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LIMIT CYCLES OF A CLASS OF GENERALIZED
LIÉNARD POLYNOMIAL EQUATIONS

JAUME LLIBRE1 AND AMMAR MAKHLOUF 2

Abstract. We prove that the generalized Liénard polynomial dif-
ferential system

(1) ẋ = y2p−1, ẏ = −x2q−1 − εf(x) y2n−1,

where p, q and n are positive integers, ε is a small parameter and
f(x) is a polynomial of degree m can have [m/2] limit cycles, where
[x] is the integer part function of x.

1. Introduction and statement of the main results

In 1900 Hilbert [2] in the second part of his 16–th problem proposed
to find an uniform upper bound for the number of limit cycles of all
polynomial differential systems of a given degree, and also to study their
distribution or configuration in the plane. The 16–th problem, except
the one related with the Riemann hypothesis, seems to be the most
elusive of Hilbert’s problems. It has been one of the main problems in
the qualitative theory of planar differential equations during the XX
century. Until now it is not proved the existence of such an uniform
upper bound. This problem remains open even for the polynomial
differential systems of degree 2. However it is not difficult to see that
any finite configuration of limit cycles is realizable for some polynomial
differential system, see for details [6].

Following to Smale [8] many authors consider an easier and special
class of polynomial differential systems, the Liénard polynomial differ-
ential equation:

(2) ẍ + f(x)ẋ + x = 0,

where

(3) f(x) = a0 + a1x + . . . + amxm,
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and the dot denotes derivative with respect to the time t. The Liénard
polynomial equation (2) of second order can be written as the Liénard
differential system of first order

ẋ = y, ẏ = −x − f(x) y.

For these systems the existence of uniform bounds also remain un-
proved.

Here we want to study the number of limit cycles of the following
generalized Liénard polynomial differential system of first order

(4) ẋ = y2p−1, ẏ = −x2q−1 − εf(x) y2n−1,

where p, q and n are positive integers, ε is a small parameter and f(x)
is the polynomial (3).

In fact system (4) with ε = 0 is a Hamiltonian system with Hamil-
tonian

H(x, y) =
1

2q
x2q +

1

2p
y2p.

This system has a global center at the origin of coordinates, i.e. the
periodic orbits surrounding the origin filled the whole plane R2, and
we want to study how many periodic orbits persist after perturbing the
periodic orbits of this center as in the system (4) for ε ̸= 0 sufficiently
small.

Let [x] denotes the integer part function of x ∈ R. Our main result
is the following one.

Theorem 1. For ε ̸= 0 sufficiently small the polynomial differential
system (4) can have at least [m/2] limit cycles if m is the degree of the
polynomial f(x).

Theorem 1 is proved in section 2 using averaging theory of first order.
See the appendix for a summary of the results on averaging theory here
used. Note that the maximum number of limit cycles obtained using
the averaging theory of first order only depends on m the degree of the
polynomial f(x), and it is independent of p, q and n.

System (4) with p = q = n = 1 was studied by Lins et al. [5] in
1977, and for p = n = 1 and q arbitrary has been studied by Urbino
et al. [9] in 1993. Other generalizations of Liénard systems have also
been studied, see for instance [3, 7].

2. Proof of Theorem 1

The key point in the proof of many results on differential systems is
the election of good coordinates for studying the systems.
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Following Liapunov [4] we introduce the (p, q)–trigonometric func-
tions z(θ) = Cs θ and w(θ) = Sn θ as the solution of the following initial
value problem

ż = −w2p−1, ẇ = z2q−1, z(0) = p− 1
2q , w(0) = 0.

It easy to check that the functions Cs θ and Sn θ satisfy the equality

p Cs 2qθ + q Sn 2pθ = 1.

For p = q = 1 we have that Cs θ = cos θ and Sn θ = sin θ; i.e. the
(1, 1)–trigonometric functions are the classical ones. It is known that
Cs θ and Sn θ are T–periodic functions with

(5) T = 2 p− 1
2q q− 1

2p

Γ( 1
2p

)Γ( 1
2q

)

Γ( 1
2p

+ 1
2q

)
,

where Γ(x) is the Gamma function.

