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Abstract 

The formation of Greenhouse Gases (GHG) in wastewater infrastructures has been mainly 

assessed in Wastewater Treatment Plants (WWTP). However, sewers are longitudinal reactors 

where gases such as methane (CH4), nitrous oxide (N2O) and hydrogen sulphide (H2S) can also 

be produced. This article presents a critical review of studies that quantify the generation of these 

gases in sewers and identifies the existing research gaps. Differences in the sampling methods 

and site selection, as well as a very limited number of studies, result in incoherent comparison 

amongst emissions from sewers. In order to address some of these gaps, sampling campaigns 

were conducted in two Spanish cities in winter and summer. Results showed that wet wells, where 

turbulence enables the gas release from the liquid phase, were the most important sources of gases 

with concentrations up to 321 µg CH4 Lair
-1 and 6.8 µg N2O Lair

-1. Regarding emission factors, in 

the case of Calafell, the estimated annual emissions were up to 7,447 kg CH4 and 134 kg H2S in 

summer and 1,886 kg CH4 and 255 kg H2S in winter. Regarding Betanzos, these values were 

12,087 kg CH4 and 265 kg N2O in summer and 4,771 kg CH4 in winter. The summer campaign 

resulted in greater gas concentration than in the winter season for both cities, suggesting that 

temperature is a highly influential parameter. We conclude that gas emissions from sewers are 

significant compared to WWTPs and could result in an important contribution to a city´s carbon 

footprint. Further work needs to be done to assess the gas production along the entire sewer 

network, which can result in very different emission factors depending on the sewer components.  
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Currently more than 50% of the world’s population resides in urban areas and is expected to 

increase to 70% by 2050 [1]. Due to this urban intensification, more infrastructures will be 

required, in particular the ones related to water supply and sanitation. Hence, the sustainable 

management of the entire urban water cycle is a key point that needs to be addressed in order to 

meet the water needs of the citizens. Furthermore, an efficient water cycle management can 

potentially contribute to the local climate action plans for reduction of greenhouse gas (GHG) 

emissions.  

The urban water cycle includes water abstraction, drinking water treatment, water transport and 

distribution, water use, sewerage and rainwater transport and wastewater treatment. Due to the 

wastewater degradation and energy requirements, each phase contributes to the urban carbon 

footprint, but most of the attention has been placed on direct emissions from wastewater treatment 

plants (WWTPs). WWTPs have been recognised as a significant source of gaseous compounds 

[2], where the biological treatments result in GHG emissions of carbon dioxide (CO2), methane 

(CH4) and nitrous oxide (N2O), as well as hydrogen sulphide (H2S), among many others.  

The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) has 

established guidelines for quantifying GHG emissions in WWTPs [3]. Based on these 

methodologies, the European Commission [4] reported that 9% and 3% of the world’s CH4 and 

N2O emissions figures come from WWTPs, respectively. However, there is a high degree of 

uncertainty in these figures given the rapid growth and urbanisation in developing countries. 

Furthermore, these values could be underestimated since they ignore the emissions taking place 

in sewer networks transporting the wastewater to the WWTPs. Sewer networks act as biological 

plug-flow reactors with high hydraulic retention time (HRT), which can be equal or higher than 

that at the WWTP depending on the configuration of the network [5]. Depending on the type of 

sewer (gravity or pressurised) or the type of constructive element, GHG such as CO2, N2O, CH4, 

as well as H2S can result from aerobic, anoxic or anaerobic environments. [6] (Supporting 

Information 1). For a more detailed description of the sewer elements and biological processes 

leading to emissions, we recommend [5,7,8]. 

Emissions of CH4 and H2S from sewers have received a lot more attention than N2O and CO2 

given their safety, toxicity, and corrosion issues [9–15]. According to the IPCC, CH4 has a Global 

Warming Potential (GWP) 25 times higher than CO2 in a 100-year time horizon [16]. H2S has a 

Human Toxicity Potential of 0.22 kg of 1.4 dichlorobenzene (1,4-DB) eq./kg H2S [17], and 

additionally, it can oxidize to sulphuric acid, resulting in the deterioration of sewer network 

elements [18], especially concrete pipes [19].  

However, N2O could be considered of higher concern than CH4 in terms of GWP, being 298 times 

greater than that of CO2 [16] and having a lifetime of 120 years in the atmosphere [20]. In addition, 

this gas is also a source of NO and NO2, which participate in catalytic cycles that deplete ozone 

[16]. Given the Ozone Depletion Potential (ODP) and GWP of N2O, it is important to determine 

its contribution to the carbon footprint of sewers and, therefore, to the entire urban water cycle. 

In spite of its importance, to the best of our knowledge very few studies have been specifically 

dedicated to determine N2O production in sewer networks [21–23] compared to the existent 

literature on the production of this gas in WWTP [24–28]. 

In this sense, the purpose of this paper is to offer a critical overview of the published studies 

regarding CH4, H2S and N2O generation in sewer networks. The aim is to determine the research 

gaps that need to be explored, in particular regarding the type of sewer system and the main 
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parameters related to the quantification of these particular gases. In order to address some of the 

research gaps, two case studies of the sewer networks of two medium-sized Spanish cities 

(Betanzos in Atlantic area and Calafell in Mediterranean area) are presented, where the generation 

of CH4, H2S and N2O were quantified. These case studies serve to analyze the contribution of 

sewers to the urban water cycle footprint. Furthermore, in view of the literature review and the 

results of the case studies presented, we make several suggestions to guide future efforts in 

quantifying GHG emissions from sewer networks.  
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2. Recent studies on GHG and H2S production in sewers 

 

A compilation of previous literature quantifying CH4, H2S and N2O in sewer networks is 

presented in Table 1. Studies that focused on WWTP but provide a quantification of the emissions 

at the influent of the WWTP were also included. When possible, and based on data provided by 

the authors, we have converted the emission factors to µg L-1 (given in parentheses in Table 1), to 

facilitate comparison amongst studies. Comparison of the reported emission factors is not straight 

forward because data are reported in diverse units, different analytical and sampling methods are 

employed, and sampling conditions are not always reported. Calculations for unit conversions are 

provided in Supporting information 2. The fourth column provides the sewer component 

considered (rising or gravity sewer, manhole, wet well or pumping station, influent to WWTP) 

and identifies which studies are conducted using data generated in the lab or in field sampling 

campaigns. A description of the methods used, the sampling conditions, and the main findings is 

also given. The latter are further discussed in the following paragraphs.   

