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THE HOPF CYCLICITY OF THE CENTERS
OF THE POLYNOMIAL VECTOR FIELDS

ISAAC A. GARCÍA1, JAUME LLIBRE2 AND SUSANNA MAZA1

Abstract. We consider families of planar polynomial vector fields
having a singularity with purely imaginary eigenvalues for which
a basis of its Bautin ideal B is known. We provide an algorithm
for computing an upper bound of the Hopf cyclicity less than or
equal to the Bautin depth of B. We also present a method for
studying the cyclicity problem for the Hamiltonian and the time-
reversible centers without the necessity of solving previously the
Dulac complex center problem associated to the larger complexified
family. As application we analyze the Hopf cyclicity of the quintic
polynomial family written in complex notation as ż = iz+zz̄(Az3+
Bz2z̄ + Czz̄2 + Dz̄3).

1. Introduction and statement of the main results

We consider a family of planar polynomial differential systems of the
form

(1)
ẋ = λ1x− y + P (x, y, λ),

ẏ = x+ λ1y +Q(x, y, λ),

where P,Q ∈ R[x, y, λ] are the polynomial nonlinearities of system (1)
and (λ1, λ) = (λ1, λ2, . . . , λn) ∈ Λ ⊂ Rn are the parameters of the
family. We assume that for some (λ1, λ) = (0, λ∗) ∈ Λ system (1) has
a center at the origin. Of course the origin is always a monodromic
singularity of family (1), i.e., it is a center or a focus and clearly when
λ1 ̸= 0 it is a focus.

Using a transversal section Σ = [0, ĥ) with endpoint at the origin

of coordinates and parameterized by h where ĥ = ĥ(λ), we have the
displacement map d : Σ × Λ → Σ × Λ defined by d(h;λ) = Π(h;λ) − h,
where Π : Σ × Λ → Σ × Λ is the Poincaré or return map. We note that
ĥ > 0 can be finite or infinite.
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Since the differential system (1) is analytic the displacement map

d(h;λ) is analytic in the variables h ∈ [0, ĥ) and λ. Hence we can
expand the displacement function d(h;λ) =

∑
i≥1 ai(λ)hi in Taylor

series at h = 0. For λ1 = 0 the Bautin ideal B at the origin of system
(1) is defined as the ideal generated by all the polynomials ai(λ) in the
ring of all polynomials in the variables λ. This ideal B is Noetherian
and then by the Hilbert’s basis Theorem it is generated by a finite
number of polynomials. So we know that

(2) B = ⟨vi1(λ), vi2(λ), . . . , vim(λ)⟩,
where the generators vij (λ) for j = 1, . . . ,m, of the ideal B are called
Poincaré–Liapunov constants.

The relation between ai(λ) and vi(λ) is that vi(λ) = ai(λ) mod Bi−1

where Bi−1 = ⟨v1(λ), . . . , vi−1(λ)⟩. In other words there are polynomi-

als pi,j ∈ R[λ] such that vi(λ) = ai(λ) +
∑i−1

j=1 pi,j(λ)aj(λ).

Definition 1. Given the Bautin ideal B = ⟨ai(λ) : i ∈ N⟩, we say that
the basis B = {aj1(λ), . . . , ajm(λ)} of B with order j1 < · · · < jm is
minimal if it satisfies the following properties:

(i) ai(λ) ≡ 0 for 1 ≤ i ≤ j1 − 1 and aj1(λ) ̸≡ 0;
(ii) For i ≥ j1 + 1, if ai(λ) ̸∈ ⟨a1(λ), . . . , ai−1(λ)⟩, then ai(λ) ∈ B.

The cardinality m of B is called the Bautin depth of B in [9] and it
is associated to the chain of ideals B1 ⊂ B2 ⊂ · · · ⊂ B where Bs =
⟨v1(λ), . . . , vs(λ)⟩ for certain integer s ≥ 1.

Following Bautin’s seminal work [1] in Chapter 4 of [15] and in Chap-
ter 6 of [14] it is proved that when (2) is a minimal basis of the ideal
B then the displacement map d(h;λ) can be written in the form

(3) d(h;λ) =
m∑

j=1

vij (λ)hijqj(h;λ),

where qj(h;λ) are analytic functions in the variables h and λ near
(h, λ) = (0, λ∗) such that qj(0;λ∗) = 1. Clearly vij (λ

∗) = 0 for all
j = 1, . . . ,m when the differential system (1) has a center at the origin
for λ = λ∗.

The maximum number of small amplitude limit cycles that can bi-
furcate from a center at the origin of family (1) with λ = λ∗ under ar-
bitrarily small perturbations inside family (1), that is for ∥λ−λ∗∥ ≪ 1,
is called the cyclicity of the center with parameters λ∗. See [4] for an
interesting point of view. It is well known that the cyclicity of any
center at the origin of (1) is at most the Bautin depth m of B, see
Theorem 7.
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Given a ground field K and a polynomial ideal J in K[x] with x ∈ Kd

we define by V(J ) the affine variety in Kd determined by J . If the ideal
J = ⟨p1(x), . . . , ps(x)⟩, then V(J ) = {x∗ ∈ Kd : pj(x

∗) = 0 for 1 ≤
j ≤ s}.

In our forthcoming Theorem 2 we give an upper bound j∗ with
1 ≤ j∗ ≤ m for the maximum number of small amplitude limit cycles
that can bifurcate from the center at the origin of family (1), hence
improving sometimes the known bound m given by the Bautin depth.

To present the result we will specify an arbitrary analytic curve ε 7→
γ(ε) = (λ1(ε), λ(ε)) ⊂ Λ ⊂ Rn in the parameter space passing through
a point (λ1(0), λ(0)) = (0, λ∗) with λ∗ ∈ V(B). More specifically we
consider any analytic perturbation of the center of system (1) with
λ(0) = λ∗ of the form

(4)
ẋ = −y + λ1(ε)x+ P (x, y, λ(ε)),

ẏ = x+ λ1(ε)y +Q(x, y, λ(ε)).

