
 

1 

Ni-, Pt- and (Ni/Pt)-doped TiO2 nanophotocatalysts:  

A smart approach for sustainable degradation of Rhodamine B dye  

 

Roberto Pol,
[a]

 Miguel Guerrero,*
,[b]

 Eva García-Lecina,
[c]

 Ainhoa Altube,
[c]

, Emma 

Rossinyol,
[d] 

Sebastiano Garroni,
 [e]

 Maria Dolors Baró,
[b] 

Josefina Pons,
[a] 

Jordi Sort,*
,[f] 

Eva 

Pellicer
[b]

  

 

[a] Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain. 

[b] Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain. 

[c] Surfaces Division, IK4-CIDETEC, Paseo Miramón, 196, E-20009 San Sebastián, Spain. 

[d] Servei de Microscòpia, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain. 

[e] Dipartimento di Chimica e Farmacia, Università di Sassari and INSTM, Via Vienna 2, I-07100 Sassari, Italy. 

[f] Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de Física, Universitat Autònoma de 

Barcelona, E-08193 Bellaterra, Spain. 

 

Corresponding Author 

*Miguel.Guerrero@uab.cat 

*Jordi.Sort@uab.cat 

 

 

 

 

This is the author’s version of a work that was accepted for publication in Applied catalysis B: 
environmental (Ed. Elsevier). Changes resulting from the publishing process, such as peer review, 
editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in 
this document. Changes may have been made to this work since it was submitted for publication. A 
definitive version was subsequently published in: Pol, Roberto, et al. “Ni-, Pt- and (Ni/Pt)-doped TiO₂ 
nanophotocatalysts : a smart approach for sustainable degradation of Rhodamine B dye” in Applied  catalysis 
B : environmental, vol. 181 (Feb. 2016), p. 270-8. DOI 10.1016/j.apcatb.2015.08.006 

 

mailto:*Miguel.Guerrero@uab.cat
mailto:*Jordi.Sort@uab.cat
https://ddd.uab.cat/search?f=title&p=Ni-%2C%20Pt-%20and%20%28Ni/Pt%29-doped%20TiO%E2%82%82%20nanophotocatalysts%20a%20smart%20approach%20for%20sustainable%20degradation%20of%20Rhodamine%20B%20dye&sc=1&ln=ca
https://ddd.uab.cat/search?f=title&p=Ni-%2C%20Pt-%20and%20%28Ni/Pt%29-doped%20TiO%E2%82%82%20nanophotocatalysts%20a%20smart%20approach%20for%20sustainable%20degradation%20of%20Rhodamine%20B%20dye&sc=1&ln=ca


 

2 

ABSTRACT  

 Ni (1 wt%)-, Pt (1 wt%)- and [Ni (0.5 wt%) / Pt (0.5 wt%)]-doped TiO2 nanoporous 

catalysts have been successfully obtained through a facile two-step hydrothermal route. TiO2 

crystallizes mostly in the anatase phase and acts as a mesoporous matrix. Meanwhile, Ni, Pt and 

Ni/Pt dopants form small nanoparticles (NPs) (3-95 nm in diameter) which are hosted by the 

TiO2 framework. The resulting composites exhibit a rather large surface area, in the range of 

186-200 m
2
/g. The band gap energy reduces from 3.03 eV for the undoped TiO2 to 2.15 eV for 

the Pt-loaded TiO2. As a consequence, absorption expands toward the visible light range. The 

photodegradation of Rhodamine B dye in aqueous medium has been investigated under UV-Vis 

light irradiation. The presence of Ni, Pt and Ni/Pt NPs significantly enhances the photocatalytic 

activity of the material. Furthermore, the Ni-doped TiO2 shows ferromagnetic behavior at room 

temperature, which makes its recovery and subsequent fast reutilization possible. Interestingly, 

this sample also exhibits the best stability upon recycling. Considering all the current challenges 

in sustainable water remediation, these new photocatalysts could find applications in real 

environmental contexts in the near future. 
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ABBREVIATIONS 

 

NPs, nanoparticles; POPs, persistent organic pollutants; HPO, heterogeneous 

photocatalytic oxidation; TM, transition metal; HPT, highly porous TiO2; HRTEM, high 

resolution transmission electron microscopy; EDX, energy dispersive X-ray; XRD, X-ray 

diffraction; MAUD, materials analysis using diffraction; BET, Brunauer-Emmett-Teller; BJH, 

Barrett-Joyner-Halenda; VSM, vibrating sample magnetometer; ICP-OES, inductively coupled 

plasma - optical emission spectroscopy; RhB, rhodamine B; UV, ultraviolet; Vis, visible; 

JCPDS, joint committee on powder diffraction standards; fcc, face-centered cubic; Sbet, BET 

surface area; SAED,  selected area electron diffraction; MS, saturation magnetization; DRS, 

diffuse reflectance spectra; VB, valence band; CB, conduction band; BG, band gap; 
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1. Introduction 

 

Large amounts of water are currently used in several cleaning and staining processes. 