The (p, q)–polar coordinates (r, θ) are defined as

x = rp Cs θ, y = rq Sn θ.

The generalized Liénard differential system (4) in the (p, q)–polar co-
ordinates becomes

(6)
ṙ = −ε rq(2n−2)+1 Sn 2(p+n−1)θ f(rpCs θ),

θ̇ = −r2pq−p−q − ε p r2q(n−1)Cs θ Sn 2n−1θ f(rpCs θ).

Taking as independent variable the angular variable θ the differential
system (6) writes

(7)
dr

dθ
= −ε r(2n−1)q+p+1−2pq Sn 2(p+n−1)θ f(rpCs θ) + O(ε2),

= εF1(θ, r) + O(ε2).

Now we shall apply the Theorem 2 of the appendix. Using the no-
tation defined there we have

x = y = r, t = θ, F1(t,x) = F1(θ, r).

Then, using (3) we have that

g(r) =
m∑

k=0

ak r(2n−1)q+p+1−2pq+pk

∫ T

0

Sn 2(p+n−1)θ Cs kθ dθ

=
m∑

k=0

ak r(2n−1)q+p+1−2pq+pk bk.
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From [4] it follows that bk = 0 if k is odd, and clearly bk > 0 if k is
even. So we have

g(r) = r(2n−1)q+p+1−2pq

m∑

k = 0
k even

ak bk rpk.

We recall the Descartes Theorem about the number of zeros of a real
polynomial (for a proof see for instance [1]).

Descartes Theorem. Consider the real polynomial p(x) = ai1x
i1 +

ai2x
i2 + · · · + aikx

ik with 0 ≤ i1 < i2 < · · · < ik and aij ̸= 0 real
constants for j ∈ {1, 2, · · · , k}. When aijaij+1

< 0, we say that aij and
aij+1

have a variation of sign. If the number of variations of signs is
m, then p(x) has at most m positive real roots. Moreover, it is always
possible to choose the coefficients of p(x) in such a way that p(x) has
exactly k − 1 positive real roots.

By Descartes Theorem the polynomial g(r) has at most [m/2] posi-
tive roots r. Then, by Theorem 2 it follows that the differential equa-
tion (7) can have [m/2] periodic solutions, and consequently the differ-
ential systems (6) or equivalently (4) can have [m/2] periodic solutions
which can be chosen alternatively stable and unstable. In short, the
differential system (4) can have [m/2] limit cycles. This completes the
proof of Theorem 1.

Appendix: averaging theory of first order

We consider the initial value problems

(8) ẋ = εF1(t,x) + ε2F2(t,x, ε), x(0) = x0,

and

(9) ẏ = εg(y), y(0) = x0,

with x , y and x0 in some open Ω of Rn, t ∈ [0,∞), ε ∈ (0, ε0]. We
assume that F1 and F2 are periodic of period T in the variable t, and
we set

g(y) =
1

T

∫ T

0

F1(t,y)dt.

Theorem 2. Assume that F1, DxF1 ,DxxF1 and DxF2 are continuous
and bounded by a constant independent of ε in [0, ∞)× Ω× (0, ε0], and
that y(t) ∈ Ω for t ∈ [0, 1/ε]. Then the following statements holds:

(1) For t ∈ [0, 1/ε] we have x(t) − y(t) = O(ε) as ε → 0.
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(2) If p ̸= 0 is a singular point of system (9) and detDyg(p) ̸=
0, then there exists a periodic solution ϕ(t, ε) of period T for
system (8) which is close to p and such that ϕ(0, ε) − p = O(ε)
as ε → 0.

(3) The stability of the periodic solution ϕ(t, ε) is given by the sta-
bility of the singular point.

We have used the notation Dxg for all the first derivatives of g, and
Dxxg for all the second derivatives of g.

For a proof of Theorem 2 see [10].
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