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Abstract 38 

Shifts in ecosystem phenology play an important role in the definition of inter-annual variability 39 

of net ecosystem carbon uptake. A good estimate at the global scale of ecosystem phenology, 40 

mailto:manuela.balzarolo@uantwerpen.be


mainly that of photosynthesis or gross primary productivity (GPP), may be provided by 41 

vegetation indices derived from MODIS satellite image data. 42 

However, the relationship between the start date of a growing (or greening) season (SGS) when 43 

derived from different vegetation indices (VI's), and the starting day of carbon uptake is not well 44 

elucidated. Additionally, the validation of existing phenology data with in-situ measurements is 45 

largely missing. We have investigated the possibility to use different VI's to predict the starting 46 

day of the growing season for 28 FLUXNET sites as well as MODIS data. This analysis included 47 

main plant functional types (PFT's). 48 

Of all VI's taken into account in this paper, the NDVI (Normalised Difference Vegetation Index) 49 

shows the highest correlation coefficient for the relationship between the starting day of the 50 

growing season as observed with MODIS and in-situ observations. However, MODIS 51 

observations elicit a 20-21 days earlier SGS date compared to in-situ observations. The 52 

prediction for the NEE start of the growing season diverges when using different VI's, and seems 53 

to depend on the amplitude for carbon and VI and on PFT. The optimal VI for estimation of a 54 

SGS date was PFT-specific - for example the WRDVI for cropland, but the MODIS NDVI 55 

performed best when applied as an estimator for Net Ecosystem Exchange and when considering 56 

all PFT's pooled. 57 

 58 

1 Introduction 59 

Ecosystem phenology shifts play an important role in describing the inter-annual variability of 60 

NEE (Net Ecosystem Exchange) due to its impact on Gross Primary Productivity (GPP). A shift 61 

in the start date of a growing season modulates annual GPP (Churkina et al. 2005; Keenan et al. 62 



2014; Richardson et al. 2010). Multiple data sources - primarily carbon dioxide (CO2) eddy 63 

covariance flux data (NEE) as well as satellite imagery estimated vegetation indices (VI's) - 64 

originating from different databases are used to estimate the start day of a growing season 65 

(Garrity et al. 2011). 66 

GPP and NEE seasonality is frequently defined as carbon-flux phenology. Both variables 67 

describe the seasonality of ecosystem gross photosynthesis. Photosynthetic phenology is 68 

represented by the starting day of  GPP and NEE and more specifically when NEE becomes 69 

positive. Explicitly the date when this occurs is by definition the day (SGSNEE) when an 70 

ecosystem transforms from a carbon source into a carbon sink.  SGSNEE can be estimated in 71 

different ways. Eddy covariance data is on track to make the estimate (Baldocchi et al. 2005). On 72 

the other hand, leaf phenology can also be observed and defined with remote sensing based 73 

methods (Garrity et al., 2011). The exercise is to estimate the starting day of greening (SGSMODIS 74 

and SGSin-situ) using an optical sensor (MODIS or in-situ). Intuitively, this is expected to 75 

correspond to SGSNEE, but this relationship, and hence the predictability of SGSNEE from optical 76 

sensors, has yet to be verified. It is assumed in this paper that a correspondence with SGSNEE 77 

exists. It is the objective of this paper to verify, even validate this correspondence and hence 78 

whether SGSNEE can be estimated from a space remote sensing platform (TERRA MODIS). 79 

Several studies highlight a new application of remote sensing e.i.,  the integration of remote 80 

sensing data as well as NEE and GPP data collected with the eddy covariance method, to predict 81 

and map terrestrial carbon assimilation at the global and regional scales (Heinsch et al. 2006; 82 

Verma et al. 2014). An important step in this research venture is to establish a correspondence 83 

between phenological data - observed with remote sensing - versus in-situ optical and eddy 84 

covariance flux data. 85 



Remote sensing facilitates the global observation of the starting day of a growing season defined 86 

as the starting day of gross photosynthesis. Several approaches are applied to monitor changes in 87 

canopy development. These include changes in greening, acquired by digital camera imagery 88 

(Betancourt et al. 2005; Richardson et al. 2009), spectral spaces, reflectance and reflectance 89 

relationships (Nguy-Robertson et al. 2012) and vegetation indices (Wu 2014; Zhang et al. 2003). 90 

The latter is a common approach and has been applied using proximal sensors, such as 91 

radiometers (Huemmrich et al. 1999) or modified cameras (Petach et al. 2014; Sakamoto et al. 92 

2010), and satellite sensor imagery (Walker et al. 2014). 93 

Several VI's are considered as a useful estimator of bio-geophysical and biochemical parameters 94 

regulating leaf and canopy phenology and hence, productivity. Typical bio-geophysical variables 95 

derived from remote sensing platforms are leaf area index (LAI) and chlorophyll a and b 96 

(Gitelson et al. 2006; Myneni et al. 2002). A great variety of VI's have been defined by remote 97 

sensing scientists and all differ in their definition and in their sensitivity to changes in 98 

photosynthesis as well. These so-called “Greenness indices” - such as the widely used 99 

Normalized Difference Vegetation Index (NDVI) (Tucker 1979) - demonstrate to be a good 100 

proxy for the fraction of absorbed PAR (fAPAR) and PAR is Photosynthetically Active 101 

Radiation and APAR is absorbed PAR. By definition, fAPAR = APAR/PAR. Hence fAPAR and 102 

the NDVI are related with green biomass and canopy structure. Furthermore, the NDVI has been 103 

recognised to be a good proxy for the investigation of the impact of climate change on leaf and 104 

ecosystem phenology (Peng et al. 2013; Piao et al. 2015). 105 

In addition to the NDVI, many other vegetation indices have also been defined. Among many 106 

others one can cite: the Enhanced Vegetation Index (EVI) (Huete et al. 1997). Both the NDVI 107 

and EVI allow the observation of canopy greening based on their dependency on the RED and 108 



near infrared (NIR) parts of the electromagnetic spectrum (Huete et al. 2002; Piao et al. 2006; 109 

Reed et al. 1994). The EVI is generally less sensitive to soil background variations compared to 110 

other VI's when vegetation cover fraction (fCover) is low (Huete et al. 2002). The EVI 111 

incorporates an additional blue spectral band in addition to the commonly used RED and NIR 112 

spectral bands. The use of a blue band is intended to reduce atmospheric scattering effects 113 

typically due to the interaction of - most strongly, blue - light with aerosols and atmospheric 114 

molecules. The EVI definition reduces noise, but its applicability is limited to those sensors 115 

which dispose of a blue band, which puts a limit on the number of satellite sensors which can be 116 

used for global studies. 117 

Jiang et al. (2008) proposed an alternative definition for the EVI, e.g., the EVI2 in which the blue 118 

spectral band is substituted by a red band. Though EVI2 does not make use of a blue band, EVI2 119 

has been determined to be equivalent to EVI and seems helpful to observe canopy properties. A 120 

benefit of EVI and EVI2 is that they remain more sensitive than the NDVI when canopies 121 

become denser. However, even these vegetation indices do saturate at moderate LAI values 122 

(Viña et al. 2011). Alternatively, the Wide Dynamic Range Vegetation Index (WDRVI) seems 123 

more sensitive for the entire dynamic range of the LAI (Gitelson 2004). The Simple Ratio (SR) 124 

however has been shown to be the most sensitive VI at high LAI values (Viña et al. 2011). 125 

The Global Environmental Monitoring Index (GEMI) has been defined based on RED and NIR 126 

band reflectances. GEMI minimizes atmospheric effects, similar to the EVI and minimizes 127 

observational angular effects as well (e.g. BRDF effects) in the observed VI signal (Pinty and 128 

Verstraete, 1992). Nevertheless GEMI is rarely used in canopy phenology observations.  129 

The Soil Adjusted Vegetation index (SAVI) has been defined to minimize the influence of soil 130 

brightness (Huete 1988). The SAVI involves the RED and NIR reflectance bands and a soil 131 



brightness correction factor (L). L equals zero for a very high vegetation cover and unity for non-132 

vegetated land surfaces. Typically, L is assumed to be 0.5 for most vegetated areas. By definition 133 