Emissions are often reported in different units and some assumptions were made in order to 

convert the values to µg L-1 since the studies did not provide all the data required for calculations. 

For example, Debruyn et al. [21] reported 23 µg of N2O per gram of suspended solids. In order 

to relate this result to 1 L of wastewater, a range of 270-550 mg of suspended solids per litre was 

applied [29] and the final converted values were 6.1-12.7 µg of N2O L-1. In contrast, Clemens and 

Haas [22] gave an emission factor of 3.5 g of N2O per person per year, and data on the population 

of Bayreuth served by the WWTP at the time of the study was not reported as it was a key 

parameter in determining the concentration. In other cases, an emission rate at the entrance of the 

WWTP was provided. For instance, Wang et al. [30] reported 4.34-6.82 g of CH4 m-2 day-1. 

According to data found in the study, there was an emitting surface of 45 m2 and a daily 

wastewater production of 450 m3 day-1 was assumed. At the end, a CH4 concentration of 434-682 

µg L-1 was obtained. To consult all the conversions see Supporting information 2. 
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Table 1 Recent studies of GHG and H2S in sewers. COD: Chemical Oxygen Demand, HRT: Hydraulic Retention Time. DO: Dissolved Oxygen. A/V: biofilm 

area-to-liquid volume (A/V) ratio. TSS: Total Suspended Solids. TN: Total Nitrogen. BOD5: Biological Oxygen Demand at 5 days. n/m: not measured. n/a: not 

available. VFA: Volatile Fatty Acids. SBR: Sulphate Reducing Bacteria. The figures reported in the table are shown as given by the authors. In brackets the 

reader can find the compound concentrations in the gas phase, details about calculations are in supporting information 2. 

Authors 

Gas  

Sampling site 

Methods 

Main findings 
N2O  H2S  CH4 Sampling strategy and analytical methods 

Other 

parameters 

measured 

 

Chen and 

Szostak (2013) 

[15] 

n/m 
1 ppmv (1.5 µg 

L-1) 
n/m 

Wet well receiving domestic 

wastewater (Fort Wayne, IN, 

USA) 

Continuous sampling for one month in the 

liquid phase 

H2S: Portable sensor 

pH, redox, 

temperature, 

conductivity 

H2S production is more likely 

under low redox potential, low 

pH and high temperature 

Clemens and 

Haas (1997) 

[22] 

3.5 gperson-

1year -1 

(298.3 µg L-

1) 

n/m n/m 

Four manholes in a gravity 

sewer receiving industrial and 

domestic wastewater 

(Bayreuth, Germany) 

N2O:Discontinuous daily grab sampling in 

closed chamber in the gas phase 

P = 1 atm 

Temperature range from 16 to 24ºC 

NH4
+, NO3

-, pH, 

COD, 

conductivity, 

temperature, 

water level 

N2O emissions are higher with 

lower water levels. 

N2O is mainly produced in the 

biofilm 

Debruyn et al. 

(1994) [21] 

23 µg g-1 SS 

(6.1-12.7 µg 

L-1) 

n/m n/m 
Influent to three WWTPs 

(Belgium) 

N2O: Grab samples in closed vessels. 

Dissolved gases measured in the liquid phase 

via gas chromatography 

NH4
+, NO3

- 

Denitrification is the main 

reaction leading to N2O 

formation 

Dincer and 

Muezzinoglu 

(2007) [31] 

n/m 

39.6-764.2 µg 

m-3 (0.04-0.76 

µg L-1) 

n/m 

Two wet wells and one 

monitoring well between 

stations receiving domestic 

wastewater (Çesme, Turkey) 

H2S: Random Grab sampling. Gas sampling 

tubes. Measured via olfactometry and ion 

chromatography in a volume of air.  

P = 1 atm T = 20ºC 

- 

There is a positive relationship 

between the concentration of 

H2S in the air and the odour 

Foley and Lant 

(2009) [24] 
n/m n/m 

Wet Well: 1.0 -

1.9 g dissolved 

CH4 m-3  

(1,000-1,900 

µg L-1) 

Rising Main: 

2.8-9.29 g 

dissolved CH4 

m-3 (2,800-

9,290 µg L-1) 

A wet well and several points 

500, 1100 and 1900 m 

downstream in rising main 

(Queensland, Australia) 

 

Hourly sampling and analysis of dissolved 

gases in the liquid phase 

H2S: Vacuumed sampling tubes. Measured 

via ion chromatography 

HRT, COD, 

VFA, 

temperature, pH, 

redox, salinity 

Fresh domestic sewage has 

some amount of methanogenic 

activity. When the rising main 

wastewater joins gravity sewer 

flows at a pumping station, 

turbulence increases and 

accumulated dissolved CH4 is 

stripped from the liquid phase 
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Authors 

Gas  

Sampling site 

Methods 

Main findings 
N2O  H2S  CH4 Sampling strategy and analytical methods 

Other 

parameters 

measured 

Guisasola et al. 

(2008) [12] 
n/m 

Rising Mains: 

7-12g S m-3 

(7,000-12,000 

µg L-1) 

Lab: 6-14g S 

m-3 (6,000-

14,000 µg L-1) 

 

Rising Mains: 

20-120g COD 

m-3 (5,000-

30,000 µg L-1) 

Lab: 30-120g 

COD m-3 

(7,500-30,000 

µg L-1) 

Field: Two rising mains 

collecting domestic wastewater 

(Gold Coast, Australia) 

Lab: Four reactors in series to 

simulate rising main 

Daily online sampling in the liquid phase 

H2S: Soluble sulphur species measured via 

ion chromatography 

CH4: Vacuumed sampling tubes. Measured 

via ion chromatography 

COD, VFA, 

HRT 

Longer HRT derives in greater 

CH4 production. 

CH4 production influences H2S 

emissions due to bacteria 

competition for the same 

electron donor 

Guisasola et al. 

(2009) [32] 
n/m 

Rising Main: 

4-7 mg S L-1 

(4,000-7,000 

µg L-1) 

Lab: 2-13 

mg S L-

1(2,000-13,000 

µg L-1) 

 

Rising Main: 

14-28 g COD 

m-3 (3,500-

7,000 µg L-1) 

Lab: 4-30 g 

COD m-3 

(1,000-7,500 

µg L-1) 

Field: rising main  (Gold Coast, 

Australia) 

Lab: Four reactors in series to 

simulate rising main 

Hourly samples for ten hours in the liquid 

phase 

H2S: Soluble sulphur species measured via 

ion chromatography 

CH4: Vacuumed sampling tubes. Measured 

via ion chromatography 

COD, VFA, 

HRT, A/V ratio 

Influence of sewer design: 

Longer HRT and larger A/V 

ratio derive in greater CH4 

production 

Gutierrez et al. 

