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Abstract 25 

The aim of this study was to gain insights on the potential hydrological and biogeochemical 26 

mechanisms controlling the response of two nested Mediterranean catchments to long-term 27 

changes in atmospheric inorganic nitrogen and sulphate deposition. One catchment was steep and 28 

fully forested (TM9, 5.9 ha) and the other one had gentler slopes and heathlands in the upper part 29 

while side slopes were steep and forested (TM0, 205 ha). Both catchments were highly 30 

responsive to the 45% decline in sulphate concentration measured in atmospheric deposition 31 

during the 1980’s and 1990’s, with stream concentrations decreasing by 1.4 to 3.4 µeq L
-1 

y
-1

. 32 

Long-term changes in inorganic nitrogen in both, atmospheric deposition and stream water were 33 

small compared to sulphate. The quick response to changes in atmospheric inputs could be 34 

explained by the small residence time of water (4-5 months) in these catchments (inferred from 35 

chloride time series variance analysis), which was attributed to steep slopes and the role of 36 

macropore flow bypassing the soil matrix during wet periods. The estimated residence time for 37 

sulphate (1.5-3 months) was substantially lower than for chloride suggesting unaccounted sources 38 

of sulphate (i.e., dry deposition, or depletion of soil adsorbed sulphate). In both catchments, 39 

inorganic nitrogen concentration in stream water was strongly damped compared to precipitation 40 

and its residence time was of the order of decades, indicating that this essential nutrient was 41 

strongly retained in these catchments. Inorganic nitrogen concentration tended to be higher at 42 

TM0 than at TM9 which was attributed to the presence of nitrogen fixing species in the 43 

heathlands. Our results indicate that these Mediterranean catchments react rapidly to 44 

environmental changes, which make them especially vulnerable to changes in atmospheric 45 

deposition. 46 

Keywords: long-term trends, atmospheric deposition, stream water chemistry, water 47 

residence time, Mediterranean catchment, heathlands. 48 
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1. Introduction 49 

Increased atmospheric deposition of nitrogen (N) and specially sulphur (S) during the 50 

twentieth century lead to the acidification of many terrestrial and aquatic ecosystems in Europe 51 

and North America (Aber et al., 1998; Reuss and Johnson, 1986; Shannon, 1999). After the 52 

implementation of transboundary amendment programs in the 1990s, significant declines in 53 

atmospheric deposition, especially S, were observed all over the North Hemisphere (Sickles and 54 

Shadwick, 2007; Skjelkvale et al., 2005; Stoddard et al., 1999).  55 

Long-term monitoring studies showed that some catchments respond quickly to changes 56 

in atmospheric deposition with declines in nitrate (NO3
-
) and sulphate (SO4

2-
) export in 57 

agreement with those observed in precipitation (Kothawala et al., 2011; Mattson et al., 1997; 58 

Prechtel et al., 2001). However, in other cases the catchments’ biogeochemical response to 59 

atmospheric changes was small (Alewell et al., 2000; Kothawala et al., 2011). Several factors 60 

have been invoked for explaining this different behaviour between catchments, from climate 61 

(Eimers and Dillon, 2002; Mitchell et al., 2011) to catchment-specific characteristics that can 62 

influence N and S cycling such as type of soil (Alewell et al., 2000, 2001; Eimers and Dillon, 63 

2002), presence of S-minerals (Driscoll et al., 1998; Shanley et al., 2005), presence of wetlands 64 

(Björkvald et al., 2009), or type of vegetation (De Schrijver et al., 2007, 2008). Few studies have 65 

explored, however, how catchment hydrology affects the response of surface waters to changes in 66 

atmospheric deposition. Recently, Mitchell et al. (2011) reported a strong hydrological control on 67 

the net losses of SO4
2-

 from catchments across eastern North America, while Kothawala et al. 68 

(2011) concluded that fast drainage from soil to groundwater prevented N processing by soil 69 

biota, and thus promoted a rapid response to decreasing nitrate deposition in steep slope 70 

catchments in Canada. Furthermore, the residence time of water within catchments is related to 71 

topography (McGlynn et al., 2003; McGuire et al., 2005). These influences of topography on 72 
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catchment hydrology may affect runoff solute concentrations, and ultimately, the response of 73 

surface waters to changes in atmospheric deposition. 74 

Most of the studies evaluating the effect of changes in atmospheric inputs on stream water 75 

chemistry have been undertaken in temperate regions of Europe and North America, yet research 76 

on how catchments respond to changing deposition in drier regions is scarce. In Mediterranean 77 

catchments, high water demand by vegetation and low rainfall in summer result in a marked 78 

seasonality of hydrological and biogeochemical processes (Holloway and Dahlgren, 2001), which 79 

affects the temporal pattern of solutes and thus, it could influence the response of catchments to 80 

environmental changes. Here, we focused on Montseny catchments studied since the early 1980s, 81 

which represent Mediterranean forests and heathlands in sub-humid landscapes of the Iberian 82 

Peninsula (Rodà et al., 1999). The studied catchments receive abundant precipitation in spring 83 

and autumn and experience strong evaporative demand in summer. Annual precipitation (~900 84 

mm/year), however, is sufficient to provide a perennial streamflow, though water yield is very 85 

low in summer. Previous work at Montseny suggested the existence of preferential flow paths 86 

that bypass the soil and rooting zone and directly connect surface water flows with deep 87 

subsurface flows that feed groundwater, mostly during wet conditions (Àvila et al., 1995), which 88 

could contribute to reduce the mean residence time of water in these catchments. 89 

Atmospheric deposition to these catchments is characterized by relatively high 90 

concentration of strong mineral anions and low acidity due to neutralization by mineral dust 91 

(Àvila, 1996; Àvila and Rodà, 2002). Starting in the early 1980s, a declining trend for SO4
2-

 92 

concentrations in bulk deposition has been observed which has been accompanied by a decrease 93 

in SO4
2-

 baseflow stream concentrations (Àvila, 1996; Àvila and Rodà, 2012). In contrast, NO3
-
 94 

concentration in bulk deposition and stream water has increased, though baseflow stream 95 

concentrations are still low (< 10 eq L
-1

), an indication that the catchments are far from N 96 
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saturation (Àvila et al., 2010; Àvila and Rodà, 2012). In this study, we elaborate on these 97 

temporal patterns in atmospheric N and S concentration in precipitation and stream water to 98 

investigate the mechanisms underlying the observed changes at the catchment level. 99 