Let X0 be the vector field defined by the unperturbed family (1) having
a center at the origin, i.e., with parameters (λ1, λ) = (0, λ∗); and let
Xε be the vector field defined by the perturbed system (4). We are
interested in the maximum number of periodic orbits that can bifurcate
from the origin of X0 under the perturbation Xε. In short we want to
find for the family of centers (1) with (λ1, λ) = (0, λ∗) its Hopf cyclicity,
Cycl(Xε, 0), under perturbations Xε; that is, the sharp upper bound of
the maximum number of small amplitude limit cycles of Xε that can
bifurcate from the origin when |ε| is sufficiently small.

Theorem 2. Assume that the unperturbed system (4) with ε = 0 has a
center at the origin. Assume that {vi1(λ(ε)), vi2(λ(ε)), . . . , vim(λ(ε))}
is a minimal basis of the Bautin ideal B associated to the perturbed
system (4). Consider the Taylor expansions vij (λ(ε)) =

∑
r≥1 v̄ij ,r ε

r

of the Poincaré–Liapunov constants for j = 1, . . . ,m. Let first k ≥ 1
and last j∗ with 1 ≤ j∗ ≤ m be the smallest integer numbers such that
v̄ij∗ ,k ̸= 0. Then the cyclicity Cycl(Xε, 0) of the origin of (4) is bounded
by j∗.

We can compute the upper bound j∗ applying Theorem 2 with an
arbitrary perturbation (4) to a family of centers for which we know a
basis of its Bautin ideal, and after we can study if it is a sharp upper
bound, i.e. if j∗ is reached. By definition this sharp upper bound is
Cycl(Xε, 0).

Unfortunately there are few families of polynomial vector fields for
which the basis of their Bautin ideal B is known. Hence Cycl(Xε, 0) of
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few families X0 is known. To known a finite set of generators of B is in
general much harder than to known its associated variety V(B). This
is the main reason by which the center problem consisting in describ-
ing the center variety V(B) in the parameter space is easier than the
cyclicity problem consisting in obtaining Cycl(Xε, 0).

If the perturbation is such that we can choose adequately some
Poincaré–Liapunov constants of the perturbed field (see the next corol-
lary), then the above upper bound j∗ computed via Theorem 2 can be
reached. More precisely we have the following consequence from the
proof of Theorem 2.

Corollary 3. Consider that the unperturbed system (4) with ε = 0 has
a center at the origin and assume {vi1(λ(ε)), vi2(λ(ε)), . . . , vim(λ(ε))} is
a minimal basis of the Bautin ideal B associated to the perturbed system
(4). Let j∗ with 1 ≤ j∗ ≤ m be defined as in Theorem 2. Assume that
we can perturb this system in such a way that

|vi1(λ(ε))| ≪ |vi2(λ(ε))| ≪ · · · ≪ |vij∗ (λ(ε))| ≪ 1,

and vij (λ(ε))vij+1
(λ(ε)) < 0 for j = 1, . . . , j∗ − 1. Then we have

Cycl(Xε, 0) = j∗.

In the celebrated paper [1] Bautin proved that the Hopf cyclicity of
a center of a quadratic polynomial vector field is at most 3. Bautin’s
result is improved by Żo la̧dek in Theorem 3 at page 237 of [17] where
the Hopf cyclicity of the quadratic family having its parameters on dif-
ferent irreducible components of the center variety is computed. Next
in [18] Żo la̧dek found that there are centers in (1) with P and Q ho-
mogeneous cubic polynomials in x and y such that Cycl(Xε, 0) = 5.

We will consider the quintic polynomial family written in complex
form as

(5) ż = (i+ λ1)z + zz̄(Az3 +Bz2z̄ + Czz̄2 +Dz̄3)

with z = x + iy ∈ C and parameters λ1 ∈ R and (A,B,C,D) ∈ C4.
The center problem for this family has been solved in [12], but the
Hopf cyclicity is only stated for the easier case of having a focus at
z = 0. Hence we will restrict our attention on the cyclicity problem of
the center at z = 0 of (5) and our results are stated below.

Theorem 4. The following statements hold.

(a) Any nonlinear center at the origin of family (5) has cyclicity at
most 6 when we perturb it inside this family.
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(b) There are perturbations of the linear center ż = iz inside family
(5) producing 6 limit cycles bifurcating from the origin.

A center in family (1) is time-reversible if after a rotation it is invari-
ant under the discrete symmetry (x, y, t) 7→ (x,−y,−t). We remark
that it has been possible to prove Theorem 4 thanks to the use of a
new procedure that allows to study the cyclicity problem for the cen-
ters which are either time-reversible, or for which we know an explicit
formal first integral. This method does not need to solve previously
the Dulac complex center problem associated to the larger complexi-
fied family, see the Approach I in Subsection 2.1. Also techniques for
bounding the cyclicity in the harder case of non-radical Bautin ideal
are used, see Subsection 2.2.

Our computations show strong evidences for stating the following
conjecture.

Conjecture 5. An upper bound for the cyclicity of the linear center at
the origin in family (5) perturbing it within this family is seven.

We end by emphasizing that similar techniques can be applied to get
the cyclicity (not only a bound of it) inside certain subfamilies of the
full family (5) fixing some relations between the parameters that give
rise to a radical Bautin ideal.

Proposition 6. The cyclicity of the center at the origin in the sub-
families of (5) obtained by fixing one of the real parameters Re(C) or
Im(C) is 3, and is 2 when we fix D = 0.

2. Background on the cyclicity problem

In this section we summarize several results concerning the cyclicity
problem and the approach to that problem using methods from compu-
tational commutative algebra. Most of this background can be found
in the excellent book [14], see also the paper [16].