(2014) [33] 
n/m 

Downstream: 6 

g S m-3 (6,000 

µg L-1) 

 

Lab: 7 g S m-3 

h-1 (7,000 µg L-

1) 

Downstream: 

3.1 g CH4 m-3 

(3,100 µg L-1) 

Wet well: 

0.2 g m-3 (200 

µg L-1) 

 

Lab: 7.5 g CH4 

m-3h-1 (7,500 

µg L-1) 

Field: Wet well and 828 m 

downstream in rising main 

(Gold Coast, Australia) 

Lab: Four reactors to simulate 

rising mains 

Sampling tests for  two hours and six hours in 

the liquid phase 

H2S: Soluble sulphur species measured via 

ion chromatography 

CH4: Vacuumed sampling tubes. Measured 

via ion chromatography 

COD, pH, TSS 
Increasing the pH reduces the 

H2S and CH4 emissions 

Jiang et al. 

(2009) [34] 
n/m 

2.8 mg S L-

1(2800 µg L-1) 
n/m 

Four lab reactors in series to 

simulate gravity sewer fed with 

domestic wastewater by gravity 

(Australia) 

H2S species: Soluble sulphur species 

measured  in the liquid phase via ion 

chromatography 

NO3
- 

Nitrate dosing reduces sulphide 

formation 
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Authors 

Gas  

Sampling site 

Methods 

Main findings 
N2O  H2S  CH4 Sampling strategy and analytical methods 

Other 

parameters 

measured 

Jiang et al. 

(2010) [35] 
n/m 

Downstream: 

5-7 g S m-3 

(5,000-7,000 

µg L-1) 

Wet well: <1 g 

S m-3 (<1,000 

µg L-1) 

Downstream: 

17-22 g COD 

m-3 (4,250-

5,500  µg L-1) 

Wet well: 3-4 g 

COD m-3 (750-

1,000 µg L-1) 

Lab: 65-71 g 

COD m-3 

(16,250-17,750 

µg L-1) 

Field: wet well and 828 m 

downstream in rising main  

(Gold Coast, Australia) 

Lab: Four reactors to simulate 

rising mains 

Samples taken at the beginning and end of a 

6-h cycle each day and measured in the liquid 

phase 

H2S: Soluble sulphur species measured via 

ion chromatography. Online sensor used in 

field analysis 

CH4: Vacuumed sampling tubes. Measured 

via ion chromatography 

COD, VFA, 

NO2
-, NH3 

 

 

Applying nitrite in sewer 

systems inhibits the sulphate 

reduction and methane 

production 

Lahav et al. 

(2006) [11] 
n/m 

20-25 mg S L-1 

(20,000-25,000 

µg L-1) 

n/m 

Experimental gravity sewer 

pipe (27 m) with aeration 

windows (lab-scale analysis) 

H2S: Continuous sampling. Dissolved 

sulphide sampled in the liquid phase at the 

end of the stream and measured with a 

colorimetric method 

Temperature, 

pH, flow rate, 

hydraulic depth, 

velocity 

H2S emissions are dependent on 

the mean velocity gradient in 

gravity flow (predictive 

equation) 

Mohanakrishnan et 

al. (2008) [36] 

 

n/m 
10-25 g S m-3 

(10,000-25,000 

µg L-1) 
n/m 

Lab-scale sewer reactor fed 

with domestic wastewater 

(Gold Coast, Australia) 

24 h online measurements in the liquid phase 

on selected days 

H2S: Dissolved sulphur and nitrogen species 

analysed with ion chromatography 

CH4: Measured via gas chromatography 

NO3
- 

Nitrate reduces sulphide levels 

by 66%, but it is not toxic or 

inhibitory to SRB activity. 

Nitrate also reduces methane 

formation in rising mains 

Nielsen et al. 

(2005) [37] 
n/m 

<0.2 mg S L-1 

(<200 µg L-1) 
n/m 

Domestic wastewater collected 

at the influent pumping station 

of a WWTP (Bennekom, The 

Netherlands) 

H2S: Daily water samples taken during 

several weeks. Dissolved sulphide 

concentration analysed according to the 

methylene blue method, and sulphate and 

nitrate with ion chromatography 

Addition of 

Fe(III) 

Addition of Fe(III) to anaerobic 

wastewater in the presence of 

excess sulphide resulted in the 

oxidation of dissolved sulphide 

to form FeS 

Othman and 

Mortezania 

(2010) [38] 

n/m 
11 ppmv (15.6 

µg L-1) 
n/m 

Three manholes in a gravity 

sewer receiving domestic 

wastewater (Mashhad, Iran) 

Several tests: 1 time/ 2 times/ 3 times in 30 

days 

in the gas phase 

H2S: MultiGas detector with special sensors 

O2, velocity 
Water flushing technique 

reduces the H2S emissions 

Porro et al. 

(2011) [39] 
n/m n/m 

WWTP 

influent: 

Simulations with a realistic 

gravity and rising sewer 

network 

Tests performed using the model developed 

by Guisasola et al (2009) 
- 

Sewer design influences CH4 

emissions 
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Authors 

Gas  

Sampling site 

Methods 

Main findings 
N2O  H2S  CH4 Sampling strategy and analytical methods 

Other 

parameters 

measured 

12 g COD m-3 

(2,999 µg L-1) 

Sharma et al. 

(2008) [13] 
n/m 

>5 g S m-3 

(>5,000 µg L-1) 
n/m 

Two rising mains receiving 

domestic wastewater (Gold 

Coast, Australia) 

Hourly sampling for 8-29h in the 

liquid phase 

H2S: Soluble sulphur species measured via 

ion chromatography 

COD, VFA, 

flow rate, DO 

Spatial and temporal variations 

in sulphide, sulphate and VFA 

concentrations. Oxygen 

injection at the end of the sewer 

is more efficient to reduce the 

emissions 

Short et al. 