We performed variance and trend analysis in precipitation (17-years record) and stream 100 

water time series (>10-year record) in two nested catchments with different topographic 101 

characteristics and vegetation cover. The smaller one was fully covered by holm oak (Quercus 102 

ilex L.) while the larger one, besides holm oak, also had heathlands with N-fixing species. We 103 

also used stream water data from a third nested catchment fully covered with heathland (only 3-104 

year record) for complimentary analysis. We focused on SO4
2-

 and inorganic N, and used Cl
-
 as a 105 

conservative solute little affected by biogeochemical processes that is an excellent tracer of 106 

hydrological processes through catchments (Jones et al., 2006; Kirchner et al., 2000). The mean 107 

travel time of water and solutes was inferred through time series analysis, a statistical approach 108 

based on the idea that catchments not only do modify the magnitude of solute concentrations 109 

coming from atmospheric inputs, but also their variability (Kirchner et al., 2000; Kirchner et al., 110 

2010; Zhang and Schilling, 2005). Highly variable solute concentrations in precipitation are 111 

damped as water from many precipitation events is stored and mixed in the catchment, so that the 112 

overall variance of solute concentration in precipitation is higher than in runoff time series, which 113 

typically show long-term correlations. We considered both the time lag up to which time series 114 

had some degree of correlation and the ratio between the variance of precipitation and runoff time 115 

series as proxies of the mean residence time of water and solutes within the catchment (Frank, 116 

2009; Kirchner et al., 2010). 117 

Our goal was to gain insights on the potential hydrological and biogeochemical 118 

mechanisms controlling the response of these two montane catchments to atmospheric changes, 119 

and to compare their response to that reported for catchments from other geographical regions. 120 
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Very few studies have been conducted in Mediterranean environments addressing these issues on 121 

water and solute residence time in catchments and here we provide the first results aiming at 122 

elucidating the hydrochemical processes controlling them. We hypothesized that the existence of 123 

preferential flow paths in these catchments will limit the contact time between solutes and biota 124 

in the soil-root zone, fastening the response of stream water chemistry to changes in atmospheric 125 

nutrient inputs. Thus, we expected that mean travel time of non-limiting nutrients, such as SO4
2-

, 126 

will approach that of conservative solutes (Cl
-
), while the mean travel time of N will be strongly 127 

controlled by biota. Further, we expected that the catchment with heathlands, a community that 128 

includes N-fixing species, will be enriched in N, and thus more N saturated (sensu Aber et al., 129 

1998), compared to the oak catchment. Consequently, we hypothesized that the oak catchment, 130 

more N limited, will retain N more efficiently and thus, its streamwater chemistry would be less 131 

responsive to changes in atmospheric N inputs than the catchment with heathlands. 132 

2. Study Sites 133 

 The precipitation sampling site and the studied catchments belong to the experimental 134 

study site of La Castanya Biological Station (LC, 41º 46’N, 2º21’E) located in the Montseny 135 

massif, 40 km NNE from Barcelona (Fig. 1). Most of Montseny is forested, and 75% of its surface 136 

is protected as a natural park and biosphere reserve. Forests of evergreen holm oak cover about 137 

50% of the Montseny natural park, while beech (Fagus sylvatica) forests cover 14%. Heathlands 138 

and grasslands dominate at higher altitudes and represent 9% of the Montseny surface (Catalan 139 

Land Cover Map, MCSC, www.creaf.uab.es/mcsc/). Heathlands are dominated by Calluna 140 

vulgaris, Cytisus scoparius (a N2-fixing shrub), Juniperus communis, Erica arborea, Erica 141 

scoparia, and Pteridium aquilinum. 142 

 The Torrent de la Mina stream is gauged at several places producing the two studied 143 

nested catchments TM9 (and TM5, only used for complimentary analysis) within a larger one, 144 

http://www.creaf.uab.es/mcsc/
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TM0 (Fig. 1 and Table 1). The TM9 stream drains a steep slope small catchment (5.9 ha, mean 145 

slope 35º) totally covered by holm oak forest with a 5- to 9-m high closed canopy. The TM5 146 

stream drains heathlands in the upper part of TM0, which has gentler slopes (mean slope 11º; Fig. 147 

1 and Table 1). TM0 is the largest catchment (205 ha, mean slope 26º) and it is conformed by two 148 

distinct physiographic units: holm oak and beech forests on very steep slopes and heathlands in 149 

the upper part with gentler slopes (Fig. 1 and Table 1). Holm oak forests in these catchments were 150 

heavily exploited for charcoal production until ca. 1955 and later on they have remained 151 

undisturbed. Fire has not occurred in the forested parts of the catchment in the last century, but 152 

burning was periodically applied in some parts of the heathlands and grasslands until the late 153 

1980s to improve the land for pasture though not affecting TM5 (Belillas and Rodà, 1991). 154 

The climate is subhumid meso-Mediterranean. The mean annual air temperature varies 155 

with altitude and aspect, from 9.5C on the north-facing slope at 1250 m a.s.l. to 13C on the 156 

lower reaches of the west-facing slope (data from May 1993 to December 2002). Annual 157 

precipitation averaged 868 mm year
-1

 for the period 1983-2010 at the LC meteorological station. 158 

Summer drought is attenuated by frequent orographic, short-lived storms. Snowfall accounts on 159 

average for only 3% of annual precipitation and snowpacks are sporadical and short-lived. During 160 

the study period, there was a large interannual variability of annual precipitation (623-1529 mm 161 

year
-1

) and runoff (average TM0 and TM9: 95-882 mm year
-1

), as expected for Mediterranean 162 

climate (Latron et al., 2009). There was no significant temporal trend, over the study period, for 163 

precipitation, runoff, or for the runoff/precipitation ratio at the annual scale (in all cases, 164 

correlation coefficient (r) <0.26 and p >0.05). No significant trend over time was observed either 165 

for monthly precipitation, annual maximum daily precipitation or the 90
th

 percentile of annual 166 

precipitation (in all cases, r <0.2 and p >0.05). The lack of temporal trends in water inputs and 167 

outputs for the study period supports that temporal changes in stream water chemistry during this 168 
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period of study were related to changes in precipitation chemistry rather than to changes in 169 

rainfall, evapotranspiration, or runoff temporal patterns. 170 

 The bedrock at LC is a metamorphic phyllite, with quartz, chlorite, albite, and muscovite 171 

as major minerals. The relief of the side slopes of the catchment is rugged with rock outcrops 172 

breaking the forest canopy continuum. Soils on the steep slopes of the Torrent de la Mina 173 

catchment are shallow with an organic layer 0-5-cm deep and an average total depth of 60 cm 174 

(based on 10 soil profiles excavated until the bedrock; Hereter and Sánchez, 1999). Spatial 175 

heterogeneity is high because of the rugged topography. Most of the soils in the slopes are 176 

colluvial with discontinuities in the distribution of the very abundant stones and little vertical 177 

distinction in morphological features. They are classified as Entisols (Lithic Xerorthents) or 178 

