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Abstract. In this paper we characterize all possible sets of periods of
homeomorphisms defined on some classes of finite connected compact
graphs.

1. Introduction

Here a (topological graph) or simply a graph G is a compact set formed
by a finite union of vertices (points) and edges, which are homeomorphic to
a non–empty open interval of the real line, and are pairwise disjoint. The
boundary of one edge is formed either by two vertices, or by a unique vertex.
Moreover, the graphs that we consider here always are connected.

We identify a circle with the unit circle S1 centered at the origin of the
complex plane. A circuit (or loop) of a graph G is any subset of G homeo-
morphic to S1. A tree is a graph without circuits. The set of vertices of a
graph G will be denoted by V (G). Clearly V (G) is finite.

Let G be a graph and z ∈ G. Then, we consider a small open neighbor-
hood U (in G) of z such that Cl(U) is a tree. The number of connected
components of U \ {z} is called the valence of z and is denoted by Val(z).
Observe that this definition is independent of the choice of U if it is suf-
ficiently small, and that Val(z) 6= 2 implies that z ∈ V (G). A vertex of
valence 1 is called an endpoint of G and a vertex of valence larger than 2 is
called a branching point of G.

Let f : G → G be a continuous map. A point z ∈ G such that f(z) = z
is called a fixed point or a periodic point of period 1. The point z ∈ G is
periodic of period m > 1 if fm(z) = z and fk(z) 6= z for k = 1, . . . ,m− 1.
Of course, in the whole paper fm(z) denotes the m–th iterate of the point z
by the map f . We denote by Per(f) the set of periods of all periodic points
of f .

In this work our aim is to characterize the sets Per(f) when f : G → G is
a homeomorphism of a given graph G. As we will see this objective is only
reached for some classes of graphs, the full characterization for every graph
looks as a very hard problem.
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Figure 1. A 5–flower graph.

Probably the first result on the set of periods of a homeomorphism of a
graph is the following one due to Fuller [3]. See section 2 for the definition
of independent oriented loops.

Theorem 1. Let G be a graph with c independent oriented loops and let
f : G → G be a homeomorphism. Then, the following statements hold.

(a) If c = 0 (i.e. G is a tree), then 1 ∈ Per(f).

(b) If c > 1, then Per(f) ∩ {1, 2, . . . , c} 6= ∅.
In fact Fuller does not provide Theorem 1, he provided a more general

result that restricted to graphs becomes Theorem 1, see for details section
2.

The characterizations of the sets of periods for the homeomorphisms on a
closed interval I or on the circle S1 are well known for the mathematicians
working in topological dynamics, see the next two theorems, but since it is
not easy to find their proofs in the literature we provide a proof of these two
theorems in section 3.

Theorem 2 (Interval Theorem). Let I be a non–degenerate closed interval
(i.e. different from a point), and let f : I → I be a homeomorphism. Then

Per(f) =

{
{1} if f is increasing,
{1, 2} if f is decreasing.

As usualQ and R denote the sets of rational and real numbers respectively.
See the definition of rotation number ρ(f) ∈ R for a homeomorphism f :
S1 → S1 which preserves the orientation in section 3.

Theorem 3 (Circle Theorem). Let f : S1 → S1 be a homeomorphism.

(a) If f preserves the orientation, then

Per(f) =





∅ if ρ(f) /∈ Q,

{n} if ρ(f) =
k

n
with gcd(k, n) = 1.

(b) If f reverses the orientation, then Per(f) is either {1}, or {1, 2}.
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Figure 2. The 8−odd graph.

A p–flower graph is a graph with a unique branching point z and p > 1
edges all having a unique endpoint, the point z, equal for all of them. So,
this graph has p independent loops, each one is called a petal. See a 5–flower
graph in Figure 1.

Theorem 4 (p-Flower Theorem). Let f : G → G be a homeomorphism of
a p–flower graph G with p petals P1, P2, . . . , Pp.