Modern industrial activities have left wide-spread hazardous pollution in soil and water across 

the globe [1]. One of the most troublesome groups of pollutants is persistent organic pollutants 

(POPs) like dyes, detergents or pesticides due to their water solubility and chemical stability [2-

4].
 
The presence of these colored compounds in the environment causes considerable non-

aesthetic pollution and serious health-risk issues [5]. Since conventional wastewater treatments 

cannot eliminate the majority of these pollutants, powerful methods for the decontamination of 

dye wastewaters have received increasing attention over the last decade. Ozonation and 

electrocoagulation are among these methods. However, they consist of multiple steps and are 

rather costly and time-consuming [6]. 

Aqueous heterogeneous photocatalytic oxidation (HPO) is considered as one of the 

greener and cheaper approaches for the removal of POPs. HPO consists in the acceleration of a 

photoreaction in the presence of a catalyst in water [7].
 
In other words, it combines water as a 

green and abundant resource with solar light as an affordable, renewable and clean energy 

source. HPO involves the breakdown of pollutants into harmless substances while avoiding 

residues or additional sludge. For these reasons, HPO has received special attention for 

remediating global water pollution and it is moving fast from the laboratory scale to industrial 

applications [8,9]. 

TiO2 is one of the most studied, environmentally-friendly, photocatalytic materials due to 

its chemical stability, low toxicity, and light conversion efficiency [10]. Despite these 

advantages, TiO2 presents the drawback of limited photocatalytic activity because of its wide 
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band gap (3.2 eV for anatase phase). Therefore, it requires excitation wavelength in the UV 

domain (λ < 390 nm), which limits its practical efficiency. One of the most common approaches 

to expand the TiO2 response toward the visible light domain is through doping it with suitable 

anions (e.g. N, C, S) or cations and transition metal (TM) clusters or nanoparticles (NPs)
 
[11,12].

 
 

The controlled doping of TiO2 with TM species has been the object of several 

investigations. An enhancement of the catalytic activity of TiO2 in a number of manifold 

reactions has been ascribed to the effects induced by the TM at various levels. For example, Mn-

Ni doped TiO2 catalysts showed increased NO reduction to N2 and offered the possibility to 

widen the temperature window of the reaction [13]. Also, Nb-doped TiO2 particles have been 

studied as electrocatalysts for the oxygen reduction reaction under acidic conditions [14]. 

Among the TMNPs available to be dispersed on high-surface area TiO2 for photocatalytic 

purposes, those made of Pt hold a privileged position [15-17]. In general, the resulting 

nanocomposite benefits from the catalytic activity of the TMNPs and the intrinsic photocatalytic 

activity of TiO2.
 
If the TMNPs possess magnetic properties (e.g. Ni, Co, Fe), then recovery and 

recycling of the catalyst becomes feasible under the application of a magnetic field. This poses 

some advantages compared to cross-flow filtration or centrifugation processes [18], since the 

recovery of a catalyst using magnetic fields is much cheaper and faster. 

 In this work, nickel, platinum and nickel/platinum-doped TiO2 porous nanophotocatalysts 

have been successfully obtained through a easy two-step hydrothermal route. The morphology, 

crystallographic structure of the composite constituents, and eventual magnetic properties of the 

material have been investigated. Furthermore, the degradation kinetics of Rhodamine B (RhB) 

dye under ultraviolet-visible light irradiation has been assessed. Our results indicate that the 
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doped samples exhibit higher photocatalytic activity than pure TiO2. RhB is one of the most 

common xanthene dyes used as a colorant in the textile industry. It is highly water soluble and 

presents a good stability as dye laser material. Nowadays, its use has been forbidden due to the 

potentially toxic and carcinogenic properties of RhB. Thus, the photodegradation of this organic 

compound is important with regard to the purification of dye effluents. Furthermore, the Ni-

containing catalysts can be easily recovered from the media using weak magnetic fields, making 

them a smart approach for sustainable water remediation.   