(2014) [23] 

1.6-1.7 g 

person-1year 

-1 (7.4-9.8 

µg L-1) 

n/m n/m 

Influent to three WWTPs 

receiving domestic, commercial 

and industrial wastewater (New 

South Wales, Australia) 

Monthly samples for eight months in the 

liquid phase 

N2O: Dissolved N2O extracted using a single-

phase, syringe-based static headspace 

protocol 

TN, NH4
+-N, 

COD, BOD5, 

TSS, pH, 

temperature 

Underground gravity sewers are 

an important source of N2O and 

the emission factor is 

comparable to secondary 

processes in WWTPs 

Wang et al. 

(2011) [30] 
n/m n/m 

Methane flux 

4.34-6.82 g m-2 

day-1 (434-682 

µg L-1) 

Influent to WWTP (Jinan, 

China) 

CH4: Wastewater samples three days a week, 

space-gas method and calculations based on 

Henry’s law and gas chromatography in the 

liquid phase 

DO, 

temperature, pH, 

COD, NO2
- , 

NO3
- 

Main factors that influence CH4 

emissions are DO, pH, 

temperature, COD, NO2
- and 

NO3
- 

Willis et al. 

(2010) [40] 
n/m n/m 

0-3,300 g m-3 

(0-3,300,000 

µg L-1) 

64 wet wells (DeKalb County, 

GA, USA) 

CH4: Monthly samples in the gas phase for a 

year. Unventilated stations (63): gas samples 

from above the liquid surface, in the middle 

of the wet well’s headspace and below the 

access 

Ventilated station (1): samples from 

discharge header 

Temperature range from 13 to 27ºC 

P = 1 atm 

Temperature, 

H2S, CO2, CO 

Influence of seasonality: In 

summer, more emissions might 

take place than in winter 

Yongsiri et al. 

(2005) [10] 
n/m 

3-8 g S m-3 

(3,000-8,000 

µg L-1) 

n/m 

Two gravity sewer lines 

collecting domestic wastewater 

(Frejlev and Hasseris, 

Denmark) 

H2S: Daily online samples in the liquid phase 

for six months. Wastewater samples. Mass-

transfer coefficient and Henry’s law constant 

determined with closed vessels 

COD, 

turbulence, DO 

Impurities in domestic 

wastewater reduce the emission 

rate of H2S (60% of the rate 

measured in deionised water) 
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As shown in Table 1, several authors have studied CH4 formation in sewers. Methane 

concentrations for wet wells at pumping stations previous to WWTP ranged from 200 µg L-1 in 

Gold Coast (Australia) [33] to 3,300,000 µg L-1 in DeKalb County (Georgia, United States) [40]. 

In the case of rising mains, most studies were conducted in the Gold Coast (Australia), and 

methane concentrations ranged from 2,800 to 30,000 µg L-1 [12,24,32]. Nevertheless, the authors 

do not specifically determine which conditions were present in each sampling site (i.e., aerobic, 

anaerobic or anoxic) and a relationship between aeration and gas formation cannot be established. 

Some of these studies further determined that dissolved oxygen inhibits methane formation 

[13,30,32], whereas a neutral pH (7.0-7.2) resulted to be optimal for methanogens to produce CH4 

[30]. Other factors reported to influence CH4 formation are: biofilm area-to-liquid volume (A/V) 

ratio, HRT, amount of nitrite and nitrate present, pH, and temperature (in winter less emissions 

take place). Furthermore it was found that methane emissions are not necessarily emitted to the 

air where they are formed. Instead, CH4 emissions (as well as all other gases) are normally present 

where the sewer network suffers a pressure loss, typically resulting from turbulence caused by 

the flow of a rising main joining a gravity sewer [12,24,33,35,39,40].  

The studies addressing H2S formation also show significant variability. Concentrations of H2S 

range from 0.04 µg L-1 in a pumping station [31] to 7700 µg L-1 in a wet well of a pumping station 

[35] and 11,000 µg L-1 in a gravity sewer [38]. Hydrogen sulphide is observed to be released in 

areas with slow flow rates, insufficient re-aeration (low oxygen-water transfer), relatively high 

temperature, low pH, and high turbulence [15,41–44]. Sharma et al. [13] also added that high 

HRT and small A/V ratio are associated with high H2S production.   

Consequently, in the prevention of these emissions, these factors must be considered. For 

instance, raising the pH has become a standard method for reducing H2S in sewers. Dissolved 

oxygen (DO) levels above 0.5 mg L-1 can generally prevent sulphide occurrence by avoiding 

anaerobic conditions [45]. Nitrates and nitrites were also found to inhibit methane and sulphide 

formation because they are toxic to Sulphate Reducing Bacteria (SRB) and Methanogenic 

Bacteria (MB) [30,35,36,43]. 

Regarding N2O production, Debruyn et al. [21] and Short et al. [23] calculated the N2O gas 

concentrations at the influent to several WWTPs to be 6.1 to 9.8 µg L-1 in Belgium and Australia, 

respectively. Clemens and Haas [22] reported N2O concentrations of 298 µg L-1 in a gravity sewer 

of Bayreuth, Germany, which received both industrial and domestic wastewater. They noted that 

the lower the wastewater level in the gravity sewer (bigger head space), the  higher N2O emissions 

are.  

Nitrous oxide generation processes have been found to depend on parameters such as carbon to 

nitrogen ratio and the organic loading rate, the aeration regime (oxic-anoxic-anaerobic cycling), 

the pH, the substrates concentration (NH4
+, NO2

-, NO3
-) and the intermediates (NO2, NO and free 

nitrous acid), as well as the abundance and activity of N2O-producing microorganisms [23–

25,46]. Experiments in WWTP revealed that nitrite increases the N2O emissions both during 

nitrification and denitrification [25] under organic carbon limiting conditions [47]. In areas where 

nitrate accumulates, high amounts of N2O are expected, as nitrous oxide is a worse electron 

acceptor and cannot compete for electrons with nitrate. Aeration also plays a key role in the 

reduction of N2O emissions, given that nitrite does not accumulate when the sewer system is 

intermittently aerated [48]. Regarding pH, the optimum for the growth of bacteria ranges between 

7 and 8 [46]; hence, greater emissions would be expected under these conditions. 



10 
 

Albeit these studies are too varied to be able to specify an emission factor with wide applicability, 

they do serve to point out that the emissions are significant and comparable to those occurring in 

a WWTP. Default concentration values used for country-wide GHG reporting under the IPCC 

protocol for WWTP range between 1.6 (primary treatment) and 31 µg L-1 (secondary treatment) 

[49]. In general, there is a limited amount of studies quantifying sewer network gas emissions, 

especially with regard to N2O. Moreover, the fact that none of the articles include all three gases 

at the same time limits the understanding of how the mechanisms interact and limit each other. 