(a) If f(Pl) = Pl for l = 1, 2, . . . , p, then Per(f) is either {1}, or {1, 2}.
(b) If f(Pl) 6= Pl for some l ∈ {1, 2, . . . , p}, then Per(f) is either {1}, or

any subset of {1, n1, n2, . . . , ns, 2n1, 2n2, . . . , 2ns} containing the 1,
where n1, n2, . . . , ns are arbitrary positive integers (non necessarily
different) satisfying 1 < n1 + n2 + . . .+ ns = p.

A graph with only one branching point z with valence b > 2 and b edges
having every edge the vertex z and another vertex different from z as end-
points always with valence 1 is called a b–odd graph. See an 8–odd graph in
Figure 2.

Theorem 5 (b–odd Theorem). Let f : G → G be a homeomorphism of a
b–odd graph G with branching point z and edges B1, B2, . . ., Bb. Then the
set Per(f) is {1} if f(x) = x for all x ∈ V(G), or {1, n1, n2, . . . , ns} oth-
erwise, where n1, n2, . . . , ns are positive integers (non necessarily different)
satisfying 1 < n1 + n2 + . . .+ ns = b.

A graph with only two vertices z and w and n > 1 edges having every
edge the vertices z and w as endpoints is called an n–lips graph. See a 7–lips
graph in Figure 3.

Theorem 6 (n–lips Theorem). Let f : G → G be a homeomorphism of the
n–lips graph G with vertices z and w, and let e1, e2, . . . , en be the edges of
G. Then the set Per(f) is

(a) either {1}, if f(z) = z and f(ei) = ei for all i = 1, 2, . . . , n;
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Figure 3. The 7–lips graph.

(b) or any subset of {1, n1, n2, . . . , ns} including the 1, if f(z) = z and
f(ei) 6= ei for some i ∈ {1, 2, . . . , n} (see the restrictions of the
numbers ni after all the statements);

(c) or {1, 2}, if f(z) 6= z and f(ei) = ei for all i = 1, 2, . . . , n;

(d) or any subset of {2, n1, n2, . . . , ns, 2n1, 2n2, . . . , 2ns} including the
set {2, n1, n2, . . . , ns}, if f(z) 6= z and f(ei) 6= ei for some i ∈
{1, 2, . . . , n},

where n1, n2, . . . , ns are non-negative integers (non necessarily different) sat-
isfying 1 < n1 + n2 + . . . + ns = n. The periods 2ni for i = 1, 2, . . . , s only
can appear if ni is odd.

A graph with p + b edges, where p ≥ 1 of them are petals and the other
b ≥ 1 are not petals, having all the edges as endpoint a point z, is called a
(p, b)–graph. In this case the point z has valence 2p+ b, and it is called the
main branching point of the (p, b)–graph. See a (4, 10)–graph in Figure 4.

Theorem 7 ((p, b)–graph Theorem). Let f : G → G be a homeomorphism
of a (p, b)–graph G with p petals P1, P2, . . ., Pp and b edges B1, B2, . . .,
Bb, which are not petals. Let z be the main branching point of G. All the
biggest subgraphs of G, which are n–lips for some n, are grouped as follows.
Let L

ηq
jq,1

, L
ηq
jq,2

, . . . , L
ηq
jq,tq

be all the ηq–lips subgraphs of G whose two vertices

are the vertex z and another vertex wk with k = 1, . . . , tq, each vertex wk

has valence ηq, and q = 1, 2, . . . , ρ (see Figure 4). Then the set Per(f) is

(a) either {1}, or {1, 2}, if f(Pl) = Pl for all l = 1, 2, . . . , p, and f(Bj) =
Bj for all j = 1, 2, . . . , b;
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Figure 4. A (4, 10)–graph with ρ = q = 1, ηq = 3 and tq = 2.