SAVI equals the NDVI when L equals zero. 134 

A variety of in-situ optical sensors are commercially available for field, UAV and airborne 135 

applications. They acquire NIR and RED band reflectances at top-of-the-canopy level (Balzarolo 136 

et al. 2011). PAR sensors can be applied as broadband sensors for reflectances in the visible 137 

spectral range. These data can then be used instead of RED band imagery, to calculate vegetation 138 

indices. Likewise, pyranometers are sensitive in the global shortwave radiation band (GLR) and 139 

they can be applied as a NIR sensitive reflectance band. GLR spans a broad spectral range, 140 

including the visible, NIR, and mid-infrared spectral regions. The visible spectral region in the 141 

GLR band can be brought to zero reflectance using the PAR sensor signal (Jenkins et al. 2007; 142 

Wang et al. 2004). With this approach in-situ NDVI can be derived from measurements of the 143 

PAR band (400-700 nm); and a visible corrected GLR band (700-2800 nm). 144 

In-situ NDVI measurements provide distinct advantages. They are typically endowed with a high 145 

temporal resolution since they acquire data at an hourly basis and can be programmed for data 146 

collection at even higher frequencies. Important to mention is that in-situ NDVI measurements 147 

offer the possibility for data acquisition under overcast conditions. Only low altitude remote 148 

sensing systems like UAV's offer this capacity as well. 149 

Finally, the objective of this paper is to explore the potential of six different VI's calculated from 150 

in-situ radiation measurements, and obtained from MODIS RED and NIR reflectances. This 151 

enables the estimation of the start of the carbon uptake season (i.e. SGSNEE). Additionally the 152 

approach should also enable the phenological monitoring at twenty-eight different FLUXNET 153 

sites encompassing eight different PFT's (or ecosystems).  154 



The specific objectives pursued in this paper are: 155 

(i) How well do SGS estimations derived from in-situ vegetation indices (referred to as 156 

SGSin-situ) correlate with SGS estimations derived from MODIS VI's (referred to as 157 

SGSMODIS) and secondly; 158 

(ii) Which VI's as well as sensors are optimal for SGSNEE detection based on in-situ NEE 159 

flux data collected at FLUXNET sites. 160 

 161 

2 Materials and methods 162 

2.1 FLUXNET data: site selection 163 

The study presented in this paper is based on VI's, determined with remote sensing  and carbon 164 

flux measurements acquired from the FLUXNET eddy covariance network (www.fluxdata.org, 165 

“La Thuile” database, October 2010). The FLUXNET database contains half-hourly observations 166 

of ecosystem CO2, heat fluxes and meteorological data of more than 250 sites worldwide and for 167 

a total of 960 site-years. The most representative sites used in this study have been selected 168 

based on the following boundary conditions: 169 

(i) The availability of continuous measurements of global incoming and outgoing 170 

 shortwave radiation (GLRin and GLRout) respectively, since both are required to calculate 171 

in-situ VI's; 172 

(ii) The availability of continuous measurements of global incoming and outgoing 173 

 PAR (PARin, PARout), since both are required to calculate in-situ VI's; 174 

 (iii) The availability of measured carbon mass fluxes (in particular NEE). 175 

http://www.fluxdata.org/


The application of these boundary conditions, leads to a subset of 28 FLUXNET sites (Table 1), 176 

representing 72 site-years. They have a minimum of two years of both high quality flux 177 

measurements and measured radiation data. The 28 sites have been selected to establish the basic 178 

dataset used for the different procedures and analysis of which the results and conclusions are 179 

reported in this paper. 180 

The selected sites cover main global PFT's among which: CRO—Cropland; DBF—Deciduous 181 

Broadleaf Forest; EBF—Evergreen Broadleaf Forest; ENF—Evergreen Needle-leaf Forest; 182 

GRA—Grassland; OSH—Open Shrubland; WSA—Woody Savanna.The PFT's are defined as in 183 

the International Geosphere–Biosphere Programme – IGBP (Loveland and Belward 1997).  184 

 185 

[Table 1] 186 

 187 

 188 

 189 

 190 

 191 

Table 1 – Description of FLUXNET sites, years of measurement and PFTs used in this study 192 

(CRO—Cropland; DBF—Deciduous Broadleaf Forest; EBF—Evergreen Broadleaf Forest; 193 

ENF—Evergreen Needle-leaf Forest; GRA—Grassland; OSH—Open Shrubland; WSA—194 

Woody Savanna). 195 

Site ID 

 

Site name 

 

Country 

 

Lat 

[decimal 

degrees ] 

Lon 

[decimal 

degrees ] 

Plant 

Functional 

Type 

Measurement 

Interval 

(Years)  

BR-Cax Caxiuana Forest-Almeirim Brazil -1.719720 -51.459000 EBF 1999-2002 

BR-Sa2 Santarem-Km77-Pasture Brazil -3.011900 -54.536499 CRO 2001-2002 

BR-Sa3 Santarem-Km83-Logged Forest Brazil -3.018030 -54.971401 EBF 2002-2003 



BR-Sp1 Sao Paulo Cerrado Brazil -21.619499 -47.649899 WSA 2001-2002 

CA-NS5 UCI-1981 burn site Canada 55.863098 -98.485001 ENF 2004-2005 

CA-NS6 UCI-1989 burn site Canada 55.916698 -98.964401 OSH 2002-2005 

CA-NS7 UCI-1998 burn site Canada 56.635799 -99.948303 OSH 2003-2005 

DE-Geb Gebesee Germany 51.100101 10.914300 CRO 2004-2006 

DE-Hai Hainich Germany 51.079300 10.452000 DBF 2004-2006 

DE-Kli Klingenberg – cropland Germany 50.892899 13.522500 CRO 2004-2006 

DE-Meh Mehrstedt 1 Germany 51.275299 10.655500 GRA 2004-2006 

DE-Tha Anchor Station Tharandt - old spruce Germany 50.963600 13.566900 ENF 2005-2006 

DE-Wet Wetzstein Germany 50.453499 11.457500 ENF 2004-2006 

FI-Hyy Hyytiala Finland 61.847401 24.294800 ENF 2004-2006 

GF-Guy Guyaflux French Guiana 5.277700 -52.928799 EBF 2004-2006 

JP-Tak Takayama Japan 36.146198 137.423004 DBF 1999-2004 

JP-Tom Tomakomai National Forest Japan 42.739498 141.514893 DBF 2001-2003 

NL-Loo Loobos Netherlands 52.167900 5.743960 ENF 2005-2006 

US-

ARM 

ARM Southern Great Plains site- 

Lamont USA 36.605801 -97.488800 CRO 2005-2006 

US-Bar Bartlett Experimental Forest USA 44.064602 -71.288078 DBF 2004-2005 

US-Bo1 Bondville USA 40.006199 -88.290398 CRO 2003-2006 

US-CaV Canaan Valley USA 39.063301 -79.420799 GRA 2004-2005 

US-FPe Fort Peck USA 48.307701 -105.101898 GRA 2004-2006 

US-Goo Goodwin Creek USA 34.254700 -89.873497 GRA 2002-2006 

US-MOz Missouri Ozark Site USA 38.744099 -92.199997 DBF 2005-2006 

US-Ne2 

Mead - irrigated maize-soybean 

rotation site USA 41.164902 -96.470100 CRO 2001-2004 

US-Ne3 

 

Mead - rainfed maize-soybean rotation 

site USA 41.179699 -96.439697 CRO 2002-2004 

US-SRM Santa Rita Mesquite USA 31.821400 -110.865997 WSA 2004-2006 

 196 

Furthermore, nine additional sites have been selected from the FLUXNET “La Thuile” database, 197 

representing 20 site-years, (cited in Table S1 in the Supplementary data; validation sites). They 198 

were used as an independent evaluation (validation) of NEE phenology compared with the more 199 

common descriptors of phenology (i.e. fAPAR and EVI). These validation sites have been 200 

selected because they have acquisitions of all radiation components required to derive fAPAR: 201 

incident PAR at the top of the canopy (i.e. PARin) and below canopy PAR (PARbc). 202 



More details on NEE phenology evolution are given in section 2.4.1. Two of the FLUXNET 203 

validation sites (i.e. DE-Tha and FI-Hyy) have also been used as well, in the main analysis. 204 