2. Materials and methods 

2.1. Sample preparation 

All chemicals were commercially available and used without further purification. 

Titanium (lV) butoxide (97%), 1-butanol (99.9%), nitric acid (69%), chloroplatinic acid 

hexahydrate (H2PtCl6•6H2O) (37.5% Pt basis) and nickel (II) nitrate hexahydrate 

(Ni(NO3)2•6H2O) (20.19% Ni basis) were purchased from Sigma Aldrich. Pluronic P123 was 

provided by BASF.  

Highly porous TiO2 (denoted as ‘HPT’) sample was prepared by sol-gel hydrothermal 

method. First, 7 mL of titanium butoxide (VI) dissolved in 40 mL of 1-butanol was added 

dropwise to 60 mL of distilled water at pH = 2 (adjusted with nitric acid). After continuous 

stirring of the reaction mixture for 20 h, the resultant suspension was subjected to a hydrothermal 

treatment in a plastic flask at 80 ºC for 2 h. Afterwards, 2.5 g of Pluronic P123 triblock 

copolymer was dissolved in 40 mL of distilled water and the solution was added dropwise to the 

titanium (VI) butoxide solution, which had been previously cooled down to 45 ºC. Then the 

mixture was stirred at this temperature for 2 h followed by a second hydrothermal treatment in a 
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plastic flask at 80 ºC for 20 h. The resultant powder was recovered by evaporation at 60 ºC. 

Finally, the titania product was obtained by calcination in a furnace at 450 ºC for 4 h in air, by 

which the P123 was also removed.  

Nickel, platinum and nickel/platinum-doped TiO2 (denoted as ‘Ni/HPT’, ‘Pt/HPT’ and 

‘Ni/Pt/HPT’, respectively) were prepared following a similar procedure to that of pure TiO2. A 

P123-titanium (VI) butoxide mixture was obtained as described above prior to the doping step. 

To dope TiO2 with Ni, Pt and bimetallic Ni/Pt NPs, a solution containing the metal salts (nickel 

(II) nitrate hexahydrate, chloroplatinic acid hexahydrate or chloroplatinic acid hexahydrate + 

nickel (II) nitrate hexahydrate) in 10 mL of distilled water was added dropwise to the P123-

titanium (VI) butoxide mixture at 80 ºC. Unless otherwise stated, the loading amounts were 1 

wt% for both Ni/HPT and Pt/HPT samples and 0.5 wt%/0.5 wt% for the Ni/Pt/HPT sample. The 

mixture was subjected to 30 min sonication in order to achieve good dispersion of the precursors.
 

The resultant powder was recovered by evaporation at 60 ºC. This was followed by a thermal 

treatment in a furnace at 450 ºC under H2 atmosphere for 4 h in order to obtain the doped 

nanocomposites. 

2.2. Characterization 

High resolution transmission electron microscopy (HRTEM) was performed on a Jeol-

JEM 2011 system operated at 200 kV and equipped with energy dispersive X-ray (EDX) 

detector. Scanning electron microscopy (SEM) observations were done using a Merlin Zeiss 

microscope operated at 2 kV. Samples for HRTEM were prepared by dispersing a small amount 

of powder in ethanol (96%) followed by sonication. A holey carbon grid was then soaked into 

the suspension and allowed to dry in air. The size distribution of Ni and Pt NPs was determined 
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via manual analysis of enlarged micrographs. Around 100 particles were counted in order to 

obtain statically meaningful size distributions and the mean diameter. Wide-angle X-ray 

diffraction (XRD) patterns were collected on a Philips X’Pert diffractometer in the 20º – 80° 2θ 

range (step size = 0.03°, step time = 10 s) using CuKα radiation. The structural parameters 

(phase percentage, crystallite size and cell parameters) were determined using the “Materials 

Analysis Using Diffraction” (MAUD) Rietveld refinement software [19,20].  

N2 sorption isotherms were measured on a Sorptomatic 1990 and the data were analyzed 

according to Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods [21]. 