Inceptisols (Typic, Lithic or Dystric Xerochrepts; Soil Survey Staff, 1992). The main pedogenetic 179 

process is the formation of a cambic horizon, with moderate illuviation (Hereter, 1990). Soils at 180 

the rolling slopes of the upland plateau have a 3-cm depth organic layer and a 19-cm depth A-181 

horizon (averaged from 29 soil profiles). The soil organic carbon content is higher at the upland 182 

plateau than at the steep slopes in both the O-horizon (13.1% vs. 9.6%) and the A-horizon (6.2% 183 

vs. 2.3%). The soils in the slopes are acidic (pH in water from 4.6 to 5.3), acidity being buffered 184 

mainly by silicate weathering and cation exchange. Calcium is the dominant exchangeable base 185 

cation, and it is especially abundant in the upper organic soil (9.5 cmolc kg
-1

) for a cation 186 

exchange capacity (CEC) of 16.4 cmolc kg
-1

. In the mineral soil, base saturation is low (37%), 187 

with Ca and Mg amounting to 1.5 and 1.4 cmolc kg
-1

 respectively for a CEC of 10.9 cmolc kg
-1

. 188 

There is a significant positive relationship between CEC and the content of soil organic matter 189 

(Hereter, 1990). 190 
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3. Material and Methods 191 

3.1. Field sampling and chemical analysis 192 

 Atmospheric bulk deposition was sampled weekly with four (July 1983-June 1996) or two 193 

(July 1996-Dec2000) replicate funnel-type collectors. These collectors consisted of a 19-cm 194 

diameter polyethylene funnel connected by a looping tygon tubing to a 10-L bucket placed 1.5 m 195 

above the ground. To gauge stream discharge, the TM0 catchment was equipped with a 120º V-196 

notch weir and both TM9 and TM5 with a 60º V-notch weir each. Water level was continuously 197 

measured with a stage recorder (Weather Measure
TM

 at TM9 and TM5, OTT
TM

 at TM0). 198 

 The recording period for discharge and stream water chemistry was different for each 199 

catchment, but coincident in some part of the record: from 8/10/1983 to 11/19/1985 for TM0, 200 

10/22/1982 to 11/14/1985 for TM5; and from 8/10/1983 to 12/31/1997 for TM9. The sampling of 201 

TM0 was restarted later, from 9/10/1990 to 12/20/1999. No more recent data are available for 202 

TM5. Grab samples of stream water were collected weekly several meters upstream from the 203 

stilling pond with an approximately weekly schedule. They were collected in high-density 204 

polyethylene 250-ml bottles previously rinsed with distilled deionized water and triple-rinsed with 205 

sample water. More frequent samples (15-60 min depending on stormflow shape) were obtained 206 

during storms at TM9 with an automatic sampler from 1983 to 1989. 207 

 Stream solute concentration can vary substantially during storms when superficial overland 208 

flow and shallow subsurface flow can contribute significantly to runoff generation (Àvila et al. 209 

1992; Bernal et al., 2005). This variation in solute concentration affects the total variance of the 210 

chemical time series, thus modifying the results obtained through variance analysis. Some authors 211 

have already cautioned about results obtained from data series that combine high-frequency 212 

sampling during storms with low-frequency sampling during baseflow conditions (Feng et al., 213 

2004), as is the case for the TM9 catchment. In order to make the variance of solute 214 
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concentrations and the mean travel time estimates comparable between TM0 and TM9 215 

catchments, we excluded stormflow samples from TM9. This was accomplished through the 216 

separation of quickflow (here equated to stormflow) and delayed flow (here baseflow) based in 217 

Hewlett and Hibbert (1967) proposal with the partition calculated from the beginning of the 218 

hydrograph using a constant incremental value of 0.537 L s
-1

 km
-2

 h
-1

. Only samples below this 219 

threshold value were considered baseflow samples, and thus, retained for data series analysis. 220 

These baseflow samples accounted for ~ 70% of total flow, which consistently matched with the 221 

groundwater contribution estimated for these catchments (Neal et al., 1995). Streamwater samples 222 

from TM5 covered a too short period for time trend analysis and were used as complimentary 223 

data. 224 

 Bulk deposition and streamwater samples were retrieved to the laboratory the same day of 225 

collection and measured for conductivity, pH and alkalinity. Then they were filtered with 0.45 m 226 

pore-size cellulose acetate filters and aliquots were stored (-20 ºC) until analysis. Major ions 227 

(NH4
+
, NO3

-
, SO4

2-
 and Cl

-
) were analysed by ion chromatography. Analytical precision and 228 

accuracy were checked routinely using external references (National Bureau of Standards, 229 

reference materials 2694-I and 2694-II) and by participating in European intercalibrations 230 

(AQUACON MEDWAS, Mosello et al. 1998) with excellent results.  231 

3.2. Data analysis 232 

3.2.1. Basic statistical analysis and two-component mixing model 233 

We calculated the arithmetic average (AA), standard deviation (SD), and volume-234 

weighted average (VWA) of solute concentrations for bulk precipitation and baseflow stream 235 

water for the whole period of study. Moreover, VWA was calculated for each water year, defined 236 

from 08/01 to 07/31. For precipitation time series, VWA was calculated by multiplying weekly 237 

solute concentration (in eq L
-1

) by weekly volume of precipitation (in L m
-2

), summing up the 238 
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obtained values for the period of interest and dividing it by the total volume of precipitation 239 

recorded for the same period. For stream water time series, VWA was calculated by multiplying 240 

instantaneous solute concentration (xi, in eq L
-1

) by stream discharge between successive time 241 

steps corresponding to the sample xi (Di, in L). For each time step, Di was calculated as: 242 

2

))((
)( 11

1





 iiii

iiii

qqtt
ttqD         (1) 243 

being q instantaneous stream discharge (in L s
-1

). We summed up the obtained values for the 244 

period of interest ( ii Dx ) and divided it by the accumulated stream discharge for the same 245 

period ( iD ). 246 

Linear regression analysis was used to analyze annual long-term trends of VWA solute 247 

concentration in precipitation and baseflow stream water. To analyze differences in baseflow 248 

solute concentration between streams, we applied the Wilcoxon rank sum test (Helsel and Hirsch, 249 

1992). 250 

We developed a simple two-component mixing model to infer whether stream water 251 

chemistry at TM0 was influenced by the presence of heathlands at the upper plateau. We used 252 

VWA concentrations from the TM9 (period 1983-1997) and TM5 (period 1983-1985) streams as 253 

a proxy of the chemical signature of the forest (67.3% of the area) and heathland (30.5% of the 254 

area) units comprised in TM0, respectively. Then, we calculated the expected stream solute 255 

concentration for Cl
-
, SO4

2-
, and DIN based solely on mixing processes. We had to assume that 256 

the chemical signature of the heathland unit (only available for a 3-years period) did no change 257 

over time. To ensure that differences between expected and measured VWA concentration at 258 

TM0 did not result from changes over time not captured by the available TM5 data, we 259 

recalculated expected VWA concentrations for the three solutes using data for the period 1983-260 