Additionally, the reviewed articles mainly focus on rising sewers, and little attention is given to 

networks combining both, pressurised and gravity sewers. 

There is a great degree of variability amongst the results as has been previously pointed out. Most 

studies represented their results in different ways and considering many assumptions. For 

example, Clemens and Haas [22] assumed that the emissions of the entire sewer corresponded to 

the emission of four manholes, whereas other studies focused only on specific emissions at the 

influent of the WWTP [21,23,30,37]. This means that comparison among studies is not straight 

forward, given that the conditions (aerobic, anaerobic, anoxic) and representativeness of the sewer 

network are very diverse. Therefore, concluding that one site has more emissions than another 

can be misleading.  

Furthermore, different sampling methods were used in the quantification of the emissions. Most 

of the studies rely on the dissolved gas concentration in the liquid phase to calculate the 

concentrations in the gas phase [12,13,23,24,33,35,36]. Other authors base their results directly 

on gas sampling methods [15,22,31,38]. However, it is rare to find studies where both liquid and 

gas sampling methods were combined and, as a result, comparing amongst studies is not 

straightforward (Table 1). Moreover, measures in the liquid phase are mostly made by stripping 

the dissolved gas and by using gas chromatography, which does not represent the real emission 

in a sewer, but the potential emission considering that all dissolved gas is stripped out at certain 

moment. An additional problem when measuring in the liquid phase is that turbulent areas could 

significantly underestimate the concentration of the dissolved gases. This is due to the fact that 

turbulence creates pressure drops which result in release of substances to the gas phase. 

Considering that sewer basic components like manholes, wells, weirs, connections, slopes and 

pumps increase the turbulence [50], this parameter should be considered when comparing and 

presenting the results. Nevertheless none of the studies correlate turbulence measurements with 

emissions. Moreover, it would be useful to determine whether the same results are obtained when 

measuring in the gas or in the liquid phase. 

Also, the sampling plans used in the studies were very different in terms of duration and frequency 

of the measurements. In the case of [22], for instance, samples were taken during two days to 

determine longitudinal changes in N2O emissions. In contrast, [23] took monthly samples at the 

influent of three different WWTPs for eight months in order to detect seasonal variations in the 

emissions. Daelman et al. [28] concluded that the most accurate option is long-term sampling for 

CH4 and N2O measurements in WWTPs, as it covers different temperatures, days of the week and 

times of the day. This assertion should be also considered in the analysis of sewers, given that 

there are greater variations among seasons and times of the day. 

In general, correlations between gas emissions and wastewater composition are difficult to 

establish because authors seldom report other parameters such as COD, NH4
+, NO2

- or NO3
-, pH, 

temperature, flow rate, HRT, conductivity or redox potential. It was demonstrated that the 

presence of nitrogen-related compounds such as NO2
- or NO3

- can reduce the CH4 and H2S 
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emissions [30,34–36]. However, [10–12,15,24,31–33,36–38,40] do not report NO2
- or NO3

- 

concentrations in the wastewater. Thus, it is difficult to establish if low concentration of CH4 is 

due to the presence of nitrates and nitrites in the sewer. Similarly, the addition of DO also reduces 

the production of CH4 and H2S, as they are formed in anaerobic conditions [13,38], yet these are 

not given in most of the studies [11–13,15,21–24,31–37,40]. Therefore, in order to determine the 

gas production pathways and the factors that foster their release to the sewer atmosphere, it is 

important to provide these key parameters. Additionally, the sewer configuration and the 

geographic location must be considered. Depending on the features of each city, especially the 

slope and the location of the WWTP, wastewater might have different HRTs [5]. As a result, the 

gas production rate in different cities varies depending on the sewer design [32,39]. Nevertheless, 

given the complexity of sewer networks, to the best of our knowledge no studies addressing the 

entire network have been reported.  

With regard to the geographic location, climate plays an important role in the wastewater flows 

circulating in combined sewers, where waste- and stormwater are collected in the same pipeline. 

In this case, little data are reported on environmental conditions such as rainfall and other factors 

that can influence the production of the emissions. Given that water flushing is a technique that 

reduces H2S formation in sewers [38], lower gas emissions should be expected in areas with 

heavier precipitation events. Besides rainfall, atmospheric temperature is also relevant. Willis et 

al. [40] reported that greater CH4 emissions take place in summer than in winter, which points out 

that seasonality is a parameter to consider. In general, however, the analyses do not specify the 

season in which the sampling campaigns were conducted and this hinders the comparison amongst 

the results. Additionally, most studies were developed in Australia and consequently there is no 

representation of other climatic regions. 

Therefore, having identified some of the research gaps in this field, we next present a case study 

of the gas emissions in the sewer network of two different cities. The main issues we tried to 

address in this analysis were: the integrated assessment of the three gases, the effect of 

temperature in different climatic regions and seasons of the year and the inclusion of different 

constructive components of sewers. In addition, we provide gas concentrations and emission 

factors, albeit we were limited in correlating these factors to wastewater composition. 

 

3. Case studies for analyzing CH4, H2S and N2O emissions in sewer networks  

 

3.1 Sampling sites and methodology 

In order to determine the CH4, H2S and N2O that could be generated in real sewer networks, two 

small-to-medium sized Spanish cities representative of the Mediterranean and Atlantic climates 

were selected. This study was conducted in the framework of the LIFE+ Aquaenvec project 

(LIFE10/ENV/ES/520), which focuses on the eco-efficiency of the entire urban water cycle. The 

cities studied were Calafell in Catalonia and Betanzos in Galicia. Supporting information 3 

presents some figures of each municipality and the main features of their sewer networks. It must 

be noted that Calafell is a coastal tourist destination and its population duplicates in summer. 

Also, the pumping requirements in Calafell are greater than Betanzos, where much of the sewer 

has a gravity flow. Both cities have combined sewer networks that transport mostly domestic 

wastewater and some wastewater from nearby industrial parks. However, Betanzos industrial park 

hosts commercial, distribution and transportation activities, so its wastewater can be considered 

to be the same as domestic wastewater, and the contribution of the industrial park of Calafell 

represents less than 1% of the total flow that carries the sewer system.  
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Five sites were selected in the sewer network of each city so that the concentration of each gas 

produced under different conditions and sewer components was sampled (Table 2). All the 

wastewater passing through the sampling points was mainly of domestic origin. A map showing 

the location and altitude of each sampling site is provided in Supporting information 4. Betanzos 

WWTP was designed for 25,000 population equivalent (p.e.) with a maximum flow of 466 m3 h-

1 while Calafell WWTP was designed for 70,000 p.e. with a maximum flow of 500 m3 h-1. 