(b) or {1, n1, n2, . . . , ns}
⋃



ρ⋃

q=1

( vq⋃

i=1

ri,qAi,q

)
,

or {1, 2, n1, n2, . . . , ns}
⋃



ρ⋃

q=1

( vq⋃

i=1

ri,qAi,q

)
,

if f(Pl) = Pl for all l = 1, 2, . . . , p, and f(Bj) 6= Bj for some j ∈
{1, 2, . . . , b} (see the restrictions on the numbers ni, q, ri,q and vq at
the end of the statements);

(c) or {1}, or any subset of {1, k1, k2, . . . , ku, 2k1, 2k2, . . . , 2ku} contain-
ing the 1, where k1, k2, . . . , ku are arbitrary positive integers (non
necessarily different) satisfying 1 < k1 + k2 + . . . + ku = p, if
f(Pl) 6= Pl for some l ∈ {1, 2, . . . , p}, and f(Bj) = Bj for all
j = 1, 2, . . . , b;

(d) or any subset of

{1, n1, . . . , ns, k1, k2, . . . , ku, 2k1, 2k2, . . . , 2ku}
⋃



ρ⋃

q=1

( vq⋃

i=1

ri,qAi,q

)
,

including all the elements of this set except perhaps some of the ele-
ments of the set {k1, k2, . . . , ku, 2k1, 2k2, . . . , 2ku}, if f(Pl) 6= Pl for
some l ∈ {1, 2, . . . , p}, and f(Bj) 6= Bj for some j ∈ {1, 2, . . . , b};
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where n1, n2, . . . , ns, ri,q for i = 1, 2, . . . , vq and q = 1, 2, . . . , ρ, and k1, k2,
. . . , ku are positive integers (non necessarily different) satisfying

1 < n1 + n2 + . . . + ns +

ρ∑

q=1

vq∑

i=1

ηqri,q = b,

r1,q + r2,q + . . .+ rvq,q = tq and 1 < k1+ k2 + . . .+ ku = p, and Ai,q is one of
the sets of statements (a) and (b) of Theorem 6, for all i = 1, 2, . . . , vq and
q = 1, . . . , ρ.

Theorems 4, 5, 6 and 7 are proved in section 4.

2. Homology of a graph and Fuller’s result

We can consider the fundamental group of a graph G, see for instance [10]
for more details on the fundamental group. The elements of the fundamental
group are oriented loops of G. We assume that the fundamental group of
G has c independent oriented loops γi for i = 1, . . . , c, and let f : G → G
be a continuous map. Then, the homology groups of G are H0(X,Q) = Q
and H1(X,Q) =

⊕c
i=1 Q, and the actions f∗k : Hk(X,Q) → Hk(X,Q) for

k = 0, 1 induced by f on these homology groups are f∗0 = (1) (because G is
connected) and f∗1 = A, where A is a c× c matrix with integer entries. The
element aij of the matrix A is the number of times that the loop γi covers
the loop γj taking into account the orientation of the covering. Therefore,
the Betti’s numbers of G are B0(G) = dimQH0(X,Q) = 1 and B1(G) =
dimQH1(X,Q) = c. For more details of the homology of G see [10, 8, 11].

Fuller in [3] proved the following result; see also Halpern [4] and Brown
[2].

Theorem 8 (Fuller’s Theorem). Let f be a homeomorphism of a compact
polyhedron X into itself. If the Euler characteristic of X is not zero, then f

has a periodic point with period not greater than the maximum of
∑

k odd

Bk(X)

and
∑

k even

Bk(X), where Bk(X) denotes the k−th Betti number of X.

Applying the Fuller’s theorem to a graph G it follows Theorem 1.

For other results on the set of a continuous map from a graph into itself
see for instance [1] or [6], and the references quoted there.

3. An interval and a circle

First we state a general result for the set of periods of a homeomorphism
of a graph.

Proposition 9. Let f : G → G be a homeomorphism of a graph G non
homeomorphic to a circle. Then, the following statements hold.

(a) Let z be a vertex of valence k. Then f(z) is a vertex of valence k if
k 6= 2.
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(b) Per(f) 6= ∅.