1985 only. 261 



12 

 

3.2.2. Analysis of variance and variography 262 

For each chemical time series, we calculated the total variance (σ
2
) that includes the 263 

variation from long-time scales (seasonal, year-to-year variation, long-term trends) to short-time 264 

scales (monthly, weekly variation). To analyze only the short-term variability but not the 265 

variability due to long-term correlations, we calculated the variance between adjacent data points 266 

or lag-1 semivariance (γlag-1): 267 

2
1

1
11 )(

)1(2

1
i

n

i
ilag xx

n








 .       (2) 268 

In our case, γlag-1 included the variability arising from correlations at time-scales of weeks 269 

because the mean frequency of the samples in the data set was 6 days. Time series without long-270 

term correlations show γlag-1 ~ σ
2
, while time series with strong long-term correlations show γlag-1 271 

<< σ
2
 (Shröeder, 1991). Long-term correlations are typically stronger in stream runoff than in 272 

precipitation time series because water inputs are stored and mixed within the catchment. Thus, 273 

γlag-1 of stream runoff is lower and differs more from σ
2
 than γlag-1 of precipitation (Kirchner et al., 274 

2010).The damping ratio between γlag-1 in precipitation and γlag-1 in runoff (γP/γR) can be 275 

interpreted as a roughly measure of the mean travel time of water or the mean residence time of 276 

solutes in catchments (Frank, 2009; Kirchner et al., 2010). We used γlag-1 instead of σ
2 

to calculate 277 

γP/γR because the former is robust against long-term correlations (Kirchner et al., 2010). 278 

We extended the variance analysis by performing a semivariogram analysis or 279 

variography to explore the structure of the variance of solute concentrations not only between 280 

adjacent points in the time series (lag-1), but also across different time lags. We chose 281 

semivariogram analysis because our chemical time series were not evenly spaced which 282 

complicates the application of other statistical techniques such as spectral analysis or 283 

autocorrelation analysis (Chatfield, 2004). Semivariograms plot the semivariance at different lag 284 
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times (γ(h)), that is the average dissimilarity between data values separated by a lag time h 285 

(Chatfield, 2004; Rossi et al., 1992), and they are useful to explore the degree of autocorrelation 286 

of environmental variables across time scales (Fortin and Dale, 2005; Legaard and Thomas, 287 

2007). 288 

Flat semivariograms are indicative of time series with neither short-term nor long-term 289 

correlations, and they are best fitted with a random model (Fig. 2, pure nugget model). Time 290 

series with some degree of temporal correlation are characterized by a small γ(h) at short time 291 

lags, which then increases with h until reaching a plateau or sill once the data points become 292 

independent from each other. Three key parameters are estimated by fitting a theoretical spherical 293 

model to the empirical semivariogram: the nugget effect (Co), the range (Ao), and the sill (C1) 294 

(Fig. 2, spherical model). The Co is the unstructured variation that accounts for both the variance 295 

at time scales shorter than sampled and any random effect or measurement error included in the 296 

time series (Li and Reynolds, 1995). The Ao indicates the time lag up to which the time series has 297 

some degree of correlation or memory in the concentration time series due to the mixing 298 

processes in the catchment, and it is a proxy of the mean residence time (Kirchner et al., 2010). In 299 

our study, the mean residence time estimate was biased towards baseflow conditions because 300 

solute concentrations during stormflow were excluded from the data analysis. The difference 301 

between Co and C1, the value of γ(h) at the plateau, is the partial sill C that accounts for the 302 

structured variation or the amount of variance due to the temporal dependence (Li and Reynolds, 303 

1995). The stronger the autocorrelation in a time series, the larger is the C/C1 ratio. When the 304 

long-term correlations of the time series extend for longer time lags than the duration of the study 305 

period, the γ(h) does not level off and it keeps rising with increasing h for the whole range of 306 

available time scales (Fig. 2, linear model).  307 
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We used ordinary least squares to fit γ(h) to theoretical models, and we used R
2
 as a 308 

measure of the goodness of fit. If the linear and spherical models resulted in similar R
2
, we 309 

choose the linear one (Diggle and Ribeiro, 2007). Statistical analyses were performed with R 310 

(spline and geoR packages). 311 

4. Results 312 

4.1. Precipitation and streamwater solute concentrations 313 

Solute concentration in precipitation ranged over two orders of magnitude for Cl
-
, SO4

2-
 314 

and NO3
-
 from 1983 to 1999 (Table 2; Fig. 3 grey lines). Ammonium exhibited the highest range 315 

of variation (Table 2). The contribution of NH4
+
 and NO3

-
 to atmospheric N deposition was 316 

similar (Table 2). 317 

Chloride and SO4
2-

 concentrations in baseflow stream water were less variable than in 318 

precipitation with maximum values being 2-3-fold higher than minimum concentrations at TM0 319 

and TM9 (Table 2; Fig. 3a and b). Mean Cl
-
 and SO4

2-
 concentrations in stream water (either AA 320 

or VWA) tripled and quadrupled those in precipitation at TM5, TM0 and TM9 (Table 2). Annual 321 

VWA concentrations at TM9 were significantly higher than at TM0 for Cl
-
 and SO4

2-
 322 

(Wilcoxon/Kruskal Wallis Rank Sum test; Cl
-
: z =-2.7, p = 0.0067; SO4

2-
: z =-2.7, p = 0.0062) 323 

(Fig. 4a and b). 324 

Ammonium concentration in stream water was always below the analytical detection limit 325 

(0.5 μeq L
-1

), therefore dissolved inorganic N (DIN) data in stream water refer only to NO3
-
 326 

(Table 2). DIN concentration (VWA) in stream water was 5-, 8-, and 50-fold lower than DIN 327 

concentration in atmospheric deposition at TM5, TM0, and TM9, respectively (Table 2). DIN 328 

concentration (VWA) in stream water was lower at TM9 than at TM0 (Table 2). However, there 329 

were no significant differences in annual VWA concentration of DIN between TM9 and TM0 330 

(Wilcoxon/Kruskal Wallis Rank Sum test; z = 1.67, p = 0.09). 331 
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The two-component mixing model used to infer the influence of the forest and heathland 332 

units on TM0 stream water chemistry indicated that the expected and observed Cl
-
 mean 333 

concentrations differed by < 10% (93.9 vs. 87.4 μeq L
-1

, respectively). For SO4
2-

, the expected 334 

concentration (182.8 μeq L
-1

) was 16% higher than the measured concentration (157 μeq L
-1

). 335 

The expected concentration of DIN for TM0 (6.9 μeq L
-1

) was 27% higher than the observed one 336 

(5.5 μeq L
-1

). We obtained a similar result for Cl
-
 when we recalculated expected concentrations 337 

for the period 1983-1985. For SO4
2-

, the expected and measured concentrations for the period 338 

1983-1985 were similar (188.8 vs. 182.2 μeq L
-1

). For DIN, the expected DIN concentration for 339 

TM0 (6.7 μeq L
-1

) was similar for the period 1983-1985 to that obtained for the whole period, 340 

however, during those years DIN concentration at TM0 was very much lower (0.5 μeq L
-1