Around 800 mg of powder were charged in a quartz tube and then degassed under high vacuum 

(1x10
-3

 bar) at 250 °C for 24 h to remove the solvent. Room temperature hysteresis loops were 

collected using a vibrating sample magnetometer (VSM) from Oxford Instruments, with a 

maximum applied magnetic field of 1 T. Inductively coupled plasma - optical emission 

spectroscopy (ICP-OES) was carried out on a Perkin-Elmer Optima 4300DV model. 2-5 mg of 

powder were digested in aqua regia and concentrated hydrofluoric acid (HF) solution at 200 ºC 

for 8-10 min on a CEM model MARS microwave oven.  

 

2.3. Evaluation of photocatalytic activity  

The photocatalytic activity of the powder samples was evaluated by decolorization of a 

10 ppm RhB aqueous solution (Alfa Aesar, 98%, used without further treatment). Solutions were 

prepared by adding 0.3 g L
–1

 of the catalyst to 10 mL of the RhB solution. A blank RhB solution 

(without catalyst) was used as a control test. The reaction cells were placed in a SwiftCure IB 

irradiation cabin equipped with a mercury lamp. Suitable cut-off filters were used to limit the 

wavelength radiation and avoid direct photolysis of the dye (ISO 10678:2010 standard). The 

average light intensity used was 220 W and the wavelength ranged from 300 to 500 nm, thus 
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covering part of ultraviolet (UV) (300-400 nm) and visible (Vis) (400-700 nm) regions. The 

photocatalytic experiments were conducted under continuous magnetic stirring at a constant 

temperature of 25 ºC.  

Aliquots were withdrawn regularly at time intervals of 0, 15, 30, 60, 120, and 180 min 

from the reaction. The supernatant solutions were then tested with a UV-Vis spectrophotometer 

(Shimadzu UV-1603) by measuring absorption spectra of RhB (λ= 554 nm) as a function of the 

irradiation time. Photocatalytic activity of the catalysts was calculated as (C/C0), where C0 is the 

absorbance of the test solution of RhB before irradiation and C is the absorbance of RhB after 

irradiation. The optical diffuse reflectance spectra were measured at room temperature using the 

same UV-Vis instrument equipped with an integrating sphere attachment and using NaF as 

reference. In order to investigate the reusability of the photocatalysts, five consecutive cycles 

were conducted. After each cycle, the photocatalytic material was centrifuged, collected and 

dispersed in a fresh RhB aqueous solution.   

3. Results and discussion 

 3.1. Morphological and structural characterization 

In scheme 1 is presented the synthesis route toward HPT, Ni/HPT, Pt/HPT and 

Ni/Pt/HPT samples. The total dopant metal amount was kept at 1 wt% in the synthesis. The 

actual Pt and Ni amounts determined by ICP-OES are shown in Supplementary Data (Table S1). 

The results indicate that there is no significant difference between the nominal and the actual 

dopant metal percentage in the nanocomposites.  

The crystallographic structure of the different samples was studied by XRD (Figure 1). 

Broad reflections ascribed to TiO2 were observed for all samples, indicating its nanocrystalline 
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nature. The most predominant phase in the diffractogram of non-doped TiO2 sample (HPT) is 

anatase (tetragonal phase) (JCPDS no. 84-1286). Namely, the peaks at 25.3º, 37.8º and 48.0º 

correspond to the (101), (004) and (200) crystal planes, respectively, of TiO2-anatase structure. 

The brookite phase is also present, as revealed by the characteristic reflection of (211) at 2 = 

30.7º. Besides the characteristic diffraction peaks of anatase and brookite phases, the 

diffractogram of Ni-doped TiO2 sample (Ni/HPT) exhibits two reflections at  44.6º and 52.0º that 

match the positions of (111) and (200), respectively, of face-centered cubic (fcc) Ni. Likewise, 

the diffractogram of Pt-doped TiO2 (Pt/HPT) shows two reflections at 39.6º and 46.2º ascribed to 

(111) and (200) planes, respectively, of fcc Pt. The bi-doped sample (Ni/Pt/HPT) does not 

present any reflections ascribed to Ni and/or Pt due to the lower amounts of both dopant metals 

(0.5 wt%), which fall below the sensitivity limit of the XRD technique (1-2 wt%). 

Anatase and brookite phase percentages, as determined by Rietveld refinement of the full 

XRD patterns, as well as the cell parameter values and average crystallite size for anatase phase 

are listed in Table S2. All samples show lower c parameter than that of tabulated anatase (9.513 

Å, JCPDS no. 84-1286). This could be attributed to the occurrence of unit cell shrinkage during 

the calcination process. Several factors like titania precursor [22], synthetic method [23] and 

calcination conditions [24] are known to determine the TiO2 phase –rutile, anatase or brookite– 

and their relative proportion. Besides, samples show an average crystallite size in the range of 

10-12 nm, in agreement with previous reports [25-28]. 