2.1.1 In-situ radiation measurements 205 

The most commonly used instrument for the measurement of PARin and PARout at the flux tower 206 

sites, is the quantum sensor. In a typical set-up at a FLUXNET site, an upward facing quantum 207 

sensor is used to measure PARin while concomitantly a downward facing sensor measures 208 

outgoing PARout. Measurements of respectively GLRin and GLRout, in the optical spectral range 209 

(305 to 2800 nm) have been performed with two pyranometers, of which one faces upward to 210 

measure GLRin, and the other faces downward to measure GLRout. More details on radiation 211 

sensor set-ups at the FLUXNET sites are given by Balzarolo et al. (2011). 212 

2.1.2 Carbon flux measurements 213 

Eddy covariance (EC) measurements of ecosystem CO2 mass fluxes have been acquired from the 214 

FLUXNET database (Baldocchi et al. 2001). EC data are collected by the site manager according 215 

to a standard procedure and provide to the FLUXNET database. Typically data are collected at 216 

high sampling frequencies (at least at 10 Hz) and subsequently converted into mass fluxes 217 

integrated over a thirty minute time interval. Here, we used gap-filled NEE data from FLUXENT 218 

“La Thuile” database (www.fluxdata.org, October 2010) where half hourly data are processed 219 

following the standardized methodology described in Papale et al. (2006) and Reichstein et al. 220 

(2005). In particular, the NEE data are storage corrected, spike filtered, u*-filtered, and 221 

subsequently gap-filled. The datasets thus obtained typically correspond with a source area 222 

footprint of hundreds of meters in the vicinity of the EC tower, depending on tower and 223 

vegetation height (Schmid 2002). 224 

http://www.fluxdata.org/


2.2 Computation of in-situ VI's from in-situ radiation measurements  225 

In-situ VI's are calculated from half-hourly in-situ acquisitions of PARin, PARout, GLRin and 226 

GLRout according to the method proposed by Huemmrich et al. (1999). PAR reflectance (PAR, 227 

400-700 nm) is derived from PARin and PARout measurements. NIR Reflectance (700-2800 nm) 228 

is derived from GLRin and PARin and GLRout and PARout measurements. Summarizing, PAR and 229 

NIR are calculated according to Eq. 1 and 2: 230 

 
in

out

PAR
PAR

PAR
          (1) 231 

 
inin

outout

IR
PARGLR

PARGLR




N         (2) 232 

The physical units of both incoming and outgoing PAR are obtained by a physical unit 233 

conversion μmol.photons.m
−2.

s
−1

 to J.m
−2

s
−1

 using a conversion factor of 4.55 μmol.J
-1

 as 234 

proposed by Goudriaan and Van Laar (1994). 235 

In-situ data are calculated as an average of five observations per hour before and after solar noon 236 

(i.e. between 11h00 and 13h00 local solar time (LST)) for each of the 28 main sites. In-situ VI's 237 

(Table 2) are derived using PAR and NIR reflectances and calculated according to eq.1 and eq. 2. 238 

The acquisition dates of MODIS 8-day composite NDVI data are used to obtain representative 239 

in-situ VI data. 240 

 241 

[Table 2] 242 

 243 

  244 



Table 2 - Definitions of MODIS and in-situ VIs. See running text for a definition of ρNIR and ρPAR. 245 

 246 

VI Definition Literature reference 

Normalized Difference Vegetation 

Index (NDVI) PARIR

PARNDVI









N

NIR
 Rouse et al., 1974 

Simple Ratio (SR) 

PAR

IRSR


N  Rouse et al., 1974 

Wide Range Dynamic Vegetation 

Index (WRDVI) 
1.0

N

NIR








a

a

a
WRDVI

PARIR

PAR





 Gitelson et al., 2004 

Enhanced Vegetation Index 2 (EVI2) 
1*4.2

)(*5.2
2

N

N






PARIR

PARIREVI



 Jiang et al., 2008 

Global Environmental Monitoring 

Index (GEMI) 

5.0

5.05.1)(2

1

125.0
)25.01(

22











PARNIR

PARNIRPARNIR

PAR

PARGEMI











 

Pinty and Verstraete, 

1992 

Soil-Adjusted vegetation index 

(SAVI) 
5.0

)1(*
N

NIR









L

L
L

SAVI
PARIR

PAR





 

Huete, 1988 

 

 

 L is the soil brightness correction factor  

 247 

 248 

 249 

The quality assessment and control (QA/QC) of half-hourly radiometric measurements is 250 

performed applying various physical limit tests. Typically, GLRin has to be less than the 251 

corresponding extraterrestrial radiation (Rext) at the same point in time (hence GLRin < Rext). An 252 

analysis of the statistical variability of the data (quantified by the standard deviation, ) has been 253 

performed as well in the QA/QC procedure. As a matter of fact GLRin can only be larger than 254 



Rext for high latitude regions (hence, above the 65° Northern or 65° Southern latitudes) and only 255 

under the condition that convective clouds are present (Yang et al. 2010). Physically, at the 256 

Earth's surface, GLRin when interacting with clouds and aerosols always drops to values lower 257 

than Rext for all optical wavelengths. Henceforth, the Atmospheric Impact Ratio (AIR) or AIR = 258 

GLRin /Rext must always be smaller or equal to unity, the last case only under exo-atmospheric 259 

conditions. 260 

The variation of AIR (AIR) between two successive 30 minutes measurement intervals cannot 261 

exceed 0.75. A smaller AIR value indicates a pyranometer failure. For example AIR will be 262 

equal to zero when a pyranometer ceases to operate for a considerable period. Conversely, when 263 

a pyranometer works intermittently, the variability of AIR becomes unrealistically high. Hence, 264 

half-hourly radiometric acquisitions are flagged out for further use, when the following boundary 265 

condition is met: 266 

    
 

 
  

     

    
    

     

    
      .  267 

This QA/QC statistic is computed using half-hourly radiation measurements acquired between 268 

sunrise and sunset. In-situ VI's as defined in Table 2, are computed at half hour time intervals 269 

from the radiometric data when these are not rejected by the QA/QC procedure criteria as 270 

described above. 271 

2.3 MODIS products 272 

We used the 8-day 500 m surface reflectance product (MOD09G1, collection 5) from the 273 

MODIS/TERRA satellite sensor/platform as provided by ORNL DAAC (see 274 

http://daac.ornl.gov/cgi-bin/MODIS/GR_col5_1/mod_viz.html). MOD09G1 pixels matching the 275 

coordinates of a FLUXNET site have been extracted. The VIs, as reported in Table 2, are 276 

http://daac.ornl.gov/cgi-bin/MODIS/GR_col5_1/mod_viz.html


calculated from these surface reflectance values using band 1 (red: 620-670 nm) and band 2 277 

(NIR: 841-876 nm). 8-day MOD09G1 pixel values represent the optimal reflectance values for 278 

8-day compositing windows, selecting pixels with optimal viewing angles and minimal cloud or 279 

cloud shadow impacts. Extracted time series Quality Assurance / Quality Control (QA/QC) flags 280 

have been used, ensuring the quality of the MOD09G1 product. Specifically the MOD35 QA/QC 281 

flags have been used to identify the presence of snow (i.e. “MOD35 snow/ice” flags equal to 282 

“no”), clouds and cloud shadows (i.e. “MOD35 cloud” flags equal to “clear”). The MOD09G1 283 

reflectance bands at 500 m were flagged as having the optimal quality for all bands (i.e. 284 

“MODLAND QA bits” flags equal to “corrected product produced at ideal quality all bands”). 285 

Only the pixels with the highest quality (e.g. clear conditions without snow) have been selected 286 

and retained for further use. 287 

2.4 Canopy phenological variable derivation from NEE and in-situ and MODIS 288 

VI's 289 

Canopy phenological variables are derived using MODIS as well as in-situ VI's as well as NEE 290 

time-series data. TIMESAT v.3.1 software has been selected for VI time-series processing. 291 

TIMESAT is available at the following URL:  http://www.nateko.lu.se/TIMESAT/timesat.asp 292 

(Jonsson and Eklundh 2002; 2004). 293 

With respect to TIMESAT options for use, the adaptive Savitzky-Golay method for time-series 294 

smoothing and the double sigmoid method to extract seasonally dependent variables from a time-295 

series have been selected for application. By definition, the adaptive Savitzky-Golay method 296 

smooths a time-series with a total of N points i, which comply with: (ti,Vi) with taking values of i 297 