). 341 

4.2. Long-term trends of solute concentrations 342 

The interannual precipitation trend of SO4
2-

 concentration (VWA) from 1983 to 1999 343 

showed a significant decrease of 45% at a rate of 1.4 ± 0.3 (mean ± std. error) μeq L
-1

 y
-1 

, as 344 

estimated by the linear regression slope (r
2
 = 0.64, p < 0.001, df = 16; Fig. 4b). Nitrate 345 

concentration in atmospheric deposition increased slightly during this period, but the trend was 346 

not statistically significant (r
2
 = 0.18, p = 0.085, df = 16). Considering the sum of NH4

+ 
and NO3

-
, 347 

there was no trend in annual DIN concentration in precipitation from 1983 to 1999 (Fig. 4c). 348 

Annual Cl
-
 concentration at both streams, TM9 and TM0, did not show any significant 349 

trend from 1983 to 1999 (Fig. 4a). In contrast, annual SO4
2- 

concentration declined at TM9 and 350 

TM0 at a rate of 1.4 ± 0.8 and 3.4 ± 1 μeq L
-1 

y
-1

, respectively. However, this temporal trend was 351 

only significant for TM0 (r
2
 = 0.62, n =11, p = 0.0039).  352 

The TM0 stream showed no significant trend in NO3
-
 concentration over time (Fig. 4c). 353 

Nitrate concentration at the TM9 stream tripled between 1983 and 1997, increasing at a rate of 354 
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0.09 μeq L
-1

 y 
-1 

 though this trend was only marginally significant (r
2
 = 0.27, n = 14, p = 0.06; 355 

Fig. 4c). 356 

4.3. Variance analysis of solute concentrations 357 

The σ
2 

of Cl
-
 and SO4

2- 
concentration in stream water was damped compared to 358 

atmospheric inputs (5 and 7 times for Cl
-
, 3 and 4 times for SO4

2-
 at TM9 and TM0 respectively; 359 

Table 2). The σ
2
 of DIN in stream water was two orders of magnitude lower than in precipitation 360 

for both streams (Table 2). At the TM5, the σ
2
 of stream Cl

-
 concentration was similar to 361 

precipitation whereas the σ
2
 of DIN in stream water was 4 times lower than in atmospheric 362 

deposition (Table 2). 363 

The γlag-1 of solute concentration in precipitation time series was lower than its σ
2
, by 8% 364 

(Cl
-
) and 20% (SO4

2-
 and DIN). In stream water, differences between the γlag-1 and σ

2
 were more 365 

pronounced: at least 40% for both, Cl
-
 and SO4

2-
. The smallest difference between σ

2
 and γlag-1 for 366 

stream water time series was shown by DIN at TM0 (Table 2). 367 

At the TM0 and TM9 streams, the γP/γR ratio for Cl
-
 ranged between 15 and 18 which 368 

mean that the fluctuations in Cl
-
 precipitation time series were averaged in 15-18 stream water 369 

samples (so, weeks). The SO4
2-

 γP/γR ratio was lower than for Cl
-
, and it was 2-fold lower at TM9 370 

than at TM0 (Table 2), suggesting less damping of SO4
2-

 concentrations at TM9. The γP/γR ratio 371 

for DIN at the TM0 and TM9 streams was between one and two orders of magnitude larger than 372 

for Cl
-
 and SO4

2-
 (Table 2). The TM5 stream showed the smallest γP/γR ratios for the three solutes 373 

(Table 2). 374 

 The empirical semivariograms γ(h) calculated from solute concentration time series 375 

showed contrasting patterns between precipitation and stream water. For the three studied solutes, 376 

the γ(h)s obtained from the precipitation time series were flat and did not show any clear trend 377 

with increasing h as expected for a pure nugget model (Fig. 5). Consequently, the linear and 378 



17 

 

spherical models did not fit the empirical data. In contrast to precipitation, the γ(h)s obtained from 379 

the stream water chemical time series showed that the fluctuations of solute concentration were 380 

consistently structured for Cl
-
 and SO4

2-
. The γ(h) increased gradually over the first ~ 18-20 weeks 381 

for Cl
-
 until reaching a plateau (Fig. 5a). The γ(h) for SO4

2-
 increased more abruptly than for Cl

-
, 382 

levelling off after the first ~ 9-12 weeks (Fig. 5b). For both Cl
-
 and SO4

2-
, the goodness of fit was 383 

higher for the spherical model than for the linear model (Table 3). The structured variation was 384 

larger at TM0 than TM9 as indicated by the C/C1 index (Table 3). The γ(h) for stream water 385 

concentrations of both, Cl
-
 and SO4

2-
, fluctuated around the sill following a clear 52-weeks annual 386 

cycle. This pattern was especially noticeable for the TM0 stream (Fig. 5a and b). 387 

 The γ(h) for DIN did not level off but increased gradually with h at the TM0 stream (Fig. 388 

5c). In this case, the linear model was a good predictor of the structure of DIN fluctuations (Table 389 

3). At the TM9 stream, the γ(h) obtained from the DIN time series was flat as expected from a 390 

pure nugget model, and did not show any seasonal pattern (Fig. 5c). The fact that stream NO3
-
 391 

concentration at TM9 was under the detection limit most of the time may affect the 392 

semivariogram analysis, thus limiting its interpretation. 393 

5. Discussion 394 

5.1. Differences in the catchment response to long-term changes in atmospheric deposition. 395 

 Atmospheric deposition of S all over Europe and North America started decreasing in the 396 

late 1980s as a result of the implementation of transboundary amendment programs to deal with 397 

ecosystem acidification (Aber et al., 1998; Reuss and Johnson, 1986; Shannon, 1999). At the 398 

Montseny Mountains, sulphate in precipitation started decreasing as soon as the amendment 399 

protocols were established, and it decreased by 45% (1.4 μeq L
-1

 y
-1

) between 1983 and 1999, an 400 

amount similar to that reported in other parts of Europe and North America for the same period 401 