 Figure 2 shows the N2 adsorption−desorption isotherms and the pore size distributions of 

all samples. A type IV isotherm characteristic of mesoporous materials is observed in all cases 

[29]. The adsorption branch exhibits three distinct regions corresponding to a monolayer-

multilayer adsorption, multilayer adsorption on the outer particle surfaces and capillary 
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condensation at relative pressures in the range from 0.6 to 0.9, for all the isotherms. H2-type 

hysteresis loop is observed, typical of samples with ink-bottle shaped pores and interconnecting 

channels. The powders showed a BET surface area (Sbet) of 186-200 m
2
/g, with no significant 

differences among non-doped and doped TiO2, in agreement with the results of Di Paola et al 

[30] (Table 1). Either unimodal or bimodal pore size distributions (Figure 2, insets), with a 

maximum pore diameter between 7.8 and 10.9 nm and a cumulative pore volume between 0.456 

and 0.572 cm
3
/g, were obtained, similar to the values reported by E. Masolo et al. [31] A 

narrower pore distribution was noticed for Pt/HPT sample (Figure 2c, inset). It is conjectured 

that the narrower pore distribution in the Pt/HPT sample is mainly due to the very small size of 

the nucleated Pt NPs  in comparison to that of the Ni ones (3 nm vs. 95 nm as it will be shown 

later). TiO2 matrix formation is probably less disturbed when smaller NPs are accommodated 

within the network. As a result, the formation of the TiO2 matrix becomes less perturbed when Pt 

is present and a narrower pore distribution is achieved. Interestingly, all doped samples exhibit a 

higher average pore diameter than non-doped TiO2 sample.  

To gain further structural information on the samples, TEM and HRTEM analyses were 

performed. HPT is highly porous and crystalline (Figure 3a and 3b). The corresponding selected 

area electron diffraction (SAED) pattern (Figure 3c) shows continuous rings indicating the 

existence of tiny crystals. Indexing of the primary rings is consistent with the existence of 

anatase ((101), (004) and (200) crystal planes) and brookite phases ((211) reflection) in 

agreement with XRD results. The most intense ring corresponds to an interplanar distance of 3.5 

Å, which matches the d spacing of (101) anatase. HRTEM images of Ni/HPT and Pt/HPT 

nanocomposites (Figure 3d and 3e) show well dispersed Ni and Pt rounded NPs, respectively. 

The average size of the Ni NPs in Ni/HPT sample is much larger than that of Pt NPs in Pt/HPT 
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sample (95 nm and 3 nm, respectively) (Figure S1). This difference in size could originate from 

the ability of Pt and Ni precursors to diffuse within the TiO2 matrix. Although no bibliographic 

data of diffusion coefficients for Pt and Ni cations onto TiO2 surfaces exist, it is believed that the 

coefficient diffusion of Pt cation is higher than that of Ni cation. The higher the diffusion 

coefficient, the easier the atoms can diffuse onto the TiO2 to ultimately give rise to NPs of larger 

size. The inset in Figure 3d shows a SAED pattern of the Ni/HPT sample focused on a Ni NP, in 

which it is possible to distinguish a clear diffraction spot array whose d spacing is 2.02 Å. Such d 

spacing corresponds to (111) fcc Ni, which appears superimposed to the lattice rings of anatase. 

Interestingly, Ni and Pt NPs are also well dispersed in the bi-doped Ni/Pt/HPT nanocomposite 

(Figure 3f). Notice that Ni and Pt do not form a core-shell structure or an alloy but rather they 

have nucleated independently, rendering individual single-phase NPs.  

SEM imaging was used to study the surface morphology as well as the porosity of the 

different nanocomposites. Figure 4 shows SEM secondary electron images taken at different 

magnifications of the HPT sample, for which a large porosity is evident, in concordance with 

BET analyses. Porosity was preserved in the doped HPT samples (e.g. Ni/HPT in Figure S2).  