Using the rearrangement (3) of the displacement map d(h;λ) and
applying Rolle’s Theorem several times the following theorem is proved,
see for example [1, 9, 14, 15].

Theorem 7. Let {vi1(λ), vi2(λ), . . . , vim(λ)} ⊂ R[λ] be a minimal basis
of the Bautin ideal B associated to the origin of family (1). Then the
cyclicity of any center at the origin in (1) is at most m.

The Poincaré-Liapunov constants are difficult to work with mainly
because to compute them we must perform quadratures. Therefore
instead of working with the Poincaré-Liapunov constants, from the
computational point of view it is better to obtain other polynomials
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ηj(λ) ∈ R[λ] that arise as the obstructions in order to get a formal
first integral H(x, y) = x2 + y2 + · · · of family (1) with λ1 = 0 which
is another characterization of centers, see Poincaré [13] and Liapunov
[11]. More precisely we seek for a formal series H(x, y;λ) = x2+y2+· · ·
in such a way that Xλ(H) =

∑
j≥1 ηj(λ)(x2 + y2)j where Xλ = (−y +

P (x, y, λ))∂x + (x+Q(x, y, λ))∂y is the associate vector field to family
(1) with λ1 = 0.

Using the complex coordinate z = x+ iy ∈ C family (1) with λ1 = 0
can be written into the form ż = iz + F (z, z̄, λ) where z̄ = x− iy and
F is given by the polynomial F (z, z̄, λ) = P

(
1
2
(z + z̄), i

2
(z̄ − z), λ

)
+

iQ
(

1
2
(z + z̄), i

2
(z̄ − z), λ

)
. We can adjoin to this complex polynomial

differential equation its complex conjugate forming thus the complex
system

(6)

ż = iz + F (z, z̄, λ) = iz +
N∑

j+k=2

aj,k(λ)zj z̄k,

˙̄z = −iz̄ + F̄ (z, z̄, λ) = −iz̄ +
N∑

j+k=2

āj,k(λ)z̄jzk.

Replacing the conjugates z̄ and āj,k by new independent complex state
variable and complex parameters, say w and bj,k respectively, yields a
larger complex family of systems

(7) ż = iz +
N∑

j+k=2

aj,kz
jwk, ẇ = −iw +

N∑

j+k=2

bj,kw
jzk,

defined in C2 with complex parameters µ = (aj,k, bj,k). Family (7) is
called the complexification of family (1) with λ1 = 0.

Following Dulac [6] one can generalize the concept of center singular-
ity of systems in R2 to systems in C2. To be specific we say that (7) has
a (complex) center at the origin (z, w) = (0, 0) when µ = µ∗ if and only

if it admits a formal (complex) first integral Ĥ(z, w;µ∗) = zw+ · · · . It
is easy to check that system (1) with (λ1, λ) = (0, λ∗) has a center at
the origin if and only if (6) has a center at the origin for λ = λ∗.

We shall define the focus quantities gj(µ) ∈ C[µ] with µ = (aj,k, bj,k)

of the complexification (7). Denote by X̂µ = (iz+· · · )∂z+(−iw+· · · )∂w

the family of vector fields in C2 associated with (7). The focus quan-

tities satisfy that when we look for a formal first integral Ĥ(z, w;µ) =

zw + · · · of X̂µ then X̂µ(Ĥ) =
∑

j≥1 gj(µ)(zw)j+1.

Let I and Ik be the ideals in C[λ] given by I = ⟨gj(µ) : j ∈ N⟩
and Ik = ⟨g1(µ), . . . , gk(µ)⟩, respectively. We can also define g̃j ≡ gj



HOPF CYCLICITY AND POLYNOMIAL CENTERS 7

mod Ij−1 so that Ik = ⟨g1(λ), g̃2(λ), . . . , g̃k(λ)⟩. It is evident that (7)
has a center at the origin when µ = µ∗ if and only if µ∗ ∈ V(I). In this
work we refer to I and V(I) as the complex Bautin ideal and complex
center variety respectively.

We define the real focus quantities fj(λ) for family (1) as

(8) fj(λ) = gj(aj,k(λ), āj,k(λ) ∈ R[λ].

Theorem 6.2.3 of [14] describes the relationship between the Poincaré-
Liapunov constants vj(λ) and the real focus quantities fj(λ) for family
(1) when the following standard procedure is used to compute them.
Taking polar coordinates x = r cos θ, y = r sin θ family (1) becomes
dr/dθ = R(θ, r;λ) where the function R is a 2π-periodic function of θ
and is analytic for |r| sufficiently small. Let r(θ;h, λ) =

∑
j≥1 uj(θ;λ)hj

be the solution of that differential equation satisfying the initial con-
dition r(0;h, λ) = h. Then vj(λ) = uj(2π;λ). In [14] it is proved that
the former procedure applied to family (1) with λ1 = 0 gives v1(λ) =
v2(λ) ≡ 0, v3(λ) = f1(λ) up to a positive multiplicative constant and for
any integer number k ≥ 2 one has v2k(λ) ∈ B2k−1 and v2k+1(λ)−fk(λ) ∈
B2k−1. In particular if {vk1 , . . . , vkr} and {fj1 , . . . , fjs} are two minimal
bases for the Bautin ideal B formed by Poincaré-Liapunov constants
and by real focus quantities respectively, then r = s and kq = 2jq + 1.

In this work we will use the notation f̃j ≡ fj mod Bj−1.

Remark 8. In summary we can finally obtain an upper bound of the
cyclicity only in terms of the real focus quantities instead of Poincaré-
Liapunov constants because Theorem 7 can be restated in terms of a
minimal Basis of B formed by real focus quantities. The key point is
that expression (3) of the displacement map can be rewritten as

(9) d(h;λ) =
m∑

j=1

f̃kj
(λ)h2kj+1ψj(h;λ),

where ψj(h;λ) are analytic functions in the variables h and λ near
(h, λ) = (0, λ∗) such that ψj(0;λ∗) = 1. So we shall compute real
focus quantities instead of the Poincaré-Liapunov constants due to their
computational simplicity.