= 1, 2, ..., N. Each point i is fitted with a quadratic polynomial function as defined by eq. 3: 298 

http://www.nateko.lu.se/TIMESAT/timesat.asp


               
        (eq. 3) 299 

For all 2k + 1 points within a time window ranging from n = i – k to m = i + k, a linear combination 300 

of nearby values is solved according to eq. 4: 301 

         
 
        (eq. 4) 302 

In the simplest case, coefficients cj are defined as             while the data value    is 303 

replaced by the average of the data values in the time window as defined earlier. Time window 304 

extent determines the amplitude of the degree of VI time-series smoothing. 305 

A fitting time window of N=4 points i has been used to represent the temporal variability of NEE 306 

fluxes as well as both VI types, i.e. the MODIS and in-situ VI's. A double sigmoid is applied to 307 

be fitted through each smoothed time-series of beforementioned data types: 308 

     
 

   

     
    

 
 

   

     
   

      (eq. 5) 309 

In eq. 5: 310 

 -     is the position of the V curve part before an inflection point; 311 

 -     is the rate of change of the variable curve before an inflection point; 312 

 -     is the position of the V curve part after an inflection point and;  313 

-     is the rate of curve change after an inflection point. 314 

The main phenological variables - the start and end of a growing season amplitude - are 315 

determined by a threshold method as implemented in TIMESAT. A seasonal starting point (i.e. 316 

SGSNEE for NEE; SGSMODIS for the MODIS VI's and SGSin-situ for in-situ VI's) is defined using 317 

the double sigmoid function (see eq. 5) to determine the time point (in days) corresponding with 318 



50% of the V time-series amplitude height and defined as the distance between the time-series 319 

left side minimal and maximal levels. The end of the a growing season is defined similarly, 320 

starting however from the time-series right side minimum. 321 

2.4.1 Evaluation of NEE phenology 322 

For the nine sites listed in Table S1 in the Supplementary data, NEE fluxes are continuosly 323 

measured, and the resulting SGSNEE date estimates are evaluated against a  remote sensing 324 

variable and index respectively, commonly used to estimate flux phenology, e.i.,fAPAR and 325 

EVI. fAPAR is derived from both components of radiation (i.e. PARin and PARbc) by using the 326 

formula given by Monteith (1993) as: 327 

         
     

     
        (eq. 6) 328 

where PARbc is below canopy PAR and PARin is incident PAR. The exponent with value 1.35, 329 

accounts for the mean effect of the different absorptivities in the PAR and global solar radiation 330 

spectral bands. QA/QC of the half-hourly PARin and PARbc data is performed applying the same 331 

tests as used to checking the quality of all other radiation measurements used to calculated VI's 332 

(see section 2.2). 333 

EVI has been derived from the 8-day 500 m surface reflectance MODIS product (MOD09G1, 334 

collection 5, being the same dataset used for the main analysis in this study) and is calculated 335 

according to eq. 7: 336 

         
           

                         
  (eq. 7) 337 



where PAR is band 1 (620-670 nm), NIR is band 2 (841-876 nm) and blue is band 3 (459-479 338 

nm). Furthermore, the same QA/QC flags applied for the VI's calculated for MODIS (see section 339 

2.3) have been used to check the QA/QC of the EVI time-series. 340 

2.5 Statistical analysis 341 

A correlation analysis is performed to investigate the relationship between SGSMODIS and SGSin-342 

situ. The relationship was characterised using the following statistics: 343 

- the coefficient of determination (R
2
); 344 

- the root mean square error (RMSE) and; 345 

-  the normalized mean bias (NMB). 346 

Differences between PFT's have been assessed for each VI applying a statistical analysis to 347 

quantify the correlation between SGSMODIS and SGSin-situ by binning FLUXNET sites according 348 

to PFT type. The robustness of the statistical analysis has been tested by a leave-one-out cross-349 

validation technique. The predictive performance is expressed as a cross-validated root mean 350 

square error (RMSECV). 351 

To test the impact of VI on the relation between SGSMODIS and SGSin-situ, we performed a 352 

covariance analysis (ANCOVA) with SGSMODIS as response variable, SGSin-situ as the 353 

explanatory variable of primary importance and VI as covariate using the PROC GLM routine 354 

implemented in SAS (SAS 9.4; ©SAS Institute Inc., Cary, NC, USA). The relationship between 355 

a VI and SGSin-situ is also included in the analysis. A second ANCOVA analysis where VI's were 356 

replaced  by PFT's, has been performed to test the PFT impact on the SGSMODIS vs. SGSin-situ 357 

relationship. 358 



A two by two comparison of the slope of the regression relationship between SGSMODIS and 359 

SGSin-situ has been performed for the VI selected according to a best fit criterion (i.e. highest R
2
 360 

and minimal RMSE value) compared to the other VI's investigated. A two by two comparison 361 

has been conducted to test the significance of differences in regression slopes between VI's 362 

eliciting the highest correlation between SGSMODIS and SGSin-situ compared to all other VI's. 363 

To better characterise the impact of each PFT on the SGSMODIS - SGSin-situ correlation on a best 364 

fit, a third ANCOVA analysis with as response variable SGSMODIS and explanatory variables 365 

SGSin-situ, PFT and their interaction, has been performed. 366 

The performance of SGSMODIS and SGSin-situ estimates derived from different MODIS and in-situ 367 

VI's intended to predict SGSNEE, has been investigated similarly to the procedures described 368 

earlier in this chapter. However, the response variable selected for this case is SGSNEE. 369 

To confirm the hypothesis that differences between SGSNEE and respectively the SGS values 370 

derived from MODIS and in-situ VI's (i.e. SGSNEE - SGSMODIS and SGSNEE - SGSin-situ, 371 

respectively) are related to VI seasonality, VI type and PFT properties, we applied a general 372 

linear mixed effects model (GLMM). In this respect seasonality is represented by the amplitude 373 

of a VI time-series evaluated with the TIMESAT software. Using the GLMM, a boundary 374 

condition is that FLUXNET sites and measurement years are considered as random variables. 375 

Time as a variable (i.e. measurement year) is spatially nested (i.e. FLUXNET sites are spatially 376 

nested). The GLMM analysis is performed using the PROC MIXED routine implemented in 377 

SAS (SAS 9.4; ©SAS Institute Inc., Cary, NC, USA). 378 



3. Results 379 

3.1 Comparison of SGSMODIS and SGSin-situ 380 

For all PFT's, MODIS VI's predict the date of the start of  season earlier in time than for the in-381 

situ VI's (Table 3), SGSin-situ vs. SGSMODIS correlations differ according to VI type (F=8.17; p 382 

<0.0001, not shown in Table 3 nor Fig 1). 383 

Clearly, the SGS estimated using the NDVI elicits the highest correlation coefficient for MODIS 384 

as well as in-situ observations (Fig. 1a; Table 3; R
2
 = 0.68; p < 0.05). For the NDVI, the 385 

SGSMODIS-NDVI occurs roughly 20-21 days before the SGSin-situ-NDVI (RMSE = 20.89 days). The 386 

VI's, SR and WDRVI show quite satisfactory correlation coefficient values as well (R
2
 = 0.43 387 

and R
2
 = 0.46, respectively). But SGSMODIS-SR occurs more than 27 days before the SGSin-situ-SR 388 

(see Table 3 - RMSE of SR). For all other VI's, the values of the correlation coefficients (R²) 389 

drop below acceptable values for SGSMODIS and SGSin-situ. 390 

A two by two comparison of the regression slopes of the VI relationships SGSMODIS vs. SGSin-situ 391 

for the VI showing the highest R² values (NDVI) versus each of the other VI's reveals that the 392 

SGS dates slopes derived from the SR and WDRVI VI's are not significantly different from the 393 

NDVI slope (F = 1.47 and p = 0.14; F = -0.99 and p = 0.32, respectively, not shown in Table 3 394 

nor Fig 1). 395 

 396 

 397 

 398 

 399 



 400 

[Figure 1] 401 

 402 

Figure 1 – Relationship between the start day of a growing season (SGSin-situ) as derived from in-403 

situ and MODIS (SGSMODIS) VI's (see VI definitions in Table 2) for different PFT's (CRO—404 

Cropland; DBF—Deciduous Broadleaf Forest; EBF—Evergreen Broadleaf Forest; ENF—405 