 

3.2. Magnetic and optical properties 

 The magnetic properties of the Ni-containing catalysts (i.e., Ni/HPT and Ni/Pt/HPT) were 

investigated using a vibrating sample magnetometer at room temperature (Figure 5). The Ni/HPT 

sample exhibits a saturation magnetization (MS) of 0.4 emu g
-1

 and a coercivity of around 80 Oe. 

Interestingly, although the MS of the Ni/HPT powder is not high, it is large enough for the 

powder to become attracted by a circular NdFeB magnet (2500 Oe) of about 1 cm in diameter 

magnet when it is brought near the sample (inset of Figure 5). Almost all photocatalyst (99 wt.%) 
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it is  recovered after each cycle using this magnetic separation procedure, as verified from values 

of sample weight before and after the degradation process. On the other hand, the Ni/Pt//HPT 

sample does not show a ferromagnetic behavior (i.e., no clear hysteresis loop).  

UV-Vis diffuse reflectance spectra (DRS) were carried out prior to the assessment of the 

photo-degradability performance of each catalyst. It is known that the optical properties of a 

photocatalyst and its catalytic performance are closely related [32]. HPT sample presents strong 

absorption only at wavelengths below 400 nm. Therefore, it shows photoabsorption only in the 

UV domain (Figure 6). On the other hand, the spectra of doped samples (Ni/HPT, Pt/HPT and 

Ni/Pt/HPT) show a similar response in the UV domain and also absorption within the visible 

domain. In other words, the absorption spectrum expands into the visible range. This result can 

be attributed to the excitation of 3d (for Ni) and/or 5d (for Pt) electrons from the transition metal 

valence band (VB) to the TiO2 conduction band (CB). [33]  

The band gap (BG) energies (Table 2) were determined using the equation:  

Eg = hc0/λg    (1) 

where Eg is the energy of the band gap in eV, h is the Planck’s constant (6.626 x 10
-34

 Js), c0 is 

the speed of light in vacuum (3 x 10
8
 m/s) and λg is the value obtained measuring the intersection 

of the tangent of the absorption edge with the x-axis [34]. The absorption edge of HPT was noted 

at 408 nm, corresponding to a BG energy value of 3.03 eV. Conversely, Pt/HPT and Ni/HPT and 

Ni/Pt/HPT nanocomposites all possess smaller BG values (2.69-2.15 eV, Table 2).  

3.3. Photocatalytic Activity  

The photocatalytic performances of the catalysts were investigated by following the 

decomposition of Rhodamine B (RhB) in an aqueous solution under irradiation with a mercury 
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lamp (320-500 nm). No significant degradation of RhB was observed in the absence of any 

photocatalyst, which was taken as a reference (blank). 

As shown in Figure 7a, the concentration of RhB decreases linearly with time in the 

presence of the HPT sample, reaching a removal ratio of 39% after exposure for 180 min. The 

removal ratio of Pt/HPT, Ni/HPT and Ni/Pt/HPT were 63, 57 and 54 %, respectively. The results 

show that there is an enhancement in the photodegradability of RhB when Ni or Pt NPs (or 

combinations of both) are loaded into TiO2. Previous works in the literature indicate that the 

photocatalytic oxidation of different dyes using TiO2 as a catalyst follow the Langmuir-

Hinshelwood kinetics model [35-37].
 
For very diluted catalyst suspensions (millimolar), though, 

the reaction can be described as a pseudo-first-order equation. This applies to our case (Figure 

7b), for which the ln (C/C0) versus time follows a linear relationship. The slope corresponds to 

the apparent first-order rate constant (k, min
-1

). The rate constants values (Table 2) show that Ni- 

and Pt-doped nanocomposites outperform HPT sample. Pt/HPT, with a BG energy value of 2.15 

eV, presents the highest rate constant, 0.0053 min
-1

. This is not surprising bearing in mind that Pt 

is the top-ranked catalyst metal. Meanwhile, Ni/HPT sample shows a slightly lower k value 

(0.0046 min
-1

). Curiously, the corresponding k value for the bi-doped sample is lower than those 

of the single-doped TiO2 catalysts. In spite of it, it is envisaged that having two different types of 

NPs physically separated but in the same support can be advantageous in certain cases. For 

example, two different reactions could be simultaneously catalyzed by taking advantage of the 

joint presence of Pt and Ni in the matrix. The rate constant of Pt/HPT sample is higher than that 

observed in the degradation of RhB using core(metal)-shell(TiO2) nanocomposites (e.g. Pt, k = 

0.0013 min
-1

) synthesized via a hydrothermal treatment with noble metal colloid particles [38]. 