2.1. Radical Bautin ideal. Recall that the radical
√

J of an ideal
J is the set of elements a power of which is in J , that is

√
J = {p ∈

K[x] : ps ∈ J for some s ∈ N}. Clearly J ⊂
√

J always. In case that
J =

√
J then J is called a radical ideal.

When the Bautin ideal B is radical, then in this very special case
we can find a finite number of generator of B using two different ap-
proaches that we explain now. As starting point it is assumed that we
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have solved the center problem of the family in the sense that we have
established the equality

(10) V(B) = V(Bjs)

of varieties in Rn−1 where Bjs = ⟨fj1(λ), . . . , fjs(λ)⟩, or equivalently
Bjs = ⟨v2j1+1(λ), . . . , v2js+1(λ)⟩ for certain integer s ≥ 1. From the
applicable point of view equality (10) is established in the following way.
Compute the first real focal values fk(λ) satisfying that fk ̸∈ √

Bk−1 for
k = 1, . . . , js until we reach stabilization in the sense that fk ∈

√
Bjs

for some consecutive values of k with k ≥ js. This step is totally
algorithmic and this computation leads to expect that (10) is true.
One way to verify that actually (10) holds is performing the irreducible
decomposition of the variety V(Bjs) =

∪
r Vr (also an algorithmic step)

and check that for any λ∗ ∈ Vr its associated system (1) with (λ1, λ) =
(0, λ∗) has a center at the origin. This last part is not algorithmic and
may be a difficult step which requires usually of some integrability or
symmetry argument on system (1).

Approach I. It is motivated by the Strong Hilbert Nullstellensatz and
also by the fact that it is possible for two ideals I and J in R[λ] that
V(I) = V(J) as real varieties included in Rk, but V(I) ̸= V(J) when
they are viewed as complex varieties in Ck.

A key point in Approach I is to prove that (10) also holds in Cn−1.

This implies the equality
√

B =
√

Bjs of the radicals of ideals from the
Strong Hilbert Nullstellensatz. Under the extra assumption (simple
good fortune) that Bjs is radical we get

Bjs ⊂ B ⊂
√

B =
√

Bjs = Bjs

and therefore B = Bjs finishing Approach I. We can therefore state the
following result.

Theorem 9 (First Radical Ideal Cyclicity Bound Theorem). Assume
that {fj1(λ), . . . , fjm(λ)} is a minimal basis of the ideal Bjm ⊆ B where
B is the Bautin ideal associated to family (1). Suppose that Bjm is
radical and that the equality of varieties V(B) = V(Bjm) holds in Cn−1.
Then B = Bjm and, in particular, the cyclicity of any center at the
origin in (1) is at most m.

Remark 10. Now we turn to the key point of how to prove that (10)
holds in Cn−1. Since Bjs ⊂ B it is clear that V(B) ⊂ V(Bjs) holds
in Cn−1, therefore we only have to check that the reverse inclusion
V(Bjs) ⊂ V(B) holds in Cn−1. To prove that we must check whether
for any λ∗ ∈ Cn−1 satisfying fj1(λ

∗) = · · · = fjs(λ
∗) = 0 this implies

that fk(λ∗) = 0 for all k ∈ N where Bjs = ⟨fj1(λ), . . . , fjs(λ)⟩.
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Now we will see that there is a different but equivalent way to prove
the former condition. At this point we view family (1) as a system
on C2 with complex parameters, i.e., we will study family (1) with
(x, y) ∈ C2 and λ ∈ Cn−1. Now we do the linear complex change of
coordinates (x, y) 7→ (X, Y ) = (x+ iy, x− iy). Notice that now Ȳ ̸= X
but anyway (1) is transformed into

(11) Ẋ = iX + F+(X, Y ;λ), Ẏ = −iY + F−(X,Y ;λ),

where F± only contains nonlinear terms in X and Y because

F±(X, Y ; λ) = P
(

1
2(X + Y ), i

2(Y − X), λ
)

± iQ
(

1
2(X + Y ), i

2(Y − X), λ
)
.

In this complex setting we can build a formal series H̃(X, Y ;λ) =
XY + · · · such that Xλ(H̃) =

∑
j≥1 fj(λ)(XY )j+1 being Xλ the vec-

tor field in C2 associated to (11) and where fj ∈ R[λ] are just the
already defined real focus quantities associated to the origin of family
(1). Hence (11) with λ = λ∗ ∈ Cn−1 has a formal first integral if and
only if fj(λ

∗) = 0 for all j ∈ N. Since family (1) with λ1 = 0 is linearly
conjugate with family (11) we have that the complex family (1) with
(λ1, λ) = (0, λ∗) ∈ R × Cn−1 has a formal first integral H(x, y) with
H : C2 → C if and only if fj(λ

∗) = 0 for all j ∈ N.
The above arguments lead to conclude that (10) holds in Cn−1 whether

for any λ∗ ∈ Cn−1 satisfying fj1(λ
∗) = · · · = fjs(λ

∗) = 0 one of the fol-
lowing equivalent consequences holds when they are proved using only
analytic (not geometric) arguments valid for (x, y) ∈ C2 and λ ∈ Cn−1:

(i) there is a formal first integral H(x, y) = x2 + y2 + · · · of (1)
with (λ1, λ) = (0, λ∗) ∈ R × Cn−1.

(ii) there is a formal inverse integrating factor V (x, y) = 1 + · · · of
(1) with (λ1, λ) = (0, λ∗) ∈ R × Cn−1.