Proof. Statement (a) follows immediately from the definition of a homeo-
morphism. Since a graph non–homeomorphic to a circle has a vertex with
valence different from 2, statement (b) follows easily from statement (a)
because a graph has finitely many vertices. �

From now on we shall investigate the possible sets Per(f) for the homeo-
morphisms f : G → G of different graphs G. We shall start with the easiest
graphs, as an interval and a circle, and we shall finish with more compli-
cated graphs. The results on the set of periods for the homeomorphisms of
an interval and of a circle play a main role in the study of the set of periods
of the homeomorphisms of other graphs.

Proof of Theorem 2 (Interval Theorem). Without loss of generality, we can
suppose that I = [0, 1]. Hence, if f : [0, 1] → [0, 1] is an orientation pre-
serving homeomorphism (i.e. monotone increasing), by Proposition 9(a) we
have f(0) = 0 and f(1) = 1. Moreover, we claim that any orbit of f , i.e. for
all x ∈ [0, 1] we have that {x, f(x), f2(x), . . .}, tends to a fixed point.

Firstly, we remark that if f : [0, 1] → [0, 1] is an increasing homeo-
morphism, then besides the fixed points 0 and 1, there can exist other
fixed points into the interval I = [0, 1]. We restrict f to a subinterval
formed by two consecutive fixed points, i.e. [y, z] such that either f(x) >
x for all x ∈ (y, z) or f(x) < x for all x ∈ (y, z). If f(x) > x then
any orbit {x, f(x), f2(x), . . .} tends to the fixed point z, and if f(x) < x
then any orbit {x, f(x), f2(x), . . .} tends to the fixed point y. More pre-
cisely, we take x ∈ (y, z) and first we consider the case that f(x) > x.
Then, f2(x) = f(f(x)) > f(x), because f |(y,z) is monotone increasing. By

induction we get fn(x) = f(fn−1(x)) > fn−1(x). Hence, the sequence
{fn(x)}∞n=0 is monotone increasing and upper bounded by z, so it converges
to sup{fn(x), for n = 0, 1, . . .} = z. Therefore, the ω–limit set of the orbit
of x ∈ (y, z) is the fixed point z.

Similarly, if f(x) < x, then the sequence {fn(x)}∞n=0 is decreasing and
lower bounded by y, and it converges to the fixed point y of f . Hence, the
claim is proved.

If f : [0, 1] → [0, 1] is an orientation reversing homeomorphism (i.e. mono-
tone decreasing), then by Proposition 9(a) we get f(0) = 1 and f(1) = 0. So,
2 ∈ Per(f). By the Bolzano’s Theorem also called the Intermediate Value
Theorem, we get that 1 ∈ Per(f). On the other hand, the second iterate
f2 is an orientation preserving homeomorphism, so from the first part we
obtain Per(f2) = {1}. Therefore, Per(f) = {1, 2}. �

For studying the set of periods of the homeomorphisms of the circle we
need to introduce an important dynamical invariant called the rotation num-
ber, it was firstly introduced by Poincaré [9] in 1885.
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For studying the dynamics of a continuous map f : S1 → S1 it is helpful to
lift the map to the straight line R. For a such f we call a map F : R → R a
lifting of f if π◦F = f ◦π, where π : R → S1 is given by π(x) = exp(2πix) =
cos(2πx) + sin(2πx)i. The degree of the map f is by definition the integer
F (1)− F (0), for more details see [1].

There are always infinitely many different liftings for a continuous map
f : S1 → S1. Indeed, one may easily prove that any two liftings of f differ
by an integer, that is, if F1 and F2 are liftings, then there exists k ∈ Z such
that F1(x) = F2(x) + k.

Let f : S1 → S1 be a homeomorphism. If f is orientation preserving, then
its degree is 1 and, if f is orientation reversing, its degree is −1. Moreover,
the lifting of a homeomorphism of the circle is a homeomorphism on the
straight line.