Our results are also in good agreement with those previously reported by Chen et al. [39], who 
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also observed an increase in the rate constant towards the degradation of o-cresol upon doping 

TiO2 with Pt.  

In order to further explore the influence of the dopant metal concentration on the 

photodegradation of RhB, two additional samples were prepared: Ni(3 wt%)/HPT and Pt(3 

wt%)/HPT. The Ni and Pt particle size distributions are shown in Figure S1. Notice that the 

average particle size is in both cases reduced as compared to the 1 wt% concentration. 

Additionally, the corresponding XRD patterns are also shown in Figure S3. The RhB removal 

ratio of Ni(3 wt%)/HPT and Pt(3 wt%)/HPT were 39 and 38%, respectively, almost the same 

removal ratio of non-doped HPT sample (Figure S4). Accordingly, there is a decrease of the 

photocatalytic efficiency when the concentration of dopant is exceedingly large. This can be 

explained by taking two scenarios into account: (1) the TMNNPs excess at the surface of TiO2 

decrease the charge carrier space distance (CCSD) via efficiently trapping photoelectrons and 

therefore increase recombination [40]; (2) a fraction of the active sites become ‘covered’ or 

‘shaded’ so that the available space on the semiconductor for pollutant adsorption and light 

absorption is decreased, thereby reducing photodegradation efficiency [41]. Our results are in 

agreement with those of Dhabbe et al. [42] and Arabatzis et al. [43]. The former observed an 

enhancement of the photocatalytic performance upon increasing the content of Ag in N-doped 

TiO2 nanocomposites until a maximum loading of 1 g/dm
3
. The latter pointed out an 

enhancement of the photocatalytic performance towards methyl orange degradation with an 

increase of the Au content in TiO2 thin films till a maximum of 0.8 μg/cm
2
. In both cases, the 

catalytic activity diminished with further increase of the dopant concentration. Nevertheless, it is 

worth noticing that the Ni(3 wt%)/HPT sample exhibits a higher MS value (0.87 emu g
-1

), as 
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expected for a larger Ni amount. Therefore, in those cases where a larger MS is required to 

recover the catalyst, this sample still has the potential to be used. 

The recyclability of the doped TiO2 nanocomposites was tested for 5 photodegradation 

cycles of 60 min each (Figure 8). The results show that the photocatalytic activity begins to fairly 

decline in the fourth cycle. This effect could be due to the presence of radicals with high 

reduction potentials that might cause partial oxidation of the TMNPs. It should be noted that the 

decrease of the photocatalytic activity is less pronounced in the Ni/HPT sample (Figure 8, 

green), making it the most suitable catalyst in terms of reusability for the decomposition of 

POPs. The reason why Ni/HPT is more durable than Pt/HPT might arise from the distinct mean 

size of Ni and Pt NPs (95 nm and 3 nm, respectively). Even though Pt is less prone to oxidation, 

the size-dependence reactivity effect of the NPs cannot be ruled out. In the case of Pt a larger 

fraction of surface atoms would be exposed to the medium and, hence the photocatalytic activity 

would decline earlier for the Pt/HPT sample. 

Regarding the mechanism (Figure 9a) behind the decomposition of RhB under UV-vis 

irradiation, it is conjectured that an electron (eCB
-
) and a hole (hVB

+
) are produced (Figure 9b,i). 

On the one hand, eCB
-
 can reduce O2 to form superoxide radical anion (Figure 9b,ii). Simultanely, 

hVB
+ 

can oxidize H2O to form hydroxil radicals (Figure 9b,iii). Finally, RhB mineralization 

occurs (Figure 9b,iv). For optimum TMNPs content and size (i.e. 1 wt%), reaction (ii) would be 

favored. In this case, the CCSD is thought to increase. The band gap energy is reduced and, as a 

consequence, the absorption band extends toward the visible light domain. The fact that the 

Pt/HPT outperforms Ni/HPT can be attributed to a higher electron affinity and suitable work 

function of Pt metal, so that a better contact with TiO2 forms [40]. On the contrary, for 
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exceedingly large contents, recombination of charge carries competes with (ii) due to the 

decrease in the CCSD and/or the partial blocking of the available active for light absorption.   