Approach I following the way (i) is used in [8] in the more degenerate
context of bounding the cyclicity of some monodromic nilpotent singu-
larities. We observe that if we have the explicit expression of a formal
or analytic real first integral of certain subfamily of centers of (1) (this
always happens in the Hamiltonian subfamily) we can directly check
whether this first integral can be extended to the complex setting con-
cluding that (i) is true. The same remains true changing the above real
first integral by a real formal or analytic inverse integrating factor in
closed form and non-vanishing at the origin for the second option (ii).

Remark 11. This note concerns on the reversible component of the
center variety. Following [14] a complex system ż = F (z, w), ẇ =
G(z, w) on C2 is time-reversible if there exists γ ∈ C\{0} such that
F (z, w) = −γG(γw, γ−1z). In [14] it is showed that every polynomial



10 I. A. GARCÍA, J. LLIBRE AND S. MAZA

complex time-reversible of the form ż = iz + · · · , ẇ = −iw+ · · · has a
complex center at the origin.

If we complexify a real system as in (6) with z = x + iy by adding

to ż = F (z, z̄) the conjugate ˙̄z = G(z, z̄) = F (z, z̄), setting γ = e2iφ

with φ ∈ R we obtain the time-reversibility condition is e2iφF (z, z̄) =
−F (e2iφz̄, e−2iφz). The geometrical interpretation is that after a rota-
tion z 7→ e−iφz of angle φ the initial real system is time-reversible with
respect to the x-axis, that is, the real system is invariant under the
discrete symmetry (x, y, t) 7→ (x,−y,−t).

Despite the above difficulties one encounters to prove that if (10)
holds in Rn−1 then it also holds in Cn−1, there is a a wide class of
systems (1), the time-reversible centers, for which the former is true.
We prove this fact in the following proposition.

Proposition 12. Let system (1) with (λ1, λ) = (0, λ∗) and λ∗ ∈ Rn−1

be time-reversible. Then its complex extension to (x, y) ∈ C2 and
λ∗ ∈ Cn−1 possesses a holomorphic first integral near the origin. In par-
ticular this λ∗ ∈ Cn−1 vanishes all the real focal values, i.e., fk(λ∗) = 0
for all k ∈ N.

Proof. Since system (1) with (λ1, λ) = (0, λ∗) ∈ Rn is time-reversible,
after a rotation of angle φ = φ(λ∗) ∈ R we can take the x-axis as
the symmetry axis, hence the system is invariant under the involu-
tion (x, y, t) 7→ (x,−y,−t). Therefore after doing the linear change
of coordinates (x, y) 7→ (x cosφ + y sinφ, y cosφ − x sinφ) system (1)
becomes

(12) ẋ = −y + yA(x, y2;λ∗), ẏ = x+B(x, y2;λ∗).

Clearly this action can be also performed if we make the extension
(x, y) ∈ C2 and λ∗ ∈ Cn−1 to the complex setting. The only difference
is that now φ(λ∗) ∈ C.

The polynomial mapping (x, y) 7→ (x, u) = (x, y2) transforms (x, y) =
(0, 0) into (x, u) = (0, 0) and (12) into a system that after scaling and
removing the common factor y in both components becomes

ẋ = 1 − A(x, u;λ∗), u̇ = 2(x+B(x, u;λ∗)).

Since the origin in no longer a singularity, this system has a holomor-
phic first integral Ĥ(x, u;λ∗). Finally Ĥ is pulled back to the holomor-

phic first integral H(x, y;λ∗) = Ĥ(x, y2;λ∗) of (12) with (x, y) ∈ C2

and λ∗ ∈ Cn−1. This implies (undoing the complex rotation) that (1)
with (λ1, λ) = (0, λ∗) ∈ R×Cn−1 possesses a holomorphic first integral
near the origin proving the first part. The second part is a consequence
of the argument involved in way (i) of Approach I. �
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Approach II. This is the main route for bounding the cyclicity of a
center at the origin in [14] and is based on the complexification (7) of
family (1) with λ1 = 0. A necessary condition to follow this route is
to have previously solved the associated complex center problem of the
larger family (7).

Theorem 13 (Second Radical Ideal Cyclicity Bound Theorem). Let
{gj1(µ), . . . , gjm(µ)} be a minimal basis of the ideal Ijm ⊆ I where I is
the complex Bautin ideal associated to the complexification (7) of family
(1). Assume that Ijm is radical and that the complex center problem
is solved in the sense that V(I) = V(Ijm). Then I = Ijm and, in
particular, the cyclicity of any center at the origin in (1) is at most m.

2.2. Non-radical Bautin ideal. Suppose the center problem has been
already solved in the sense that we know the center variety V(B) =
V(Bjs) but Bjs is not radical. In this case the methods presented in
the above subsection are not longer valid. Anyway we can also obtain
an upper bound on the cyclicity of the center at the origin of fam-
ily (1) in some subset of the center variety as shows Theorem 14. It
is based on some ideas from [7] and its proof is analogous (with small
technical differences) to that presented in [8] for some class of nilpotent
monodromic singularities.

Before stating the next theorem we recall that a polynomial ideal
J ⊂ K[x] is prime if whenever p, q ∈ K[x] with p q ∈ J then either
p ∈ J or q ∈ J . The ideal J is primary if p q ∈ J implies either
p ∈ J or the power qs ∈ J for some positive s ∈ N. Every radical
ideal can be written as the intersection of prime ideals. Also it is known
by the Lasker-Noether Theorem (see [5]) that an arbitrary ideal J can
be decomposed as the intersection of a finite number of primary ideals.

Theorem 14. Assume that the center problem at the origin of family
(1) has been solved and its center variety V(B) satisfies that V(B) =
V(Bjs) as varieties in Cn−1. Let {fj1 , . . . , fjs} be a minimal basis of
Bjs and suppose a primary decomposition of Bjs can be written as Bjs =
R ∩ N where R is the intersection of the ideals in the decomposition
that are prime and N is the intersection of the remaining ideals in the
decomposition. Then for any system of family (1) corresponding to
λ∗ ∈ V(B) \ V(N), the cyclicity of the center at the origin is at most
s.