(Stoddard et al., 1999; Watmough et al., 2005). Both streams, TM0 and TM9, were highly 402 
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responsive to this change in atmospheric deposition as indicated by the decreasing trend in 403 

streamwater SO4
2-

 concentration between 1983 and 1999. The magnitude of such decline over 404 

time was similar to that observed in precipitation and it was on the range of values reported for 405 

other streams in Europe and North America (from 0 to 5.9 μeq L
-1

 y
-1

; Stoddard et al., 1999; 406 

Watmough et al., 2005). These findings indicate that catchments in the Mediterranean region 407 

experience sizable changes in response to changed atmospheric deposition similar to those 408 

described in more polluted environments in central and north Europe. 409 

Changes in atmospheric deposition of DIN concentration over the period 1983-1999 were 410 

not as marked as for SO4
2-

 since there was a significant increase for NO3
-
 but no significant trend 411 

for NH4
+
 (Àvila et al., 2010). Similarly, no clear trend in the atmospheric deposition of DIN has 412 

been reported across Europe and North America (Oulehle et al., 2011; Stoddard et al., 1999). 413 

However, stream DIN concentrations increased significantly (by 3-fold) at the TM9 stream for 414 

the period 1983-1997 suggesting that ecosystem retention was declining. These findings were 415 

supported by a recent study showing that, for 23 headwater streams draining comparable small 416 

catchments in the Montseny Mountains, nitrate concentrations in 2007 were significantly higher 417 

than in the early 1980s (Àvila and Rodà, 2012). These results suggest that these forests may be 418 

responding to the chronic atmospheric N deposition of 15-30 kg N ha
-1

 y
-1

 experienced at least 419 

since the early 1980s (Àvila et al., 2010). However, low stream DIN concentrations all year 420 

around indicated that the ecosystem is still far from N saturation. 421 

In contrast to TM9, stream DIN concentration did not significantly increase over time at 422 

the TM0 and thus, it appears not to be as affected by chronic N deposition as TM9. Yet, this 423 

stream showed significantly higher DIN concentration than TM9, which supports the expectation 424 

that TM0, with heathland N-fixing species in its upper part, was more enriched in N than TM9, 425 

fully covered by holm oak. The mixing model based on stream solute concentrations from TM5 426 
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(heathland) and TM9 (holm-oak, taken to represent the forested part of the catchment) indicated a 427 

proportional contribution of the different vegetation units of the TM0 catchment (67% forest and 428 

30% heathland) to its stream water chemistry for Cl
-
 and SO4

2-
. This result was corroborated 429 

when we recalculated expected concentrations for the period with data from TM5 only (1982-430 

1985). Instead, DIN concentration predicted for TM0 by the mixing model tended to be 431 

substantially higher than measured empirically. We acknowledge that our model predictions are 432 

limited because stream water chemistry for TM5 was available only for a 3-year period. 433 

However, the estimated difference between expected and observed DIN concentration could have 434 

been even higher if DIN at the TM5 stream would have increased over time as observed for TM9. 435 

Overall, our results indicated that the drainage of the heathlands resulted in increased DIN 436 

concentration at TM0, yet this vegetation unit had a disproportionally lower influence on stream 437 

water chemistry at the TM0 outlet than expected solely by mixing processes. This result could be 438 

explained by assimilation of DIN by biota along the 1.8 km of stream channel and riparian zone 439 

separating the outlet of TM5 and the TM0 weir station as reported for other temperate and 440 

Mediterranean catchments (Bernal and Sabater, 2012; Mulholland, 2004).  441 

5.2. Differences in the residence time of water and solutes between catchments. 442 

 Chloride is considered as a natural tracer, whose inputs from precipitation circulate 443 

conservatively within a catchment and thus this solute has been broadly used in hydrologic studies 444 

to trace transport, storage and mixing of water compartments (e.g., Kirchner et al., 2001; Neal and 445 

Kirchner, 2000; Neal and Rosier, 1990).  In the Montseny catchments, Cl
-
 was about three times 446 

higher in stream water than in precipitation, as expected for catchments with high evaporative 447 

demand. This increase reflected mostly the concentrating effect of evapotranspiration because 448 

annual input-output catchment budgets for Cl
-
 (including both base and stormflow samples) 449 
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showed a net balance close to zero for a similar period of study (1983-1994; Àvila et al., 1999), 450 

thus discounting any substantial contribution from unmeasured dry or occult Cl
-
 deposition.  451 

 The variability of Cl
-
 concentrations in stream water was strongly damped relative to that 452 

in precipitation indicating that new water inputs from precipitation mixed with old ones already 453 

stored in groundwater, a consistent result with previous studies from isotope analysis (Neal et al. 454 

1992). We analyzed the variance of the Cl
-
 time series with two different approaches and we used 455 

both, the Cl
-
 damping ratio γp/γs, and the range (Ao) of the semivariogram for Cl

-
 streamwater time 456 

series as a proxy of the mean residence time of water in the Montseny catchments. Both analyses 457 

suggested that the groundwater compartment may be small in both catchments as indicated by a 458 

mean residence time of water of around 15-20 weeks (4-5 months), in spite of TM0 being 33-fold 459 

larger in catchment area than TM9. Our results are concordant with previous studies showing that 460 

there is no relationship between mean residence time of water and the size of headwater 461 

catchments (McGlynn et al., 2003; McGuire et al., 2005; Soulsby and Tetzlaff, 2008). 462 

 In contrast to catchment size, topography has been identified as a key factor determining 463 

water transport, and thus, mean travel times through catchments. Simple topographic indices such 464 

as mean catchment slope have been shown as good proxies of mean residence time of water in 465 

catchments (McGuire et al., 2005; Soulsby and Tetzlaff, 2008). However, we found only a slight 466 

difference in the residence time of water between the studied catchments (2-3 weeks lower at 467 

TM9 than at TM0), though the slope at TM9 was substantially higher than at TM0 (mean slope 468 

35º vs. 26º). Thus, our results suggest that differences in topography between these two nested 469 

catchments were not large enough to result in substantial differences in their water mean residence 470 

time. 471 

 The mean residence time of water in the Montseny catchments (4-5 months) was low when 472 

compared to that reported for montane catchments at the H.J. Andrews forests in north-western 473 
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United States (1-3 years, McGuire et al., 2005), the only published study that we are aware 474 

reporting mean residence time estimates for catchments as steep as ours (between 26º-35º and 15º-475 

30º for the Montseny and the H.J. Andrews forests, respectively). This difference suggests that 476 

some other factors in combination with steep slopes must come into play when explaining the 477 

rapid movement of water through the Montseny catchments. In addition to topography, major 478 

water flow paths in catchments strongly depend on soil hydrological properties (infiltration 479 

capacity, porosity), with high responsive soils favouring low water residence times. Tetzlaff et al. 480 