For studying the set of periods of the orientation preserving homeomor-
phisms we introduce the rotation number, which is a number between 0 and
1 that roughly speaking measures the average amount of points which are
rotated by an iteration of a continuous map f : S1 → S1 of degree 1. Before
defining the rotation number, we introduce a preliminary concept.

Let F be a lifting of an orientation–preserving homeomorphism f : S1 →
S1 of degree 1. For x ∈ S1 we define

ρ0(F, x) = lim
n→∞

Fn(x)

n
.

This limit exists and does not depend upon the choice of x. For this reason
we can put ρ0(F ) instead of ρ0(F, x). The rotation number of f , ρ(f), is the
fractional part of ρ0(F ) for any lifting F of f . That is, ρ(f) is the unique
number in [0, 1) such that ρ0(F )−ρ(f) is an integer. For more details about
the rotation number see [7, 5, 1]. We note that in [1] the rotation number
is essentially defined as ρ0(F ), instead of its fractional part.

Proof of Theorem 3 (Circle Theorem). Let f : S1 → S1 be a homeomor-
phism and assume that it preserves the orientation. Poincaré [9] proved
that the rotation number of an orientation preserving homeomorphism is
irrational if and only if it has no periodic points, see also [1]. So, for prov-
ing statement (a) we only need to prove the equality Per(f) = {n} when
ρ(f) = k/n with gcd(k, n) = 1, and this is proved for instance in [5, 1]. So,
the proof of statement (a) is completed.

Suppose that f reverses the orientation. Since continuous maps of degree
−1 have fixed points, see for instance [1], we have that 1 ∈ Per(f). So, there
exists a point x ∈ S1 such that f(x) = x. Then f2(x) = x and, as f2 is
a homeomorphism that preserves the orientation, by statement (a) we get
Per(f2) = {1} and, consequently, Per(f) ⊆ {1, 2}.

If we consider now the circle as the interval [0, 1] with both endpoints
identified, the map f : [0, 1] → [0, 1] defined by f(x) = 1−x is such that f2 is
the identity. So, for this orientation reversing homeomorphism we have that
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Per(f) = {1, 2}. Now, there are monotone decreasing maps g : [0, 1] → [0, 1]
such that g(0) = 1, g(1) = 0 and Per(g) = {1}. For example, consider a
decreasing map g : [0, 1] → [0, 1] such that g(0) = 1, g(1) = 0, g(x0) = x0 >
1/2, g(x) > x0−1

x0
· x + 1 for all x ∈ [0, x0] and g(x) = x0

x0−1 · (x − 1) for all

x ∈ [x0, 1], where x0 is a fixed point of g into the interval (12 , 1). From the
definition of g we get that g(x) > 1−x for all x ∈ (0, 1) and that these maps
are orientation reversing homeomorphism such that Per(f) = {1}. This
completes the proof of statement (b). �

4. A p-flower graph, a b-odd graph, an n–lips graph and a
(p, b)-graph

In these section we shall prove Theorems 4, 5, 6 and 7.

Proof of Theorem 4 (p-Flower Theorem). Let G be a p–flower graph with
the branching point z and p petals P1, P2, . . . , Pp. If f : G → G is a homeo-
morphism, by Proposition 9(a) we have that f(z) = z. Then, 1 ∈ Per(f).

Assume that f(Pl) = Pl for all l = 1, 2, . . . , p. Then, f |Pl
: Pl → Pl is a

homeomorphism of the topological circle Pl with a fixed point z. So, from
Theorem 3 it follows that Per(f) = {1} or Per(f) = {1, 2}, and statement
(a) is proved.