Evergreen Needle-leaf Forest; GRA—Grassland; OSH—Open Shrubland; WSA—Woody 406 

Savanna). Black lines represent linear interpolation functions (for all PFT's pooled), dotted lines 407 

1:1 relationships. 408 

 409 

 410 



[Table 3] 411 

 412 

Table 3 - Statistics of correlation analysis between the starting day of the growing season derived 413 

from MODIS (SGSMODIS) and in-situ (SGSin-situ) VI's (see VI definitions in Table 2), for all 414 

PFT's, pooled (see Fig. 1). N. obs—number of available sites and years; R
2
—coefficient of 415 

determination; RMSE—root mean square error; NMB—normalized mean bias; Y-int—y-416 

intercept of the linear model; Slope—slope of the linear model; Rcv
2
—cross-validated coefficient 417 

of determination; and RMSEcv—cross-validated root mean square error. Bold letters indicate the 418 

model with the highest value of R
2
.  419 

 420 

 

N. obs R
2
 RMSE NMB Y-int Slope Rcv

2
 RMSEcv 

  (-) (day) (day) (day) (-) (-) (day) 

SGSMOSIS vs. SGSin-situ 

NDVI 73 0.68* 20.89 0.0007 38.53 0.75 0.68 20.93 

SR 73 0.43* 27.22 0.0002 70.40 0.56 0.42 27.24 

WRDVI 71 0.46* 30.56 0.0000 55.62 0.63 0.46 30.48 

EVI2 74 0.26* 32.73 -0.0012 83.25 0.35 0.26 32.80 

GEMI 70 0.03 40.65 0.0004 117.29 0.13 0.03 40.67 

SAVI 71 0.24* 34.23 -0.0002 84.80 0.39 0.25 34.26 

*: p-value < 0.05 421 

 422 

The relationship between SGSMODIS-NDVI and SGSin-situ-NDVI differs in magnitude according to the 423 

type of PFT (Table 4; F = 6.89; p < 0.0001). For SGS dates derived from the NDVI, woody 424 

savanna (SWA) elicits the highest correlation coefficient value (see Table 4). SGSMODISNDVI is 425 

only 11 days earlier than SGSin-situ-NDVI. Cropland (CRO) SGS dates, derived with the NDVI, isof 426 

all PFT's considered, the one with the highest correlation coefficient (R
2
 = 0.81). The RMSE 427 



value of 17.20 days is quite high though.. SGSMODIS-NDVIand SGSin-situ-NDVI  dates are 428 

significantly correlated as well for deciduous forest (See Table 4: DBF, R
2
 = 0.51 and RMSE = 429 

8.70). The SGSMODIS-NDVI date occurs  only 8 to 9 days before the SGSin-situ-NDVI date. For the 430 

remaining PFT's, non-significant relationships were found (see Table 4). 431 

 432 

[Table 4] 433 

 434 

Table 4 - Statistics of the correlation between the start day of the growing season (SGS) derived 435 

from MODIS (SGSMODIS) and from in-situ observations (SGSin-situ), with the SGS derived from 436 

the NDVI for each PFT's considered in this paper. R
2
—coefficient of correlation; RMSE—root 437 

mean square error; Y-int—y-intercept of the linear model; Slope—slope of the linear model; 438 

Rcv
2
—cross-validated coefficient of determination; and RMSEcv—cross-validated root mean 439 

square error. Bold letters indicate the model with the highest value of R
2
.  440 

  N.obs R
2
 RMSE NMB Y-int Slope R

2
cv RMSEcv 

 (-) (day) (day) (day) (-) (-) (day) 

SGSMOSIS vs. SGSin-situ 

CRO 19 0.81* 17.20 0.000 0.05 1.00 0.81 17.14 

DBF 15 0.51* 8.70 0.001 73.76 0.42 0.50 8.88 

EBF 5 0.68 24.50 0.073 105.20 0.49 0.76 24.08 

ENF 10 0.04 16.84 0.012 89.18 0.17 0.05 17.28 

GRA 13 0.14 13.97 0.007 141.22 -0.28 0.15 14.35 

OSH 7 0.35 9.95 0.003 66.12 0.51 0.30 9.86 

WSA 4 0.94* 11.93 -0.007 -48.12 1.18 0.96 11.11 

*: p-value < 0.05 441 

 442 



A two by two comparison of the regression slope of the relationship SGSMODIS vs. SGSin-situ 443 

between woody savanna (WSA), the PFT with the best highest R², and all other PFT's reveals 444 

that the correlation between WSA differs significantly from all other PFT's except for cropland 445 

(CRO, F = -0.63; p = 0.53) and open shrubland (OSH, F = -1,27; p = 0.21). 446 

3.2 Performance of SGSMODIS and SGSin-situ to predict SGSNEE 447 

SGS estimates derived from MODIS VI's correlate better with SGSNEE than those derived from 448 

in-situ VI's (Fig. 2 and 3; Table 5). SGSMODIS-NDVI dates show the highest correlation coefficient 449 

(R
2
 = 0.77 and R

2
 = 0.65). The SGSMODIS-NDVI prediction occurs at a point in time, 21-22 days 450 

earlier than that of NEE (i.e. SGSNEE). In contrast, the SGSin-situ-NDVI date occurs 25-26 days 451 

earlier than that of SGSNEE (see Table 5). 452 

Non-significant correlations are found for the other in-situ VI's (except for the NDVI). Though 453 

the SGS dates derived from the MODIS WRDVI performs satisfactory as well (Table 5; R
2
 = 454 

0.70). It predicts SGS dates 23-24 days earlier than the SGSNEE dates. GEMI shows the poorest 455 

correlations (see Table 5). 456 

For many PFT's, SGSNEE shows a higher correlation coefficient value with SGSMODIS than with 457 

SGSin-situ, both SGS data derived from the NDVI (see Table 6). Woody savanna (WSA) elicits a 458 

very good correlation between SGSNEE and SGSMODIS-NDVI and SGSin-situ-NDVI (see Table 6). 459 

Nevertheless, only one site has been used for this PFT. 460 

Note however, that SGSMODIS-NDVI based estimates for deciduous forest (Table 6: DBF; R
2
 = 461 

0.74) elicits a high correlation coefficient. Moreover, the SGSMODIS-NDVI date is only only 8-9 462 

days earlier than SGSNEE. 463 

 464 



[Figure 2] 465 

 466 

Figure 2 – Relationships between the start day of the growing season, derived from in-situ 467 

(SGSin-situ) VI's (see VI definitions in Table 2) and NEE (SGSNEE) for the different PFT's 468 

considered in this paper. Black lines represent linear interpolation functions (for all PFT's 469 

pooled), dotted lines 1:1 relationships.  470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 



[Figure 3] 478 

 479 

Figure 3 – Relationships between the day of the start of a growing season as derived from 480 

MODIS (SGSMODIS) vegetation indices  and net carbon uptake (SGSNEE) for different plant 481 

functional types as in Fig. 2, except that the start of the growing season day is derived from 482 

MODIS vegetation indices (SGSMODIS) instead of in-situ vegetation indices. 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 



 [Table 5] 491 

 492 

Table 5 - Statistics of correlation analysis between the day of the start of the growing season 493 

(SGS) derived from NEE (SGSNEE) and SGS derived from MODIS (SGSMODIS) and in-situ 494 

(SGSin-situ) VI's (see definition in Tab. 2), and net carbon uptake (SGSNEE), for all PFT's, pooled. 495 

N. obs—number of available sites and years; R
2
—coefficient of determination; RMSE—root 496 

mean square error; NMB—normalized mean bias; Y-int—y-intercept of the linear model; 497 

Slope—slope of the linear model; Rcv
2
—cross-validate coefficient of determination; and 498 

RMSEcv—cross-validated root mean square error. Bold letters indicate the model with highest R
2
 499 

value.  500 

 

N. obs R
2
 RMSE NMB Y-int Slope Rcv 

2
 RMSEcv 

 (-) (day) (day) (day) (-) (-) (day) 