(2009) showed that residence time of water was better explained by soil hydrological properties 481 

than by topography in catchments at the Cairngorm Mountains of Scotland, where residence time 482 

was lower in catchments dominated by overland flow and shallow subsurface storm flow than in 483 

catchments with deep subsurface flows. Our estimates are on the low range of those reported for 484 

the Scottish catchments (from 2-15 months) and thus, the low residence time of water estimated 485 

for the Montseny catchments could result from a low groundwater contribution which could be 486 

favoured by the extremely shallow and stony soils at the study site. However, previous work has 487 

shown that groundwater dominates the baseflow stream runoff (that is what was analyzed here) 488 

and accounts for the major part (~70%) of the annual stream runoff in these catchments (Neal et 489 

al., 1995). Therefore, our results suggest the existence of a quick transmission path connecting 490 

precipitation inputs to subsoil major flow paths toward the stream channel. 491 

 Previous studies on soilwater chemistry at Montseny suggested the existence of 492 

preferential flow paths connecting soil superficial flows with subsurface flows, especially during 493 

wet periods when baseflow stream water was a mixture of groundwater and soil subsurface flow 494 

(Àvila et al., 1995). In contrast, during dry periods subsurface areas were reduced and soils were 495 

likely disconnected from the stream, which was mainly fed by groundwater (Àvila et al., 1995). 496 

This marked seasonality in the groundwater level between dry and wet periods, which is 497 



22 

 

accentuated in catchments with high evaporative demand,  could have profound implications in 498 

the travel time of water and solutes through catchments because water is stored for shorter periods 499 

in shallow than in deep groundwater  (Asano et al., 2002; Soulsby et al., 2000). The seasonality of 500 

stream water chemistry is related to such temporal pattern in hydrological flow paths, with 501 

increased concentration of atmospherically derived compounds in winter when the water table is 502 

high and shallow groundwater contributes to baseflow stream runoff (Rice and Bricker, 1995). 503 

The marked annual seasonality of atmospheric derived compounds, Cl
-
 and SO4

2-
, exhibited by 504 

both study catchments supports that hydrological flow paths were strongly seasonal at the 505 

Montseny Mountains. This seasonality in groundwater level in combination with the steep slopes 506 

and the role of macropore flow bypassing the soil matrix during wet periods could explain the 507 

small residence time of water in the Montseny catchments compared to other catchments reported 508 

in the literature.  509 

 The hydrological processes governing the fast drainage of water toward the stream channel 510 

in these Mediterranean catchments may facilitate the circulation of atmospheric inputs through the 511 

catchment and thus, one might expect a high responsiveness of these catchments to changes in 512 

atmospheric deposition. We analyzed the mean residence time of SO4
2-

 and DIN, two solutes that 513 

in contrast to Cl
-
 are subject to strong biogeochemical processing and can be stored in the plant 514 

and soil pools (particularly DIN), which in principle may increase their mean residence time in the 515 

catchment. Yet, we expected small differences between the mean residence time of these solutes 516 

and Cl
-
 because water circulated quickly through the catchment toward the stream. As observed 517 

for Cl
-
, SO4

2- 
concentration was several times higher in stream water than in precipitation, and its 518 

semivariance exhibited a seasonal pattern, especially for TM0. Yet, both the damping ratio γp/γs 519 

and the Ao were substantially lower for SO4
2-

 than for Cl
-
, suggesting a mean residence time of 520 

SO4
2-

 between 1.5 and 3 months at the TM9 and TM0 catchments. Such unexpected low mean 521 
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residence time of SO4
2-

 could be explained by the release of S previously adsorbed in the soil 522 

during periods of high S deposition in the past, a catchment internal source that has been 523 

documented in many forested catchments of North America and Europe (Mitchell and Likens, 524 

2011; Mitchell et al., 2011). Previous average input-output budgets showed that, in contrast to Cl
-
, 525 

there was a net loss of S of ~ 3 kg ha
-1 

y
-1

 (balance between 6.3 and 9.3 kg S ha
-1 

y
-1

 in inputs and 526 

outputs; Àvila et al., 1999), which probably corresponded to dry deposition since a net throughfall 527 

flux of 1.2 kg S ha
-1 

y
-1

 (~17% of input fluxes) was measured in TM0 holm oak plots during the 528 

1990s (Bellot et al., 1999). Net throughfall Cl
-
 fluxes were related to lixiviation of internal Cl

-
 529 

pools in oak leaves rather than to dry deposition (Bellot et al., 1999). Nutrients deposited over soil 530 

and plant surfaces during dry periods are washed during rainfalls, becoming available to soil biota 531 

in high concentration pulses that could exceed nutrient demand, especially for non-limiting 532 

nutrients such as sulphate. We propose that this excess of nutrients could pass through the 533 

biological active soil with minimal interaction escaping from soil and vegetation storage, which 534 

could potentially reduce the residence time of nutrients in the catchment. This feature is probably 535 

more accentuated in Mediterranean catchments compared to humid ones where dry deposition is 536 

more continually incorporated into soils by a more constant precipitation. Future studies reporting 537 

mean residence time for conservative vs. non-conservative solutes in different regions of the 538 

world are needed to test this hypothesis. 539 

 Finally, the variography of stream water time series of DIN, the most bioreactive solute 540 

included in this study, exhibited a dramatic distinct behaviour related to Cl
-
 and SO4

2-
. First, its 541 

concentration in stream water was damped by two orders of magnitude compared to precipitation. 542 

Second, the semivariogram of NO3
-
 concentration time series did not level off until reaching time 543 

lags of decades for the TM0 stream, and did not shown any clear seasonal pattern. These results 544 

bear the idea that these catchments are still N limited and thus, nitrate is highly retained by biota 545 
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and it remains stored in the ecosystem pools for long time, even if water circulates rapidly through 546 

preferential pathways and has low contact time with the rooting zone and soil biota. 547 

Our study indicates that fairly undisturbed catchments in this Mediterranean region had a 548 

quick response (in the scale of months) to the decreasing trend in SO4
2-

 atmospheric deposition 549 

during the 1980s and 1990s. This responsiveness could be explained by the residence time of 550 

water in these catchments which was low compared to values available in the literature from other 551 

geographical regions. A steep topography and a quick transmission path connecting precipitation 552 

inputs to subsoil major flow paths toward the stream could favour the fast drainage of water 553 

through these catchments, while suggesting a small groundwater reservoir. We pose that a large 554 

contribution of dry deposition to total atmospheric inputs and the strong seasonality of 555 

hydrological flow paths could contribute to reduce the mean residence time of water and solutes in 556 

these Mediterranean catchments. However, the impact of different hydrological flow paths during 557 

dry and wet periods on water mean residence time may depend on the geologic configuration of 558 

the soil-bedrock profile, information that generally is not easy to obtain from catchments. Our 559 

results suggest that the resilience of Mediterranean montane ecosystems to environmental changes 560 

may be low compared to more humid ecosystems, and thus, changes in management strategies 561 

and/or abrupt climatic changes could have dramatic effects of their biogeochemistry. In contrast to 562 

S, there was no clear temporal trend in atmospheric N deposition and thus, the catchment response 563 

to changing N inputs could not be evaluated. Nevertheless, our results suggest that despite chronic 564 