When the complex Bautin ideal I is not radical and therefore Theo-
rem 13 does not work there is a method developed in [10] which seeks
for transforming the problem to a new ring different of C[µ] in which
Theorem 13 still can be applied. See also [16] for details.
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3. Proof of Theorem 2

Let {vi1(λ), vi2(λ), . . . , vim(λ)} be a minimal basis of the Bautin ideal
B associated to the origin of system (1) with λ1 = 0. In Chapter 4 of
[15] and in Chapter 6 of [14] it is proved that d(h;λ) can be written in
the form (3). Then d(h;λ) =

∑m
j=1 vij (λ)hijqj(h;λ) where qj(h;λ) are

analytic functions in the variables h and λ. It is known that vij (λ
∗) = 0

for all j = 1, . . . ,m when the differential system (1) has a center at the
origin for λ = λ∗.

We know that v1(λ) = λ1 and if i1 = 1 then q1(0;λ) = (exp(2πλ1) −
1)/λ1. Also vij (λ) ∈ R[λ2] and qj(0;λ∗) = 1 for j = 1, . . . ,m.

We have for system (4) a displacement map whose Taylor expansion
at ε = 0 is

(13) d(h;λ(ε)) = Π(h; ε) − h = Mk(h)εk + O(εk+1),

where Mk(h) is the k–th Melnikov function with k ≥ 1. The function
Mk(h) is defined and analytic on the full transversal section Σ. The
isolated zeroes of Mk(h) (counted with multiplicity) allow to study the
number of limit cycles of system (4).

Let λ∗
1 = 0 and denote the components of λ∗ = (λ∗

2, . . . , λ
∗
n) ∈ Rn−1.

Since λ(0) = λ∗ and vij (λ
∗) = 0 for all j = 1, . . . ,m we can now do the

following expansions

λi(ε) =
∑

ℓ≥0

λi,ℓ ε
ℓ , vij (λ(ε)) =

∑

r≥1

v̄ij ,r ε
r.

We do some explicit computations at first order in ε. Since λ(0) = λ∗,
qj(h;λ(ε)) = qj(h;λ∗) + O(ε). Additionally with our notation we have
vij (λ(ε)) = v̄ij ,1 ε + O(ε2). Therefore the displacement map of the
perturbed system (4) for ε sufficiently small can be written as

d(h;λ(ε)) =
m∑

j=1

vij (λ(ε))hijqj(h;λ(ε))

=
m∑

j=1

[v̄ij ,1 ε+ O(ε2)]hij [qj(h;λ∗) + O(ε)]

=

(
m∑

j=1

v̄ij ,1h
ijqj(h;λ∗)

)
ε+ O(ε2),

with qj(0;λ∗) = 1, see [1, 3, 17].

The previous simple computations at first order in ε have been gen-
eralized to any order in the recent work [2] where it is proved that
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there are m linearly independent functions hijQj(h) which are analytic
in the variable h in the whole period annulus and with Qj(0) ̸= 0 for
j = 1, . . . ,m, such that the Melnikov functions satisfy

(14) Mk(h) =
m∑

j=1

v̄ij ,k h
ij Qj(h).

We will obtain an upper bound for the maximum number of zeroes
of d(h;λ(ε)) near (h, ε) = (0, 0) where h > 0 and ε ̸= 0 are sufficiently
small, i.e. the maximum number of small amplitude limit cycles of the
perturbed system (4) with |ε| ̸= 0 small enough that can bifurcate from
the center at the origin of system (4) when ε = 0.

First from (3) or (9) we note that if |h| and |ε| are sufficiently small
then the number of local limit cycles of the perturbed system (4) is
given by the number of small positive zeroes of

B(h2;λ(ε)) = 2πλ1(ε) +
m∑

j=1

vij (λ(ε))hij−1(15)

= 2πλ1(ε) +
m∑

j=1

gkj
(λ(ε))h2kj ,

that bifurcates from h = 0 at ε = 0. We call the polynomial (15) in
the variable h the Bautin polynomial and we emphasize that the zeroes
in h of B come in pairs of opposite sign.

Let k and j∗ as in Theorem 2, that is, let first k ≥ 1 and last j∗

with 1 ≤ j∗ ≤ m be the smallest integer numbers such that v̄ij∗ ,k ̸= 0.
Perturbing with λ1,k = 0 the Bautin polynomial (15) is

B(h2;λ(ε)) = B1(h
2)εk + εk+1B2(h

2; ε),

where

(16) B1(h
2) =

m∑

j=j∗
v̄ij ,kh

ij−1.

We define the reduced Bautin polynomial B̂(h2;λ(ε)) = B(h2;λ(ε))/εk.

For ε > 0 sufficiently small B̂(h;λ(ε)) has the same roots than the
Bautin polynomial B(h2;λ(ε)) and is given by

(17) B̂(h2;λ(ε)) = B1(h
2) + εB2(h

2; ε).

Recall that by definition of a minimal basis we have the order i1 < i2 <
· · · < im. Hence since ij are odd, from (17) and (16) and using standard

arguments from the bifurcation theory we see that B̂(h2;λ(ε)) can have
at most j∗ distinct positive real roots h1(ε) > h2(ε) > · · · > hj∗(ε) > 0
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near h = 0 for |ε| small enough satisfying limε→0 hs(ε) = 0 for all
s = 1, . . . , j∗. Then Cycl(Xε, 0) ≤ j∗. This completes the proof of
Theorem 2.