SGSNEE vs. SGSMODIS 

NDVI 64 0.77* 20.50 0.0006 0.38 1.04 0.77 20.47 

SR 64 0.59* 27.43 -0.0020 -4.50 0.90 0.59 27.44 

WRDVI 64 0.70* 23.58 -0.0010 11.06 0.86 0.70 23.60 

EVI2 64 0.51* 30.04 0.0004 26.82 0.82 0.51 30.14 

GEMI 63 0.40* 33.47 0.0005 53.49 0.63 0.39 33.54 

SAVI 64 0.58* 27.76 -0.0004 20.33 0.83 0.58 27.85 

SGSNEE vs. SGSin-situ             

NDVI 64 0.65* 25.23 0.0014 30.35 0.84 0.65 25.23 

SR 64 0.32* 35.20 -0.0016 42.99 0.61 0.32 35.12 

WRDVI 62 0.40* 33.08 -0.0010 42.75 0.65 0.39 33.12 

EVI2 64 0.18* 38.82 -0.0013 85.66 0.34 0.18 38.88 

GEMI 62 0.02 41.74 0.0007 125.09 0.10 0.02 41.50 

SAVI 62 0.26* 36.92 -0.0009 69.75 0.46 0.26 36.94 

*: p-value < 0.05 501 

 502 

 503 



[Table 6] 504 

 505 

Table 6 - Correlation between the start day of the growing season (SGS) derived from NEE 506 

(SGSNEE) and derived from MODIS (SGSMODIS) respectively in-situ (SGSin-situ) NDVI's. PFT—507 

plant functional type; N. obs—number of available sites and years; R
2
—coefficient of 508 

determination; RMSE—root mean square error; NMB—normalized mean bias; Y-int—y-509 

intercept of the linear model; Slope—slope of the linear model; Rcv
2
—cross-validate coefficient 510 

of determination; and RMSEcv—cross-validated root mean square error. Bold letters indicate the 511 

model with highest R
2
 value. 512 

PFT N.obs R
2
 RMSE NMB Y-int Slope Rcv

2
 RMSEcv 

  (-) (day) (day) (day) (-) (-) (day) 

SGSMODIS derived from NDVI  

CRO 16 0.54* 31.24 0.0009 22.61 0.85 0.53 31.65 

DBF 15 0.74* 8.02 

-

0.0006 -13.89 1.10 0.74 8.03 

EBF 3 0.96 11.44 0.0307 

-

185.23 2.40 1.00 0.00 

ENF 10 0.23 21.88 0.0041 36.18 0.70 0.24 21.90 

GRA 10 0.59* 8.69 0.0007 7.99 0.93 0.57 8.73 

OSH 6 0.37 9.49 0.0335 77.85 0.62 0.40 9.62 

WSA 4 0.99* 3.75 0.0198 38.75 0.91 0.94 4.42 

SGSin-situ derived from NDVI  

CRO 16 0.65* 27.17 0.0001 1.09 0.99 0.66 26.22 

DBF 15 0.60* 10.00 0.0003 52.13 0.59 0.63 9.96 

EBF 3 0.45 45.26 0.2063 -61.39 2.26 1.00 0.00 

ENF 10 0.17 22.77 0.0163 63.46 0.49 0.16 22.81 

GRA 10 0.49* 9.64 0.0124 156.10 -0.45 0.52 9.57 

OSH 6 0.34 9.70 0.0376 96.24 0.49 0.28 10.38 

WSA 4 0.91 13.59 0.0128 -1.31 1.06 1.00 0.00 

*: p-value < 0.05 513 

 514 



Note as well that SGSMODIS-NDVI dates correspond well with SGSNEE for grassland (GRA) and 515 

cropland (CRO). However, SGSin-situ-NDVI shows a higher R
2
 and lower RMSE than SGSMODIS-516 

NDVI for cropland. For cropland the MODIS WRDVI, EVI2 and GEMI show slighly higher 517 

scores than the NDVI (see Table S3 and S4 in the Supplementary Data). 518 

For grassland it is interesting to note that SGSMODIS and SGSin-situ are better correlated with 519 

SGSNEE, when estimated with SAVI than with the NDVI (see Table S3 and S4 in Supplementary 520 

Data). 521 

 522 

GLMM analysis 523 

To test the hypothesis that the prediction of the residuals of the SGSNEE date from MODIS and 524 

in-situ VI's (i.e. SGSNEE − SGSMODIS and SGSNEE − SGSin-situ, respectively) are related to VI 525 

seasonality, VI, PFT type and the variable amplitude (the difference between the maximum and 526 

minimum value of a VI), a GLMM analysis was performed. 527 

The results of the GLMM analysis of the residuals of the regression line between SGSNEE and 528 

SGSMODIS reveals significant two way interactions between each of the three explanatory 529 

variables (see Table 7). For in-situ data only the interaction effect PFT x VI significantly affects 530 

the residuals of the SGSNEE vs. SGSin-situ relationship. The other interctions were not significant 531 

and therefore they were not taken into account in the final model (amp*VI: F5,285 = 0.78, p = 532 

0.57; amp*PFT: F6, 290 = 1.03, p = 0.41). 533 

[Table 7] 534 

 535 

 536 



 537 

 538 

Table 7 - Results of  a GLMM analysis testing the sensitivity of the residuals of a regression line 539 

between ‘SGSNEE and SGSMODIS’ and SGSMODIS and ‘SGSNEE – SGSin-situ’ relationships, with 540 

respect to PFT's and VI's and amplitude (amp). Effect—fixed effect in the LME; Num DF— 541 

Numerator degree of freedom; Den DF—Denominator degree of freedom; F Value—value of 542 

statistics; PFT—plant functional type; p—probability; VI—vegetation index; and amp—543 

difference between the maximum and minimum value of a VI. 544 

 545 

Effect Num DF Den DF F Value p 

SGSNEE – SGSMODIS 

amp 1 282 11.63 0.001 

VI 5 282 0.67 0.646 

PFT 6 282 3.98 0.001 

amp*PFT 6 282 3.69 0.001 

amp*VI 5 282 3.29 0.006 

PFT*VI 30 282 4.22 <.0001 

SGSNEE – SGSin-situ 

amp 1 296 0.41 0.522 

VI 5 296 11.35 <.0001 

PFT 6 296 2.48 0.023 

PFT*VI 30 296 3.68 <.0001 

*: p-value < 0.05 546 

 547 

Figure 4 reports on the variation (e.g. mean value and standard error) of the SGS date estimates 548 

using three different methods (i.e. (a) derived from NEE flux data, (b) derived from in-situ 549 



fAPAR and (c) derived from MODIS EVI) for cropland,  deciduous broadleaf forest and (c) 550 

evergreen needleleaf forest sites reported in table S1 in the Supplementary Data. 551 

Deciduous forest (DBF) shows a good agreement between the three methods. SGS date estimates 552 

based on remote sensing are however uncertain for evergreen needle leaf forest (ENF). 553 

Moreover, EVI predicts the SGS date at an earlier point in time than NEE and in-situ fAPAR. 554 

 555 

[Figure 4] 556 

 557 

 558 

Figure 4 – Start of growing season (SGS) date estimated by using three methods.  NEE is mass 559 

flux data measured at flux sites,  fAPAR in-situ is fAPAR derived from in-situ radiation 560 

measurements and  EVI MODIS is EVI derived from MODIS data for (a) CRO—Cropland, (b) 561 

DBF—Deciduous Broadleaf Forest, and (c) ENF—Evergreen Needle-leaf Forest sites locate in 562 



the Northern Hemisphere. Dots represent mean values of SGS date estimates for the three cited 563 

variables variable and lines represent data standard errors. 564 

4 Discussion 565 

4.1 Phenological metrics of in-situ and satellite sensor acquisitions for different 566 

VI's and PFT's 567 

Typically, MODIS VI's tend to predict the SGS date at an earlier time point in the season than 568 

compared with the in-situ VI's (Figs. 1 and 2; Table 3). The disagreement between MODIS and 569 

the in-situ VI's can be related to the different sensor characteristics, e.g. the different spectral 570 

bandwidths (hence, different spectral resolutions) and instantaneous fields of view (IFOV's). The 571 

latter depends on the distance between the canopy and the sensor position and field of view 572 

angle. All VI's considered in this paper are computed using RED and NIR reflectances (see Table 573 

2) from MODIS and in-situ acquisitions for 28 FLUXNET sites (Table 1). In that respect in-situ 574 