The summer sampling campaign was carried out in Betanzos during the first and in Calafell during 

the second week of July 2013. The winter campaign was performed during the fourth week of 

January 2014 for Calafell and the second week of February 2014 for Betanzos. It should be 

stressed that abnormal weather conditions were experienced during both campaigns: Betanzos 

had a lack of precipitations the week before and during the summer sampling campaign (0 mm 

per day between 24/06 to 06/07/2013), but, in winter, rainfall was greater than usual (17 mm the 

night before the campaign) [51]. In Calafell, the precipitations were much more intense than usual, 

with approximately 9.1 mm the night previous to the winter sampling campaign (regular values 

are of less than 1.0 mm) and 11.4 mm the night previous to the summer sampling campaign 

(regular values less than 0.1 mm) [52]. 

A multi-parametric analyser (Servomex 4900) coupled to a gas conditioner (JCT model 

JCCP114111) was used for the continuous monitoring of N2O and CH4 (Supporting Information 

5). In the sewer sampling points, the gas was collected from the headspace using a gas tube 

connected to the gas conditioner. A closed chamber with an area of 1 m2 was connected to the gas 

conditioner in the influent of the WWTP. Sampling was conducted continuously (at 100 L h-1) for 

at least one hour (data were logged every 10 s). Sampling sites were monitored at approximately 

the same time of the day. In the case of H2S, colorimetric tubes were used for the discontinuous 

sampling of this gas emission. The air flow, pressure and temperature were determined with a 

TESTO 400 multi-parametric measurer. Wastewater was also sampled in each site, stored at 4ºC 

and analysed not more than 24 h after sampling. Conventional parameters such as the total 

nitrogen, Total and Soluble Chemical Oxygen Demand (COD and SCOD) and the concentration 

of NH4
+, NO2

- and NO3
- were measured at the laboratory using standard procedures (Supporting 

Information 5).  
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Table 2 Description of the sampling sites selected in Betanzos and Calafell. n/m: not measured; n/a: not available. *Air flow rate expressed as m3/h·m2. PS: 

Pumping station. MH: Manhole 

City 

Site 
Temperature (ºC) Pressure (mbar) 

Air flow rate at the 

sampling point (m3/h) 
Height above 

the sea level 

(m) 

Description 
Name  

Point of 

measure Summer Winter Summer Winter Summer Winter 

B
et

a
n

zo
s 

As Cascas 

PS 
Wet well 23 15 1018 1016 n/a n/a 27 

Pumping station receiving wastewater from urban 

and rural areas.  

As Cascas 

discharge 

MH 

Manhole 23 15 1018 1016 n/a n/a 12 The wastewater flow stagnates in the manhole.  

Marina 

Street MH 
Manhole 23 12 1018 1016 n/a n/a 26 

This site collects wastewater from surrounding 

buildings  

Betanzos 

Main PS 
Wet well 23 14 1018 1005 3.09 4.87 12 

Located just before the WWTP. It collects all 

wastewater coming from the entire city and pumps 

it directly to the WWTP. It has a preliminary rough 

screening unit to remove stones and grit. It is 

actually considered an important focus of odours.  

Influent to the WWTP 28 14 1018 1005 9.40* 14.1* 13 
Wastewater coming from the Betanzos main 

pumping station. 

C
a

la
fe

ll
 

Baixador PS Wet well 28 n/m 1012 n/m 2.57 n/m 8 
Pumping station receiving wastewater from the 

mid-west region of the city.  

Víctor 

Català St. 

MH 

Manhole 28 13 1012 1008 n/a n/a 3 
Wastewater flows slowly. It is located few meters 

away from Mas Mel PS.  

Mas Mel PS Wet well 31 17 1014 1000 n/a n/a 3 
Pumping station receiving wastewater from Víctor 

Català and Baixador. 

Creu Roja 

main PS 
Wet well 28 14 1012 1000 n/a n/a 5 

Located just before the WWTP. It collects 

wastewater coming from the entire city and pumps 

it directly to the WWTP. It is actually considered 

an important focus of odours.  

Influent to the WWTP 31 14 1014 998 14.1* 13.8* 33 
Wastewater coming from Creu Roja pumping 

station and a commercial centre near the WWTP. 
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3.2 Results and discussion 

The concentrations of CH4, H2S and N2O measured during summer and winter are presented in 

Figure 2, while Table 3 contains the results of the analyses of the corresponding wastewater. 

Given that the continuous sampling was conducted during 1 hour, the maximum, minimum and 

average figures are represented in Supporting Information 6.  

Regarding Calafell, CH4 was the gas exhibiting the highest concentration, being one to three 

orders of magnitude higher than that of H2S and N2O (Figure 2A). During summer (average 

temperature 29.2 ºC) CH4 concentration ranged between 1.8 to 316.7 µg L-1 (7.2-1267 µg COD 

L-1) while in winter (average temperature 14.5 ºC) the concentration was between 10 to 89.4 µg 

L-1 (40-358 µg COD L-1) as shown in Table 3. In previous literature, the reported CH4 

concentrations are highly variable (see Section 2.1), but in wet wells and the influent of a WWTP 

[33] (200 µg L-1) and [30] (434-682 µg L-1) present values similar to those in our analysis. As 

expected, our results indicate that higher temperatures favour the anaerobic CH4 production, but 

it should be considered that average SCOD was of 191.52 mg COD L-1 in summer, while in winter 

these values decrease to 141.40 mg COD L-1. Hence, this trend implies a reduction in the activity 

of MB. However, we could not determine from our data to what extent the temperature and/or the 

availability of SCOD influenced CH4
 generation. Furthermore, high concentrations of CH4 do not 

coincide with high SCOD concentrations in the wastewater. For example, during the summer, 

Marina St. (manhole) presented high levels of SCOD (537.6 mg L-1) that correspond to 20.2 µg 

L-1 of CH4. In contrast, in As Cascas PS (wet well) greater CH4 emissions were measured (1109 

µg L-1), whereas the SCOD was 179 mg L-1.This leads us to suggest that there are other 

mechanisms at play that have a stronger influence on methane emissions. 