4. Proof of Corollary 3

We use the notation of the proof of Theorem 2. Now under the
assumptions

|vi1(λ(ε))| ≪ |vi2(λ(ε))| ≪ · · · ≪ |vij∗ (λ(ε))| ≪ 1,

and vij (λ(ε))vij+1
(λ(ε)) < 0 for j = 1, . . . , j∗ − 1 it is straightforward

to check using again standard arguments in bifurcation theory that
the reduced Bautin polynomial B̂(h2;λ(ε)) = B1(h

2) + εB2(h
2; ε) has

exactly j∗ real positive roots near h = 0 for |ε| small enough.
It is helpful to remember in this argument expression (15) and that

vij do not depend on λ1(ε), which is free. Hence in the last perturbation
step we take

|λ1(ε)| ≪ |vi1(λ(ε))| and λ1(ε) vi1(λ(ε)) < 0

in order to produce the last zero hj∗(ε).

5. Cubic-like systems

It is clear that if you show that V(Bs) = V(B) for some integer s ≥ 1
then you have solved the center problem of the polynomial family. This
is the case of [12] where it is proved that the polynomial differential
family

(18) ż = (i+ λ1)z + (zz̄)
d−3
2 (Az3 +Bz2z̄ + Czz̄2 +Dz̄3),

with d ≥ 5 odd has a center at z = 0 if and only if λ1 = 0 and one of
the following two sets of conditions hold:

(c.1) Integrable case: b1 = 3A+ C̄ = 0;
(c.2) Reversible case: b1 = Im(AC) = Re(A2D) = Re(C̄2D) = 0.

We recall that the integrable case (c.1) means that family (18) can
be written after rescaling by |z|d−3 into the form ż = i∂H/∂z̄ where
H(z, z̄) is a function such that exp(H) for d = 5 and H for d ≥ 7 odd
are both real analytic first integrals in a neighborhood of (x, y) = (0, 0).

Writing the center conditions of family (18) in terms of the real
parameters λ = (a1, a2, b1, b2, c1, c2, d1, d2) ∈ R8 one has

(c.1) Integrable case: b1 = 3a1 + c1 = 3a2 − c2 = 0;
(c.2) Reversible case: b1 = a2c1 + a1c2 = a2

1d1 − a2
2d1 − 2a1a2d2 =

c21d1 − c22d1 + 2c1c2d2 = 0.
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From now we will focus on (18) with degree d = 5, hence we restrict
our study to the quintic family (5). First we will see that Approach
II does not work in this case. The complexification of family (5) with
λ1 = 0 is

(19)
ż = iz + zw(Az3 +Bz2w + Czw2 +Dw3),
ẇ = −iw + wz(Ew3 + Fw2z +Gwz2 +Hz3),

with parameters µ = (A,B,C,D,E, F,G,H) ∈ C8. We have com-
puted the first non vanishing reduced complex focal values obtaining
g2j+1(µ) ≡ 0 and up to a multiplicative constant

g2(µ) = b1,

g̃4(µ) = AC − EG,

g̃6(µ) = 3ADG+DG2 + C2H + 3CEH,

g̃8(µ) = F (9A2D −DG2 − C2H + 9E2H),

g̃10(µ) = −108A3DE − 4DEG3 + 81A2D2H − 108AE3H −
4C2EGH − 9D2G2H − 9C2DH2 + 81DE2H2,

g̃14(µ) = D2H2(9A2D −DG2 − C2H + 9E2H),

g̃16(µ) = DH(81A4D2 −D2G4 − C2DG2H + 9DE2G2H +

9C2E2H2 − 81E4H2).

We want to find k ∈ N such that V(I) = V(Ik). Computations show
that g̃j(µ) ∈ √I14 for j ∈ {16, 18, 20, 22, 24} so that we expect that
k = 14 and I14 = ⟨g2(µ), g̃4(µ), g̃6(µ), g̃8(µ), g̃10(µ), g̃14(µ)⟩. But unfor-
tunately I14 is not a radical ideal in the ring C[µ] (use for example the
IsRadical command of Maple which tests whether a given polynomial
ideal is radical or not) so that we cannot apply the strategy explained
in Approach II and more concretely Theorem 13 in order to get a finite
set of generators of the complex Bautin ideal I.

Thus from now on we opted to try Approach I to family (5) with
parameters λ = (a1, a2, b1, b2, c1, c2, d1, d2) ∈ R8. We have computed
the first non vanishing reduced focal values obtaining f2j+1(λ) ≡ 0 and
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up to a positive multiplicative constant they are

f2(λ) = b1,

f̃4(λ) = −a2c1 − a1c2,

f̃6(λ) = 3a1c1d1 + c21d1 + 3a2c2d1 − c22d1 − 6a2c1d2 + 2c1c2d2,

f̃8(λ) = −b2(9a2
1d1 − 9a2

2d1 − c21d1 + c22d1 − 18a1a2d2 − 2c1c2d2),

f̃10(λ) = −324a4
1d1 + 324a4

2d1 + 4c41d1 − 4c42d1 + 243a2
1d

3
1 − 243a2

2d
3
1 −

27c21d
3
1 + 27c22d

3
1 + 648a3

1a2d2 + 648a1a
3
2d2 + 8c31c2d2 +

8c1c
3
2d2 − 486a1a2d

2
1d2 − 54c1c2d

2
1d2 + 243a2

1d1d
2
2 −

243a2
2d1d

2
2 − 27c21d1d

2
2 + 27c22d1d

2
2 − 486a1a2d

3
2 − 54c1c2d

3
2,

f̃14(λ) = (d2
1 + d2

2)
2(9a2

1d1 − 9a2
2d1 − c21d1 + c22d1 − 18a1a2d2 − 2c1c2d2),

f̃16(λ) = −(d2
1 + d2

2)(81a3
1a2d

2
1 − 81a1a

3
2d

2
1 + c31c2d

2
1 − c1c

3
2d

2
1 −

243a2
1a

2
2d1d2 + 81a4

2d1d2 + 3c21c
2
2d1d2 − c42d1d2 + 162a1a

3
2d

2
2 +

2c1c
3
2d

2
2).