RED and NIR reflectances are acquired with two extremely broad spectral bands (400 to 700 nm 575 

and 700 to 2800 nm, respectively). Wilson and Meyers (2007) report that a steep increase of in-576 

situ VI's based on these broad RED and NIR bands indicates an increase of canopy greening 577 

and/or vegetation cover at the canopy level. On the other hand, the MODIS sensor has a higher 578 

spectral resolution than the in-situ pyranometers. Typically, the MODIS RED and NIR spectral 579 

bandwidths span a spectral range from 620 to 670 nm and 841 to 876 nm respectively. This 580 

difference in spectral resolution contributes to a difference in interpretation of the canopy 581 

biophysical properties for a growing season, e.g. photosynthetic rate (Inoue et al. 2008). 582 

In addition, during greening, canopy reflectance in the PAR region (PAR ranges from  400 to 583 

700 nm ) decreases due to an increase in PAR absorption by additional chlorophyll (and 584 



photosynthesis) in the canopy due to new, emerging leaves (Ryu et al. 2008). Moreover, the 585 

spectral signature of upwelling optical radiation in many PFT's changes due to a decreasing gap 586 

fraction when time in the growing season progresses. Clearly, this is an issue of strong concern 587 

and interest. NIR has a higher transmissivity in the canopy than RED and hence NIR reflectance 588 

changes with canopy structure and largely opposite with respect to the PAR band (Ollinger et al. 589 

2008).  590 

Another issue to be mentioned is the difference in IFOV for MODIS and the in-situ observations. 591 

The IFOV of a sensor and its orbit or acquisition position determines the surface area covered by 592 

the sensor. A large difference exists between respectively the MODIS and the in-situ IFOV's. No 593 

need to state that this does affect comparability of top-of-the-canopy reflectance and hence the 594 

derived VI values for both sensor types (i.e., MODIS and in-situ). The area acquired by MODIS 595 

is 500 x 500 m per pixel, e.g. 250,000 m². This a much larger surface area covered than with a 596 

flux tower mounted sensor, even when this camera has a large IFOV, because flux towers do not 597 

exceed canopy height very significantly. This brings up the issue of the differences in tower and 598 

canopy height, between the different flux tower sites. The different sites have fundamentally 599 

different IFOV's for the for in-situ observations except when corrected for by sensor fore-optics, 600 

so that a match between the MODIS IFOV and the tower sensor IFOV is obtained. This however 601 

is never the case for the FLUXNET sites as there is no standard procedure defined to guarantee a 602 

consistently equal IFOV. Typically, the in-situ sensors are positioned  horizontally at 1 up to 10 603 

m above the canopy top level and near the flux sensors (for more details see Balzarolo et al. 604 

(2011)). The remotely sensed response originating from MODIS top-of-the-canopy VI's has a 605 

IFOV of 120°and a FOV of 250,000 m². In the case of the tower sensors, the radiation reflected 606 

by the canopy originates from an IFOV of about 120° as well. However, the maximum surface 607 



area observed by the in-situ sensor varies roughly between 5.44 and 54.41 m
2
, assuming the 608 

height of the sensor above the canopy varies between 1 to 10 m. That's a difference in magnitude 609 

in FOV of about a factor 20,000, which is a difference of more than 5 orders of magnitude. 610 

These huge differences in FOV make the evaluation of MODIS data compared with in-situ 611 

measurements quite complex. Biophysical variables like gap fraction and LAI can be estimated 612 

relatively accurately close to the canopy, but much more difficult at a spatial resolution of 613 

500x500m, even for forest.  614 

Site spatial heterogeneity can be estimated more accurately close to the top-of-the-canopy as 615 

opposed to spaceborne observations and dependant on the PFT considered (Cescatti et al. 2012). 616 

Of all VI's investigated in this paper, the NDVI shows the highest correlation coefficient for the 617 

relationship between SGSMODIS and SGSin-situ (Fig. 1, Table 3), but with a 20-21 days earlier SGS 618 

date obtained for MODIS than for in-situ sensors. Furthermore, the SGSMODIS vs. SGSin-situ 619 

relationship differs according to the VI considered. 620 

The NDVI is strictly related to the transition region between RED and NIR (i.e. the red-edge 621 

region). The red-edge region is affected primarily, by leaf chlorophyll contentand at low LAI 622 

values by the spectral properties of the soil (or snow) as well. These boundary conditions 623 

determine the spectral signature of the canopy during the growing season. Several authors 624 

reported that the difference in spectral resolution between MODIS and in-situ sensors leads to 625 

different VI values, certainly when the spectral signature changes with increasing LAI during the 626 

growing season. 627 

In general, most carbon balance research focusses on a comparison of the NDVI derived from 628 

MODIS and in-situ radiation measurements, mostly for validation purposes. However, Wilson 629 

and Meyers (2007) compared in-situ NDVI observations, derived from the same tower set-up's 630 



used in this study, with a 1x1 km 16 days composite  MODIS NDVI. They reported that the 631 

MODIS VI values show slightly larger amplitude than the in-situ vegetation index values. 632 

4.2. An optimal remote sensing proxy to characterise CO2 mass flux phenology 633 

This paper describes that MODIS VI performance is more optimal as a remote sensing proxy for 634 

SGSNEE (Figs. 2a and 3a; Table 5) with the boundary condition, that PFT data are pooled. As 635 

discussed earlier, the differences in MODIS and in-situ sensor characteristics determine the final 636 

result for different VI's and, consequently, affect the day of the start of carbon uptake SGSNEE for 637 

the different PFT's. Xiao et al. (2008) reported that the discrepancies between NEE fluxes 638 

estimated with MODIS VI's and the actually measured NEE are strictly related to the spatial 639 

complexity of the ecosystems in the MODIS pixel area (e.g. 1 km x 1 km).  640 

For instance, different plant species within the same eddy covariance footprint will vary in their 641 

contribution to the NEE making it difficult to predict the phenological cycle of an ecosystem as a 642 

whole (Ma et al. 2007). Fisher and Mustard (2007) reported that changes in MODIS NDVI at the 643 

beginning of the growing season are not in phase with plant carbon dynamics but rather plant 644 

biomass dynamics. Likewise, this study demonstrates that the in-situ NDVI, in addition to the 645 

MODIS NDVI, is more sensitive to biomass rather than to carbon dynamics. It has been 646 

established quite exhaustively by many authors that the NDVI is a proxy for fAPAR (and to 647 

some extent LAI) estimation. However, the NDVI is not sensitive to short-term changes 648 

(changes occurring in less than a week) in photosynthetic activity (Gamon et al. 1992; Gitelson 649 

2004; Hmimina et al. 2014). In addition, several studies indicate that photosynthetic capacity 650 

does not reach its maximum during the greening phase. For instance, the lag between flux 651 

phenology (SGSNEE) and canopy greenness (SGSMODIS and SGSin-situ), as observed from the VI's 652 

can be explained by a difference in time lag between ecosystem photosynthetic capacity and leaf 653 



expansion during spring for beech trees (i.e. see Supplementary data, for the Hainich site as 654 

described in Knohl et al. (2003)). In addition, Morecroft et al. (2003) stated that the full 655 

photosynthetic capacity of Quercus robur leaves is reached 50 days after bud break. At the start 656 

of the season, when the canopy is developing, an increase in carbon uptake is typically 657 

associated with an increase in soil respiration, able to reduce NEE substantially (Xiao et al. 658 

2008). The study of Ryu et al. (2014) compares MODIS and in-situ leaf-out observations with 659 

optical sensors (i.e. LED and LAI-2000 measurements). It reports that the MODIS NDVI is able 660 

to sense the signal of understory leaf-out obtained from in-situ observations for deciduous forest. 661 

In addition, another study showed that the MODIS NDVI predicts an earlier leaf-out than in-situ 662 

observations for overstory leaf-out (Ganguly et al. 2010). For a deciduous forest, the leaf-out 663 

phase of the understorey canopy tends to occur earlier than that of the overstory. 664 

Our results agree well with previous results obtained for deciduous ecosystems. For these 665 

ecosystems, a strong dependence of photosynthetic activity on leaf area expansion and MODIS 666 

and in-situ VI patterns agree well with the dynamics of NEE (see Supplementary Data).In 667 

grassland ecosystems for instance, a low variation of MODIS and in-situ VI's partially reflects 668 