As mentioned in 3.1, other factors affecting CH4 formation (as well as H2S and N2O) are the pH 

and the presence of nitrate and nitrite. Due to technical problems the pH was only measured in 

the winter with values oscillating between 7.2-7.6, and it was impossible to establish whether the 

lower concentrations of CH4 in the winter were influenced by the neutral pH values as described 

by [30]. Correlations between nitrate/nitrite concentrations and CH4 can be established in some 

cases from our results. Even though an inhibition concentration threshold of 8 mg NO3
- L-1 and 

0.07 mg NO2
- L-1 , respectively, has been established by [30], we found that for example Betanzos 

Main PS (winter campaign) had one of the lowest concentrations of CH4 (15.1 µg L-1) with the 

highest wastewater NO3
- concentration of 2.730 mg L-1. In contrast, for the same point in summer 

campaign, as NO2
- and NO3

- decrease, methane concentration raises up to 42.4 µg L-1.  Other 

sampling points in Calafell such as Baixador PS (wet well) in summer have much lower 

concentrations of methane (1.8 µg L-1), even though there are high levels of nitrates and nitrites 

(1.130 mg NO2
- L-1 and 1.423 mg NO2

- L-1).  

What seems to be true is that high methane emissions occur in wet wells, which have higher 

turbulence than the other sampling points. Additionally, the wet wells can potentially become 

anaerobic environments between breathing cycles conducive to the proliferation of MB (see 

Section 1). For example, the highest concentrations were recorded in Creu Roja PS (316.7 µg L-

1) and Mas Mel PS (226.9 µg L-1). Similarly to CH4, turbulence also affects the release of N2O to 

the atmosphere and higher concentrations of this gas were recorded in wet wells. For instance, in 

Creu Roja PS 18.3 and 6.8 µg L-1 were produced in summer and winter, respectively. However, 

these values are much lower than the result obtained in manholes by Clemens and Haas ([22], 298 

µg L-1). In contrast, no emissions were detected in Marina St. MH. In this case, wastewater has a 

short HRT because the manhole is located close to the households.  
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Given that the average annual rainfall is higher in Betanzos than in Calafell (see Supporting 

information 3), we could expect less biofilm formation in Betanzos, and therefore lower methane 

production. However, as was previously mentioned, Betanzos experienced a lack of precipitations 

the week before the summer sampling campaign, and in winter, rainfall was greater than usual. 

This fact could have resulted in higher emissions than expected. And in contrast, the precipitations 

were much more intense than usual in Calafell, both in summer and winter with the corresponding 

dilution of wastewater (Section 2.1), which on the contrary could decrease these gas 

concentrations.  

As expected, high amounts of CH4 corresponded to lower sulphide concentrations as they 

compete for the same electron donors. Maximum H2S concentration was 4.3 µg L-1, up to 4 orders 

of magnitude lower than other studies (Table 1). In some cases, this gas could be smelled because 

it has an odour threshold of 0.0081 ppmv, although its concentration was under the detection limit 

of the equipment (<0.2 ppmv). In winter, no H2S emissions were recorded in Betanzos 

corresponding to the low sulphate concentration (3.6 – 18 mg L-1) and high concentrations of 

SCOD (33.60 – 548.8 mg L-1) in wastewater. The highest H2S concentrations were detected in 

the influent of the WWTP in Calafell both in summer and winter. Moreover, the sulphate 

concentration in Calafell ranges between 63-72 mg L-1, which results in higher emissions than in 

Betanzos. Given that there is a rising sewer before wastewater enters the WWTP, H2S could be 

dragged through this stretch and released when there is an opening to the atmosphere.  

In order to establish an emission factor, it is necessary to determine the air/water flows at the 

sampling sites and sewer geometry. Ward et al [53] provide a force balance model for calculating 

the ventilation of sewers using carbon-monoxide tracer measurements to estimate the air flow 

inside sewer pipes. Nonetheless, applying this method requires characterizing the drag forces 

acting at the air-water interface, which is beyond the scope of the present study. Alternatively, the 

emission factors at the entrance of WWTP were obtained by multiplying the gas concentrations 

and the air flow at the sampling site. Air velocity was determined by a multi-parametric measurer, 

which accounted for the gas release from the wastewater surface, considering 1 m2 at the entrance 

of the WWTP see Section 3.1. Following this method, we obtained higher values of both CH4 and 

NO2 in summer than in winter. In the case of Calafell, the estimated emissions were 7,447 kg CH4 

year-1 and 134 kg H2S year-1 in summer and 1,886 kg CH4 year-1 and 255 kg H2S year-1 in winter. 

Regarding Betanzos, these values were 12,087 kg CH4 year-1 and 265 kg N2O year-1 in summer 

and 4,771 kg CH4 year-1 in winter.  

With regard to the environmental impacts, the contribution of these gas emissions to the carbon 

footprint of sewers was estimated using Life Cycle Assessment (LCA) [54]. This method can be 

used to calculate the impacts of the life-cycle stages of a product, service or system, from the raw 

material extraction to the end of life. So far these emissions have not been integrated into the LCA 

of sewers [55]. In this case, the methodology presented by [56] for the estimation of the impacts 

of sewers was applied. Following the calculation method presented by [24], we multiplied the 

summer CH4
 and N2O emissions, their GWP and the wastewater flows at the influent of the 

WWTPs (Supporting Information 3). As a result, we obtained an emission factor of 0.32 and 

0.61 kg of CO2eq. person-1 year-1 in Calafell and Betanzos, respectively. When integrated into the 

operation stage of sewers, which includes the electricity consumption to pump wastewater, the 

direct gas emissions represent between 2 and 16% of the impacts in Calafell and Betanzos, 

respectively. When the entire life cycle of waste water treatment is assessed (i.e. raw materials 

extraction, transport, construction, operation and demolition), the production of CH4 and N2O in 
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sewers, accounts for 1-3% of the Global Warming Potential (GWP). Considering that this figure 

only represents the emissions at the influent, a bigger share of the impacts might be attributed to 

the total direct GHG emissions of a sewer, as they can be released along the entire network. Hence, 

they should not be underestimated when assessing the environmental burdens of this type of 

infrastructure, albeit to the authors’ knowledge gas emissions have not been integrated into LCA 

studies so far. 