N deposition, this essential nutrient is still highly retained by these ecosystems as indicated by low 565 

stream concentrations with no seasonal pattern and the high mean retention time of DIN within 566 

the catchment (in the scale of decades). Moreover, we found that heathlands with N-fixing species 567 

located at the catchment plateau affected downstream water chemistry significantly, even though 568 

they only covered a small area of the catchment (~30%). Recent studies have reported a 569 
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progressive replacement of heathlands by oak forests (Peñuelas and Boada, 2003). According to 570 

our results, this biome shift could result in a substantial decrease in nitrate concentration in stream 571 

water, which would counterbalance, at least in part, the expected future increase in stream N 572 

export in response to chronic N deposition. This study contributes to illustrate that Mediterranean 573 

montane catchments are highly sensitive to environmental changes, and that their vulnerability to 574 

anthropogenic pressure can only be assessed with well-designed long-term monitoring 575 

programmes covering decades of hydrological and chemical data (Lovett et al., 2007). 576 
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 752 

Tables 753 

Table 1. Geographic characteristics, lithology and vegetation cover of the three monitored 754 

subcatchments at the Torrent de la Mina catchment (Montseny Mountains, NE Spain). 755 

Catchment characteristics TM9 TM0 TM5

Area (ha) 5.9 205 6.8

Altitude Range (m a.s.l.) 710-1036 650-1343 1240-1335

Mean slope (º) 35 25.8 10.8

Orientation N NE NW

Lithology Metamorphic 

phyllite

Metamorphic 

phyllite

Metamorphic 

phyllite

Vegetation (%)

     Holm Oak 100 52.2 —

     Beech — 15.1 —

     Heathland — 30.5 100
 756 
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Table 2. Statistical descriptors of solute concentration time series in precipitation and the studied streams (TM9, TM0, and TM5). 

Solute Sample type Min Max AA SD VWA σ
2

γ lag-1 γ P /γ R
n

eq L
-1

Cl
-

Prec
a

1.5 234 30.6 34.2 27.6 1169 1080 ─ 510

TM9
a

60.2 166 96.6 14.7 101 215 74 15 766

TM0
a

64.5 156 96.1 12.6 87.4 159 61 18 474

TM5
a

34.9 268 85.1 43.2 84.9 1232 309 4 128

SO4
2-

Prec 4.9 424 59.6 44 41.4 1916 1506 ─ 510

TM9 103 288 181 26.2 189 686 243 6 765

TM0 91.1 246 164.2 21.8 157 477 135 11 469

TM5 100 127 181.6 25 182.3 496 292 5 127

DIN Prec NH4
+ 0.75 242 32.1 30 23.2 886 751 ─ 509

Prec NO3
- 1.3 228 33 26.9 21.4 722 612 ─ 510

Prec DIN
c

3.3 470 65.1 53.6 44.4 2869 2386 ─ 509

TM9
b

0.3 40.8 1.1 3.1 0.9 9 4 594 766

TM0
b

0.5 53 1.7 3.5 5.5 12 9 265 484

TM5
b

0.2 162 21.9 33.8 20.9 657 257 9 128

Prec: precipitation, AM: arithmetic average, SD: standard deviation, VWA: volume weighted average, n: number of samples.

s
2
: variance, γlag-1: lag-1 semivariance.

 γP/γR: ratio between γlag-1 in precipitation and stream runoff. This ratio is a proxy of the mean residence time of water in weeks.
a
 Study periods: 1983-1999 (prec), 1983-1997 (TM9), 1983-1985 and 1990-1999 (TM0), 1982-1985 (TM5).

b
 only NO3

-
, 

c 
DIN (NH4

+
 + NO3

-
).

(eq L
-1
)

2
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Table 3. Best-fit parameters and R
2
 values obtained by ordinary least squares with the linear and spherical models fitted to the (h) of 

TM9 and TM0 solute concentration.  

Stream Solute Linear model
a

Spherical model
a

C0 (eq L
-1

)
2

Slope R
2 
(%) C0 C A0 (weeks) C/C1

R
2 
(%)

TM9 Cl
-

200.7 0.05 32 129.9 102.2 17.8 0.4 38.6

SO4
2-

642.8 0.07 8.2 401.6 281.9 9.2 0.4 38.6

DIN 7.5 ─ ─ 7.5 ─ ─ ─ ─

TM0 Cl
-

137.5 0.03 11.7 61.7 96.7 20.4 0.6 40.6

SO4
2-

315.3 0.07 11.7 90.9 263.7 12.5 0.5 36.3

DIN 9.8 0.01 55 9.8 59.5 1183 >1 55

C0: nugget, C: partial sill or structured variation; A0: range, C/C1: structured variation index.
a 
Neither model fitted either DIN concentration at TM9 or precipitation solute concentration time series.

(eq L
-1
)

2

 

 



37 

 

Figure captions 

Fig. 1. Vegetation map (corresponding to year 1993) showing the location of the three study 

catchments: TM9 (5,9 ha), TM0 (205 ha) and TM5 (6,8 ha). The position of stream gauges 

and deposition and meteorological measurement sites as well as topographic lines are also 

indicated. Coordinates are UTM 31 (ED50). 

Fig. 2. Schematic representation of the theoretical models (pure nugget, linear and spherical) 

fitted to the empirical semivariograms (h). The different fitted parameters are showed: C0 

nugget, C1 sill, and A0 range. The proportion of structured variation was calculated with C/C1, 

where C is the partial sill calculated as C1 - Co (Li and Reynolds, 1995). 

Fig. 3. Solute concentration in precipitation (gray) and stream water (black) at TM9 (left panels) 

and TM0 (right panels) for the period 1983-2000. (a) Cl
-
, (b) SO4

2-
, and (c) inorganic N (NO3

-
+ 

NH4
+
 for precipitation, only NO3

-
 for stream water). 

Fig. 4. Annual VWA stream water concentration in precipitation (squares), baseflow TM9 (white 

circles) and baseflow TM0 (black circles) for (a) Cl
-
, (b) SO4

2-
 and (c) inorganic N (NO3

-
+ 

NH4
+
 for precipitation, only NO3

-
 for stream water) at the Torrent de la Mina catchment. The 

linear trend of solute concentration across years is shown with a line only when significant (p < 

0.05). Arrows indicate the year of implementation of the amendment protocols for sulphur 

(1985) and nitrogen oxides (1988) emissions (http://www.bafu.admin.ch/luft/11640/11641/). 

Fig. 5. Semivariogram of the fluctuations in solute concentration for precipitation (dark gray), 

TM9 (gray) and TM0 (black) streams at the Torrent de la Mina catchment. (a) Cl
-
, (b) SO4

2-
 

and (c) inorganic N (NO3
-
+ NH4

+
 for precipitation, only NO3

-
 for stream water). Dashed lines 

show the best fitted model in each case. 
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Fig. 2 
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Fig. 3 
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Fig. 5 

 