Suppose that f(Pl) 6= Pl for some l ∈ {1, 2, . . . , p}. Since every petal must
be applied to another petal by f , there exist n1 petals Pk1 , Pk2 , . . . , Pkn1

such that f(Pki) = Pki+1
, for all i = 1, 2, . . . , n1 − 1, and f(Pkn1

) = Pk1 ,
where 1 < n1 ≤ p. Therefore, the iterate fn1 is a homeomorphism of the
topological circle Pk1 having a fixed point. Thus, Per(fn1) is {1} or {1, 2}.
Therefore, either 1 ∈ Per(f), or {1, n1} ⊂ Per(f), or {1, 2n1} ⊂ Per(f), or
{1, n1, 2n1} ⊂ Per(f).

Furthermore, if n1 < p, there can exist other n2 petals Pl1 , Pl2 , . . . , Pln2

with similar property and satisfying 1 ≤ n2 ≤ p − n1, implying that either
1 ∈ Per(f), or {1, n2} ⊂ Per(f), or {1, 2n2} ⊂ Per(f), or {1, n2, 2n2} ⊂
Per(f).

In short, repeating these arguments, there can exist n1, n2, . . . , ns positive
integers with the above properties such that either 1 ∈ Per(f), or {1, ni} ⊂
Per(f), or {1, 2ni} ⊂ Per(f), or {1, ni, 2ni} ⊂ Per(f), for all i = 1, 2, . . . , s,
and satisfying 1 < n1 + n2 + . . . + ns = p. Reordering the numbers ni if
necessary, statement (b) follows. �

Proof of Theorem 5 (b–odd Theorem). Let G be a b–odd graph with branch-
ing point z and edges B1, B2, . . ., Bb. If f : G → G is a homeomorphism,
by Proposition 9(a) we have that f(z) = z. Then, 1 ∈ Per(f).

If f fixes the other vertices, that is, f(x) = x for all x ∈ V(G), from
Theorem 2, we get that Per(f) = {1}. Otherwise, since the image of
an edge by the homeomorphism f is another edge, there exist n1 edges
Bk1 , Bk2 , . . . , Bkn1

such that f(Bki) = Bki+1
, for all i = 1, 2, . . . , n1 − 1, and
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f(Bkn1
) = Bk1 , where 1 < n1 ≤ b. Therefore, the iterate fn1 is a homeo-

morphism of the topological interval Bk1 having two fixed points, that is,
the branching point z and the other vertex of Bk1 . Thus, Per(fn1) = {1}.
Hence, {1, n1} ⊂ Per(f) because the vertices of Bki different from z form a
periodic orbit of period n1.

Furthermore, if n1 < b, there exist other n2 edges Bl1 , Bl2 , . . . , Bln2
with

similar property satisfying 1 ≤ n2 ≤ b− n1, implying that n2 ∈ Per(f).

In short, repeating these arguments there can exist n1, n2, . . . , ns pos-
itive integers with the above properties such that ni ∈ Per(f), for all
i = 1, 2, . . . , s, and satisfying 1 < n1 + n2 + . . . + ns = b. Reordering
the numbers ni if necessary, it follows the result. �

Proof of Theorem 6 (n–lips Theorem). Let G be an n–lips graph with ver-
tices z and w, and let ei be the edges of G for i = 1, 2, . . . , n. If f : G → G is a
homeomorphism and f(z) = z, by Proposition 9(a) we have that f(w) = w
and then 1 ∈ Per(f). But if f(z) 6= z the Proposition 9(a) assures that
f(z) = w and f(w) = z and hence 2 ∈ Per(f).

Assume that f(z) = z and f(ei) = ei for all i = 1, 2, . . . , n. Then, for
each i = 1, 2, . . . , n, f |ei : ei → ei is an increasing homeomorphism. So, by
Theorem 2, follows that Per(f) = {1}. So, statement (a) is proved.

Now assume that f(z) = z and f(ei) 6= ei for some i ∈ {1, 2, . . . , n}.
Since the image of the edge ei by the homeomorphism f is another edge,
there exist n1 edges ek1 , ek2 , . . ., ekn1

such that f(eki) = eki+1
, for all

i = 1, 2, . . . , n1 − 1, and f(ekn1
) = e1, where 1 < n1 ≤ n. Therefore, the

iterate fn1 is an increasing homeomorphism of the topological interval ek1
having a fixed point. Thus, by Theorem 2 Per(fn1 |ek1 ) = {1}. Hence, Per(f)
contains either {1} or {1, n1}.