 

 

 
Figure 2 CH4, H2S and N2O concentrations measured in the sewer network of Calafell and 

Betanzos. PS: Pumping station, MH: Manhole. 
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Table 3 Results of the wastewater analysis during the sampling campaigns. n/d: not detected; n/m: not measured. PS: Pumping station, MH: Manhole. 

 Calafell Betanzos 

Sampling Point Baixador PS 
Victor Català 

St.MH 
Mas Mel PS Creu Roja PS 

Calafell Influent to 
the WWTP 

As Cascas PS As Cascas MH Marina St. MH Betanzos Main PS 
Betanzos Influent to 

the WWTP 

Parameter/season Summer Winter Summer Winter Summer Winter Summer Winter Summer Winter Summer Winter Summer Winter Summer Winter Summer Winter Summer Winter 

TS 

(mg L-1) 
1587 n/m 860.0 1407 1807 2170 1793 1790 1353 1936 1670 1183 953.3 970.0 10893 666.7 893.3 423.3 660.0 666.7 

VS 

(mg L-1) 
266.7 n/m 25.00 226.7 593.3 330.0 493.3 373.3 173.3 725.3 1050 406.7 473.3 393.3 8847 310.0 353.3 76.70 300.0 320.2 

Total COD 
(mg L-1) 

739.2 n/m 324.8 336.0 1333 168.0 862.4 616.0 588.0 425.6 2856 504.0 1204 1064 4032 1120 537.6 134.4 616.0 436.8 

Soluble COD 

(mgL-1) 
330.4 n/m 162.4 145.6 168.0 72.80 162.4 173.6 134.4 173.6 179.2 39.20 263.2 548.8 537.6 352.8 212.8 33.60 224.0 78.40 

N-NH4
+ (mg L-1) 32.29 n/m 46.40 27.93 n/d 23.77 31.50 36.238 37.07 40.93 37.97 6.290 69.86 35.57 7.538 67.37 34.90 7.604 30.87 11.29 

N-NO2
- (mg L-1) 1.130 n/m 0.910 0.948 n/d  n/d n/d n/d n/d n/d 0 0.080 0.723 0.272 0 0 0 0.208 n/d 0.577 

N-NO3
- (mg -1L) 1.423 n/m 0.873 0.056 n/d 2.424 0.821 0.119 0.796 0.299 1.010 1.108 1.139 0.000 0 0 0.922 2.730 n/d 0.844 

S-SO4
2- (mg  L-1) n/m n/m n/m 65.70 n/m 72.0 n/m 68.6 n/m 63.3 n/m 3.6 n/m 18.0 n/m 9.7 n/m 8.5 n/m 9.1 

S-S2O3
2- (mg L-1) n/m n/m n/m 0.450 n/m n/d n/m 0.14 n/m 1.30 n/m n/d n/m 0.08 n/m 0.12 n/m n/d n/m n/d 

pH n/m n/m n/m 7.700 n/m 7.6 n/m 7.7 n/m 7.2 n/m 6.9 n/m 7.8 n/m 9.1 n/m 7.0 n/m 7.1 
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4. Conclusions 

In this paper, the existent literature on the quantification of gas concentrations in sewers is 

reviewed and research gaps in this field are identified. The main gases analyzed were CH4 and 

H2S, given their toxicity and corrosion potential, whereas there is a lack of in-depth studies on 

N2O emissions in sewer networks. Moreover, none of the studies have simultaneously considered 

the three gases. In general, the methodological approaches are not uniform. The samples are taken 

in different phases (liquid/gas), the duration of the campaigns varies from a single wastewater 

sample to continuous sampling strategies, and the selected sites are not always the same (i.e., 

manholes, influent, rising main). As a result, the results are not comparable or adequate in 

establishing an emissions factor applicable to other sewer networks.   

In order to address some of the research gaps (the integrated assessment of the three gases, the 

effect of temperature in different climatic regions and seasons of the year and the inclusion of 

different constructive elements of sewers), we presented a case study of the gas emissions in the 

sewer network of two different cities. In the analysis of case studies, results are presented in 

concentration units, as they were measured in the gas phase. The sampling points were selected 

to cover different conditions of the network. It was detected that the emissions are especially high 

in Mediterranean cities when compared to Atlantic cities, where yearly average temperature and 

turbulence seem to play an important role in the release of gaseous compounds. Moreover, higher 

concentrations were detected in summer than in winter, which also confirms that temperature is 

an important factor. In the case of methane, values up to 316.7 µg L-1 were recorded, with the 

same order than [33] measured (200 µg L-1). Nitrous oxide concentrations were higher in wet 

wells, up to 18.3 µg L-1, where turbulence is higher than in other points, but much lower than the 

value reported by [22] (298 µg L-1). Hydrogen sulphide concentrations were low (4.3 µg L-1 as a 

maximum), as expected because of the high amounts of methane detected and a few orders of 

magnitude lower than those reported by [35] (5000-7000 µg L-1). However, [31] presented values 

even lower than ours (from 0.04 to 0.76 µg L-1).  

The two-season sampling scheme evidenced some limitations of the study and how it can be 

improved in the future. Firstly, the continuous sampling was carried out for an hour, and it was 

too short and not representative of fluctuations in wastewater generation during the day. Secondly, 

measurements in wet wells should cover their entire breathing cycle to determine variations in 

DO concentrations. In addition, other parameters such as the redox potential and water 

temperature should be included in order to account for the environmental conditions. This way, 

cause-effect relationships between the gas formation and the water species detected can be 

addressed. Finally, the sewer network should be thoroughly characterised so as to select 

consecutive sampling sites with known additional wastewater contributions. Given that 

correlations between parameters could not be easily reported, future analyses should include a 

detailed characterisation of the sewer network and the environmental conditions of the sampling 

sites. Hence, more knowledge about the mechanisms, conditions and geometrical and operational 

features of sewers that give rise to emissions is needed to calculate the emission factors. 

Moreover, manual and online monitoring of some part of the sewer system is not sufficient to 

account for the emissions of the entire network. Therefore, modelling is necessary on a system-

wide basis, and sampling in real sewers assists in the validation of the models. 

In addition, this study showed that the environmental impacts deriving from the direct gas 

emissions are not irrelevant when compared to other life-cycle impacts of sewers, even if only 
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one sampling site was included. Further characterization of the GWP of the sewer network is 

important in order to inform urban planners and water services how to manage this infrastructure 

appropriately and to minimize its environmental impact contribution to the urban water life cycle. 
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