure variables					
Average diameter at breast height of Scots pine	DBH	cm	8.41-50.04	406	Log _e
Tree density (total)	Dens	tree ha ⁻¹	128-4244	406	Log _e
Slope	S	o	2-45.00	406	
Max age of Scots pine (stand age)	Age	year	20-244	406	Log _e
Plot Basal area (total)	BA	$m^2 ha^{-1}$	1.02-88.35	406	Log _e
Percent of basal area of Scots pine	% <i>BA</i>	%	17.28-100.00	406	Arcsinus√
Accept	ed	m	anu	5	

TABLE 2. Variability of the five studied functional traits at the intra- and interspecific levels.
Interspecific variability in traits for the 44 dominant tree species in peninsular Spain was obtained
from Martínez-Vilalta et al. (2010).

722

	Intraspe	ecific	Interspecific		
	Range	CV	Range	CV	
H_{max}	8.51-24.98	7.6	6.00-38.80	34.4	
WD	0.35-0.79	13.9	0.44-0.90	18.4	
N _{mass}	0.54-2.27	18.5	0.81-4.04	37.3	
$B_L:A_S$	0.002-0.09	23.8	0.002-0.14	67.8	
SLA	0.03-0.07	17.3	0.02-0.25	49.9	
Acc	epted				

724**TABLE 3.** GLS models of the effects of stand structure, climate and sampling year on the five725studied functional traits. See Table 1 for abbreviations. Some variables were transformed to726achieve normality (cf. Table 1). Regression coefficients (B Coefficients) and significance levels727for each explanatory variable are given: ${}^{+}P < 0.1$; ${}^{*}P < 0.05$; ${}^{**}P < 0.01$; ${}^{***}P < 0.001$; NS , P >7280.1; NA, no data.

Variable	H_{max}	WD	N _{mass}	$B_L:A_S$	SLA
Intercept	NS	NS	NS	3.803***	NS
Age	NS	0.054***	-0.076**	-0.102**	NS
Stand structure				C	ripu
DBH	1.737***	NS	0.445**	-0.964***	0.020***
Dens	0.339***	NS	NS	-0.312***	0.006*
Climate		d'			
Р	NS	0.0001**	NS	NS	-0.00001*
T C	NS	NS	NS	NS	NS
T^2	NS	NS	NS	NS	NS
Sampling Year					
1989	NS	NS	NS	0.389**	NA
1990	NS	NS	NS	0.424*	NA
1991	-0.295*	NS	NS	0.355*	NA
1992	NS	NS	NS	NS	NA
1993	NS	NS	NS	NS	NS
1994	NS	NS	NS	0.308*	NS

B coefficients

Variable	H_{max}	WD	N _{mass}	$B_L:A_S$	SLA
1995	NS	NS	NS	NS	-0.009**
1996	NS	NS	NS	NS	-0.006*
1998	NS	NS	NS	NS	NA
R^2	53 %	26 %	11 %	33 %	15 %
Ν	403	369	364	251	214

729

The Sampling Year 1988 was used as reference class for the Sampling Year factor. 730

Accepted manuscript

TABLE 4. GLS model of the effects of functional traits, stand structure and climatic variables on
annual basal area increment (*BAI*) of Scots pine. See Table 1 for abbreviations. Some variables
were transformed to achieve normality (cf. Table 1).

- 734
- 735

Variable	B coefficients	t	Р
Intercept	1.478	2.668	<0.01
Age	-0.203	-6.326	< 0.0001
Functional traits			
H_{max}	0.176	0.066	<0.01
WD	NS	NS	C Ns
N _{mass}	0.125	2.299	<0.05
$B_L:A_S$	0.241	4.656	<0.0001
Stand structure	-teu		
DBH	NS	NS	NS
Dens	-0.240	-2.997	<0.01
Climate			
Р	0.001	3.840	<0.001
Т	NS	NS	NS
T^2	NS	NS	NS

 R^2 =0.47 and N=202

736 FIGURE LEGENDS

- 737 Fig. 1. Location of the Scots pine sampling plots of the Ecological and Forest Inventory of
- 738 Catalonia (IEFC) considered in this study (black dots), represented on maps of mean annual
- temperature (°C) and annual precipitation (mm) in Catalonia (NE Spain).
- Fig.2. Histograms of the five studied functional traits at the intra- and interspecific levels: (a) H_{max}
- 741 (N_{inter} =44 and N_{intra} =403), (b) WD (N_{inter} =44 and N_{intra} =369), (c) N_{mass} (N_{inter} =44 and N_{intra} =364),

742 (d) $B_L:A_S$ (N_{inter}=27 and N_{intra}=251) and (E) *SLA* (N_{inter}=43 and N_{intra}=214). Intraspecific data is

743 from this study (Scots pine), whereas interspecific variability was obtained from Martínez-Vilalta

744 et al. (2010) and corresponds to the 44 dominant tree species in peninsular Spain. See Table 1 for

SCL

- 746Fig.3. Pairwise correlations among functional traits. Dashed and solid lines indicate negative and747positive relationships, respectively. See Table 1 for abbreviations. Some variables were748transformed to achieve normality (cf. Table 1). Pearson correlation coefficients are given for each749relationship. Significance levels: $^+ P < 0.10$; * P < 0.05; ** P < 0.01; *** P < 0.001.
- Fig.4. SEM model relating growth, functional traits, stand structure and climate. Arrows indicate 750 751 significant links between variables (single headed: directional path, double headed: covariance). 752 Dashed and solid lines indicate negative and positive relationships, respectively. Only directional 753 relationships are shown for clarity. Line width is proportional to the magnitude of the effect, 754 identifying three categories from narrow to wide line: P < 0.05, P < 0.01 and P < 0.001. The number in brackets under BAI (endogenous variable) in the path diagram corresponds to the R^2 755 756 value indicating the percentage of variance in that variable that is accounted for by the model. See Table 1 for abbreviations. Some variables were transformed to achieve normality (cf. Table 1). 757

Isabelle Laforest-L.