GPP and NEE seasonal variations. Wohlfahrt et al. (2010) demonstrated that in-situ NDVI can 669 

be a proxy for carbon fluxes at least for two temperate mountain grasslands in Austria. 670 

Furthermore, the good performance of MODIS and in-situ SAVI to predict the start day of 671 

carbon uptake for different types of cropland (Table S3 and S4 in Supplementary Data) may be 672 

related to the presence of bare soil or fallow / sparse vegetation affecting the spectral signature of 673 

the soil surface from a mixture of soil and vegetation to homogeneous vegetation during the 674 

course of the growing season. This is particularly true for grassland sites where at the beginning 675 

of the growing season, the grassland canopy is not fully developed and hence the gap fraction of 676 



the canopy is high (or the fCover very low). The presence of the additional factor L (see Table 2) 677 

for the RED reflectance in the denominator of the SAVI equation, makes the vegetation index 678 

less sensitive to soil darkening due to an increase in soil moisture. Therefore, the spatial 679 

distribution of the vegetation for grassland PFT's is assumed to play a major role in the 680 

determination of the start of the growing season and, hence the start of carbon dioxide uptake. 681 

For croplands we found that the MODIS WDRVI elicits a higher correlation coefficient value 682 

than the NDVI (Table S2 in Supplementary Data). This is a confirmation that the WRDVI is a 683 

good proxy for cropland phenology (Gitelson et al., 2004). 684 

For evergreen broadleaf forests we didn’t find high enough significant correlation coefficient 685 

values any more (Table 6). Typically all evergreen broadleaf sites described in this paper are 686 

located in tropical regions and characterised by a high and relatively constant photosynthetic and 687 

carbon activity over an entire year. Seasonal variations in carbon balance have been described 688 

(e.g. Bonal et al. (2008)), but this variation is clearly not reflected by MODIS and in situ NDVI's 689 

(Hmimina et al. 2013) and certainly not comparable with temperate zone PFT carbon dynamics 690 

variability.  691 

The difficulty to predict SGSNEE for the EBF PFT sites (Figs. 2 and 3) is clearly due to the 692 

discrepancy between canopy physiology and phenology. Canopy phenology remains rather 693 

stable (Hilker et al. 2014), whereas canopy physiology depends on seasonal variations in 694 

environmental factors (mainly radiation and soil water availability, especially in monsoon forced 695 

ecosystems) (Monson et al. 2005). In addition, for tropical regions long rainy seasons make it 696 

difficult to collect both in-situ measurements and clear-sky satellite imagery (Hmimina et al. 697 

2013). 698 



Also for evergreen needleleaf forest significant correlations were not found. The annual 699 

phenological cycle of evergreen needle leaf boreal forests in Sweden is related more to snow and 700 

snow melt, than changes in needle canopy greening dynamics (Jönsson et al. 2010). For 701 

evergreen needleleaf forests, changes in greenness at the start of the growing season are 702 

decoupled from the start of the carbon uptake season and hence ecosystem physiological activity 703 

(Zwiazek et al. 2001). 704 

Finally, the amplitude (i.e. the difference between the maximum and minimum value of a VI for 705 

each growing season), VI type and PFT properties affect the residuals of the correlation function 706 

between SGSNEE and SGSMODIS. This suggests that differences in predicting SGSNEE with 707 

different VI's depends on amplitude differences for both carbon and VI dynamics. This suggests 708 

that it is not likely to develop a generic model for the description and modelling of flux 709 

phenology for all global PFT's and ecosystems. Even though the NDVI derived from both 710 

MODIS and in-situ data shows a good correlation for all PFTs, pooled (Tabs. 5-6), a VI for a 711 

PFT improves the estimation of the SGS date for a that specific PFT (e.g. the WRDVI for 712 

cropland for example). Therefore, further efforts should focus on the understanding of the most 713 

appropriate VI or a combination of different VI's or maybe even multi-dimensional hyperspectral 714 

VI's, which may have the capacity to describe the clearcut complexity of flux phenology (Wong 715 

and Gamon 2015). 716 

5. Conclusions 717 

MODIS and in-situ VI's show consistent results. Of all VI's considered in this paper, the NDVI 718 

shows the highest correlation coefficient for the relationship between the starting day of the 719 

growing season as observed with MODIS and in-situ observations. Also, the MODIS NDVI 720 



performs best when applied as an estimator for Net Ecosystem Exchange but only with the 721 

boundary condition that all PFT's are pooled. Nonetheless, it has been elicited that a specific VI 722 

can be applied to improve the estimation of a SGS date for a specific PFT - for example the 723 

WRDVI for cropland, which is however suboptimal for the other PFT's. 724 

Summarizing, this study suggests that: 725 

(i)  In-situ radiation data measurements are a good approach to bridge the gap between local 726 

eddy covariance carbon fluxes and MODIS global VI acquisitions; 727 

(ii)  Methodological improvement and the use of hyperspectral optical sensors is required at 728 

the flux towers to better describe ecosystem carbon dynamics and carbon dioxide flux 729 

phenology (Porcar-Castell et al. 2015). 730 

(iii) A generic model used to estimate flux phenology for all ecosystems is still a bottleneck 731 

issue, though multi-dimensional VI's as obtained from hyperspectral remote sensing are a 732 

good possibility to develop a generic model (Rivera et al. 2014). 733 

(iv)  Further work should explore the utility of the new forthcoming super-spectral 734 

‘Copernicus’ Sentinel-2 and Sentinel-3 missions that will provide a vast data stream 735 

helpful to understand the physiological and photosynthetic activity of the canopy driven 736 

by seasonally changing pigment concentrations  (e.g. chlorophylls) and fluorescence 737 

(Van Wittenberghe et al. 2013; Van Wittenberghe et al. 2014; Verrelst et al. 2015). 738 

Finally, the work presented in this paper confirms the importance of ecosystem (top-of-the-739 

canopy scale) remote sensing observations to better describe global ecosystem phenological 740 

metrics as well as to validate satellite VI's as upscaling proxies. In this regard, the establishment 741 

of long-term global monitoring networks such as ICOS (www.icos-infrastructure.eu) NEON 742 

(www.neoninc.org) and AmeriFlux (http://ameriflux.lbl.gov), foster the use of in-situ 743 

http://www.icos-infrastructure.eu/
http://ameriflux/


measurements and provide a unique framework for this type of activity, which may ultimately 744 

lead to more accurate estimates of the global terrestrial carbon balance. 745 
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 1010 

Figure 1 – Relationship between the start day of a growing season (SGSin-situ) as derived from in-1011 

situ and MODIS (SGSMODIS) VI's (see VI definitions in Table 2) for different PFT's (CRO—1012 

Cropland; DBF—Deciduous Broadleaf Forest; EBF—Evergreen Broadleaf Forest; ENF—1013 

Evergreen Needle-leaf Forest; GRA—Grassland; OSH—Open Shrubland; WSA—Woody 1014 

Savanna). Black lines represent linear interpolation functions (for all PFT's pooled), dotted lines 1015 

1:1 relationships. 1016 

 1017 

Figure 2 – Relationships between the start day of the growing season, derived from in-situ 1018 

(SGSin-situ) VI's (see VI definitions in Table 2) and NEE (SGSNEE) for the different PFT's 1019 

considered in this paper. Black lines represent linear interpolation functions (for all PFT's 1020 

pooled), dotted lines 1:1 relationships.  1021 

 1022 

Figure 3 – Relationships between the day of the start of a growing season as derived from 1023 

MODIS (SGSMODIS) vegetation indices  and net carbon uptake (SGSNEE) for different plant 1024 

functional types as in Fig. 2, except that the start of the growing season day is derived from 1025 

MODIS vegetation indices (SGSMODIS) instead of in-situ vegetation indices. 1026 

 1027 

Figure 4 – Start of growing season (SGS) date estimated by using three methods.  NEE is mass 1028 

flux data measured at flux sites,  fAPAR in-situ is fAPAR derived from in-situ radiation 1029 

measurements and  EVI MODIS is EVI derived from MODIS data for (a) CRO—Cropland, (b) 1030 

DBF—Deciduous Broadleaf Forest, and (c) ENF—Evergreen Needle-leaf Forest sites locate in 1031 



the Northern Hemisphere. Dots represent mean values of SGS date estimates for the three cited 1032 

variables variable and lines represent data standard errors. 1033 
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