Furthermore, if n1 < n, there exist other n2 edges el1 , el2 , . . ., eln2
with

similar property satisfying 1 ≤ n2 ≤ n − n1, implying that Per(f) contains
either {1}, or {1, n1}, or {1, n2}, or {1, n1, n2}.

In short repeating these arguments there can exist n1, n2, . . . , ns non–
negative integers with the above properties such that 1 ∈ Per(f) and eventu-
ally ni ∈ Per(f), for all i = 1, 2, . . . , s, and satisfying 1 < n1+n2+ . . .+ns =
n. Reordering the numbers ni if necessary, statement (b) follows.

Suppose that f(z) 6= z and f(ei) = ei for all i = 1, 2, . . . , n. Then, for
each i = 1, 2, . . . , n, f |ei : ei → ei is a decreasing homeomorphism. So, by
Theorem 2, follows that Per(f) = {1, 2}. So, statement (c) is proved.

In the case that f(z) 6= z and f(ei) 6= ei for some i = 1, 2, . . . , n we use
the same argument that in statement (b) and we obtain a positive integer n1

such that the iterate fn1 is a homeomorphism of some topological interval
em, where m ∈ {1, 2, . . . , n}. But here, we note that if n1 is odd, then fn1 is
a decreasing homeomorphism implying that Per(f) contains either {2, n1} or
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{2, n1, 2n1}. And if n1 is even, then fn1 is an increasing homeomorphism im-
plying that either 2 ∈ Per(f) or {2, n1} ⊂ Per(f). Hence, repeating the ar-
gument used in statement (b) we conclude that there can exist n1, n2, . . . , ns

non–negative integers such that either ni ∈ Per(f), or {ni, 2ni} ⊂ Per(f)
for all i = 1, 2, . . . , s, and satisfying 1 < n1 + n2 + . . . + ns = n. Of course,
the case {ni, 2ni} ⊂ Per(f) only can occur if ni is odd. So, statement (d)
follows. �

Consider a branching point z with valence k. This valence can be decom-
posed as k = 2p+ b, where p+ b > 0, p ≥ 0 is the number of all petals with
endpoint z and b ≥ 0 is the number of edges which are not petals with end-
point z. In this case we shall say that the branching point z is of type (p, b).
Then every vertex of a graph has a type (p, b). For example, an endpoint is
a vertex of valence k = 1, and hence, it is of the type (0, 1). Now we can
improve Proposition 9(a) as follows.

Proposition 10. Let f : G → G be a homeomorphism of a graph G non
homeomorphic to a circle. If z is a vertex of type (p, b), then f(z) is a vertex
of type (p, b).

Proof. It follows immediately from the definition of a homeomorphism. �
Proof of Theorem 7 ((p, b)–graph Theorem). Let G be a (p, b)–graph with
the main branching point z, p petals P1, P2, . . ., Pp, and b edges B1, B2 . . . , Bb

which are not petals. Assume that L
ηq
jq,1

, L
ηq
jq,2

, . . . , L
ηq
jq,tq

are the ηq–lips for

q = 1, 2, . . . , ρ contained into the (p, b)–graph described in the statement of
the theorem. If f : G → G is a homeomorphism, by Proposition 10 we have
that f(z) = z. Then 1 ∈ Per(f).

Assume that f(Pl) = Pl for all l = 1, 2, . . . , p, and f(Bj) = Bj for all j =
1, 2, . . . , b. Then, for each l = 1, 2, . . . , p, f |Pl

: Pl → Pl is a homeomorphism
of the topological circle Pl with the fixed point z, and, for each j = 1, 2, . . . , b,
f |Bj : Bj → Bj is a homeomorphism of the topological interval Bj with
the fixed endpoint z. So, from Theorems 2 and 3 it follows that either
Per(f) = {1}, or Per(f) = {1, 2}, and statement (a) is proved.