 

4. Conclusions 

Ni-, Pt- and Ni/Pt-loaded TiO2 nanophotocatalysts have been successfully prepared via a 

two-step hydrothermal route. The powders show a large porosity provided by the TiO2 

compound. The presence of Ni and Pt NPs within the TiO2 matrix does not compromise the 

porosity, which remains large. TEM/HRTEM images reveal a homogenous distribution of the 

TMNPs within the sample powders, although the average NP size is different (that of Pt NPs is 

smaller). The photocalytic activity of the nanocomposites outperforms that of non-doped TiO2 

synthesized following the same procedure. Higher degradation rates of Rhodamine B dye under 

UV-vis light irradiation are achieved (63% for Pt-, 57% for Ni and 54% for Ni/Pt-doped TiO2 

against 39% for undoped TiO2). Furthermore, the Ni-doped TiO2 sample presents sufficiently 

large MS values to allow its fast recovery from the media using relatively weak magnetic fields 

and subsequent reuse. The relative dye degradation keeps fairly constant up to the 4
th

 cycle but 

starts to decrease onwards. Further work is in progress to elucidate the reasons behind such slight 

decrease in the photocatalytic activity, especially for the Pt-containing catalyts. Remarkably, an 

increase in the amount of loaded NPs does not bring an enhancement of the photocatalytic 

activity. Therefore, the tested dopant concentration (1 wt%) can be regarded as optimal. 

Considering the simplicity of the fabrication process and the attributes of these 

nanophotocatalysts, we expect that these materials could find uses in sustainable water 

remediation processes in the near future.  
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Figure captions 

 

Figure 1. XRD data of HPT, Ni/HPT, Pt/HPT and Pt/Ni/HPT samples. 

Figure 2. N2 adsorption (blue dots)-desorption (red dots) isotherms of  (a) HPT, (b) Ni/HPT, (c) 

Pt/HPT and (d) Ni/Pt/HPT samples and their respective pore size distributions (insets).  

Figure 3. TEM and HRTEM images of (a, b) HPT at different magnifications and (c) the 

corresponding SAED pattern; B means brookite phase. (d) TEM image of Ni/HPT (the SAED is 

shown in the inset), (e) HRTEM image of Pt/HPT, (f) TEM image of Ni/Pt/HPT.  

Figure 4. (a-c) On-top SEM images at different magnification of the non-doped HPT sample. 

Figure 5. Room-temperature magnetic hysteresis loops of Ni/HPT and Ni/Pt/HPT samples. 

Figure 6. UV-Vis absorption spectra of HPT,  Ni/HPT, Pt/HPT and Ni/Pt/HPT samples. 

Figure 7. (a) C/C0 vs time plot showing the decrease of the dye concentration. (b) ln(C/C0) of 

RhB vs time.  

Figure 8. Relative RhB degradation as a function of the number of cycles. 

Figure 9. Scheme of the proposed photochemical charge promoted separation. 
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Figure 1. 

 

 

 

 

 

 

 

 



 

20 

Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

21 

Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 
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Scheme 1. Synthesis of undoped TiO2 (HPT) and Ni-, Pt- and Ni/Pt-doped TiO2 

nanophotocatalysts (Ni/HPT, Pt/HPT and Ni/Pt/HPT, respectively). 
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Table 1. Textural parameters determined by BET of HPT, Ni/HPT, Pt/HPT and Ni/Pt/HPT 

powders.  

Samples 

Sbet  

 

(±5 m
2
/g) 

Maximum 

pore 

diameter 

(±0.2 nm) 

Average pore 

diameter  

(±0.2 nm) 

Micropore  

volume  

(±0.002 cm
3
/g) 

Cumulative 

pore volume 

(±0.005 cm
3
/g) 

 

HPT 

 

186 7.8 7.8 0.067 0.456 

 

Ni/HPT 

 

200 9.2 9.6 0.075 0.572 

 

Pt/HPT 

 

187 10.2 9.9 0.066 0.558 

 

Ni/Pt/HPT 

 

191 10.7 10.0 0.069 0.556 
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Table 2. Calculated band gap energies and rate constant values for the different samples. 

 

Samples Eg (eV) k (min
-1

) 

 

HPT 

 

3.03 0.0027 

 

Ni/HPT 

 

2.54 0.0046 

 

Pt/HPT 

 

2.15 0.0053 

 

Ni/Pt/HPT 

 

2.69 0.0041 
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Supplementary data. Supplementary data associated with this article can be found, in the online 

version, at http://dx.doi.org 
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