Suppose that f(Pl) = Pl for all l = 1, 2, . . . , p, and f(Bj) 6= Bj for some
j ∈ {1, 2, . . . , b}. For the p petals we apply Theorem 3 and we obtain that
either {1} ⊂ Per(f), or {1, 2} ⊂ Per(f). Since every edge which is not a
petal must be applied to another edge which is not a petal by f , we apply
Theorem 5 to the n–odd subgraph of G formed by all the edges which are
not petals and are not contained into the ηq–lips L

ηq
jq,k

, for q = 1, 2, . . . , ρ

and k = 1, 2, . . . , tq. We conclude that there exist n1, n2, . . . , ns positive
integers such that ni ∈ Per(f), for all i = 1, 2, . . . , s, and satisfying 1 <
n1 + n2 + . . . + ns ≤ b. Furthermore, if f(Bj) 6= Bj for some edge Bj

of some ηq–lips L
ηq
jq,k

, for q = 1, 2, . . . , ρ and k = 1, 2, . . . , tq, since every

ηq–lips must be applied into another ηq–lips by f there can exist r1,q ≤ tq
ηq–lips’ forming a cycle, i.e. there are L

ηq
jq,m1

, L
ηq
jq ,m2

, . . . , L
ηq
jq,mr1,q

such that
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f(L
ηq
jq,mi

) = L
ηq
jq,mi+1

for all i = 1, 2, . . . , r1,q − 1 and f(L
ηq
jq,mr1,q

) = L
ηq
jq,m1

.

Thus, the iterate f r1,q is a homeomorphism from the ηq–lips L
ηq
jq,m1

into

itself. Since the branching point z is fixed by f we get that Per(f r1,q |Lηq
jq,m1

)

is a set A1,q as one of the sets of statements (a) and (b) of Theorem 6.
Therefore we get that the set r1,qA1,q ⊂ Per(f).

Furthermore, if r1,q < tq there exist others r2,q ηq–lips’ L
ηq
jq,a1

, L
ηq
jq,a2

, . . . ,

L
ηq
jq,ar2,q

with similar property satisfying 1 ≤ r1,q + r2,q ≤ tq, implying that

Per(f r2,q |Lηq
jq,a1

) is a set A2,q as one of the sets of statements (a) or (b) of

Theorem 6. Therefore we have that r2,qA2,q ⊂ Per(f).

In short, repeating these arguments there can exist r1,q, r2,q, . . . , rvq ,q pos-
itive integers and A1,q, A2,q, . . . , Avq ,q sets being as one of the sets of state-
ments (a) or (b) of Theorem 6 such that

ρ⋃

q=1

( vq⋃

i=1

ri,qAi,q

)
⊂ Per(f),

with r1,q + r2,q + . . .+ rvq ,q = tq and

n1 + n2 + . . .+ ns +

ρ∑

q=1

vq∑

i=1

ηqri,q = b.

Reordering the numbers nj and ri,q if necessary, statement (b) follows.

When f(Pl) 6= Pl for some l ∈ {1, 2, . . . , p}, and f(Bj) = Bj for all
j = 1, 2, . . . , b, by applying Theorem 5 to the b edges which are not petals
we get that 1 ∈ Per(f). Then, by using the fact that every petal must be
applied to another petal by f , we apply statement (b) of Theorem 4 to the
p petals and we obtain statement (c).

In the case that f(Pl) 6= Pl for some l ∈ {1, 2, . . . , p}, and f(Bj) 6= Bj for
some j ∈ {1, 2, . . . , b}, we apply statement (b) of Theorem 4 to the p petals,
and Theorems 5 and statements (a) and (b) of Theorem 6 to the other b
edges which are not petals, using the same arguments than in the proof of
statements (b) and (c) we get statement (d). �
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