We see that f̃16(λ) ̸∈ B14 and also we can check that f̃j(λ) ∈ B16 for
j ∈ {18, 20, 22, 24, 26} making it probable that the ideal

B16 = ⟨f2(λ), f̃4(λ), f̃6(λ), f̃8(λ), f̃10(λ), f̃14(λ), f̃16(λ)⟩

is in fact B. Under this hypothesis and since the former generators
are a minimal basis of B16 we would obtain that an upper bound on
the cyclicity of any center at the origin in family (5) is seven using
Theorem 7. Taking into account these facts we have strong evidences
to state Conjecture 5.

Unfortunately B16 is not a radical ideal in the ring R[λ] so that we
cannot apply Theorem 9 for finding a finite set of generators of the
Bautin ideal B.

Now we will prove a proposition that we will need later on for proving
Theorem 16.

Proposition 15. The center variety V(B) ⊂ R8 of family (5) is
V(B) = V(B14). This equality also holds in C8.

Proof. Using the routine minAssChar in the primdec.LIB library of
Singular we find that the prime decomposition of

√B14 is
√B14 =

∩3
i=1Ji where

J1 = ⟨b1, a2c1 + a1c2, a
2
1d1 − a2

2d1 − 2a1a2d2, c
2
1d1 − c22d1 + 2c1c2d2⟩,

J2 = ⟨b1, 3a1 + c1, 3a2 − c2⟩,
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and we also check that the real variety

V(J3) = {λ ∈ R8 : A = B = C = D = 0}
corresponds thus to the linear center ż = iz.

Since V(J3) ⊂ V(Jk) for any k ∈ {1, 2} we have deduced that V(B14)
decomposes as the union of irreducible components as

V(B14) = V(
√

B14) = V(J1) ∪ V(J2).

We also notice that the origin of family (5) is a center if all the gener-
ators of either J1 or J2 vanish, hence it is established that the center
variety is V(B) = V(B14) according with the results of [12] (see the
former center conditions (c.1) and (c.2)).

In order to prove that V(B) = V(B14) also holds in C8 we will prove
that when λ∗ ∈ V(Ji) for i ∈ {1, 2} this forces the existence of a formal
first integral H(x, y) of the associated system (1) with λ1 = 0 to (5)
extended to the complex setting, i.e., with (x, y) ∈ C2 and λ = λ∗ ∈ C8.

• When λ∗ ∈ V(J2) in [12] it is proved that exp(H(z, z̄)) with
H(z, z̄) = log |z|2+i(Āzz̄3−Az3z̄)+ 1

2
Im(B)z2z̄2− i

4
(Dz̄4−D̄z4)

is a real analytic at (x, y) = (0, 0) (hence formal) first integral of
the real system (1) with (λ1, λ) = (0, λ∗) associated to (5) which
is obviously extended to a formal first integral in the complex
setting.

• Let λ∗ ∈ V(J1). In that case [12] shows that (5) is time-
reversible, i.e., after a rotation z 7→ e−iφz of some angle φ ∈ R
it is invariant under the symmetry (z, z̄, t) 7→ (z̄, z,−t). More
precisely we have A = −Ā exp(−4iφ), C = −C̄ exp(4iφ), D =
−D̄ exp(8iφ) and B = −B̄ for some φ. Therefore from Propo-
sition 12 we deduce the existence of a formal first integral of
(5) with λ1 = 0 extended to the complex setting.

The proof is done. �
An application of Theorem 14 to family (5) is the following result

which proves statement (a) of Theorem 4.

Theorem 16. For any system in the family (5) corresponding to a
parameter value λ∗ ∈ V(B) \ {0} the cyclicity of the center at the
origin is at most 6.

Proof. One consequence of the work [12] regarding family (5) is that the

center variety is given by V(B) = V(B14). Recall that f̃16(λ) ∈ √B14.
A minimal basis of B14 is

{f2(λ), f̃4(λ), f̃6(λ), f̃8(λ), f̃10(λ), f̃14(λ)},
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and therefore it contains 6 elements. Now we find the primary de-
composition of B14. For this purpose we can use either of the routines
primdecGTZ or primdecSY in the primdec.LIB library of Singular.
The outcome is that B14 =

∩7
i=1 Ii where I1, I2 and I3 are radical ideals

and√
I4 = ⟨d2

1 + d2
2, c2d1 + c1d2, c1d1 − c2d2, c

2
1 + c22, b2,−a2d1 + a1d2,

a1d1 + a2d2, a2c1 + a1c2, a1c1 − a2c2, a
2
1 + a2

2, b1⟩,√
I5 = ⟨d2

1 + d2
2,−c2d1 + c1d2, c1d1 + c2d2, c

2
1 + c22, b2, a2d1 + a1d2,

a1d1 − a2d2, a2c1 + a1c2, a1c1 − a2c2, a
2
1 + a2

2, b1⟩,√
I6 = ⟨d2

1 + d2
2, b2,−c2d1 + 3a2d2, 3a2d1 + c2d2, 9a

2
2 + c22, c1d1 + 3a1d2,

3a1d1 − c1d2, a2c1 + a1c2, 9a1a2 − c1c2, 9a
2
1 + c21, b1⟩,√

I7 = ⟨d2
1 + d2

2, b2, c2d1 + 3a2d2, 3a2d1 − c2d2, 9a
2
2 + c22,−c1d1 + 3a1d2,

3a1d1 + c1d2, a2c1 + a1c2, 9a1a2 − c1c2, 9a
2
1 + c21, b1⟩.

Now we define N =
∩7

i=4 Ii as in Theorem 14. Using the intersect

command of Singular we get a set of generators of
√
N , namely

√
N =

7∩

i=4

√
Ii = ⟨b1, b2, d2

1 + d2
2, a2c1 + a1c2, c

2
1 + 9a2

1 + c22 + 9a2
2⟩.

Finally, taking into account that V(N) = V(
√
N) holds in any ground

field we obtain

V(N) = {λ ∈ R8 : A = B = C = D = 0} = {0}.
This means that λ∗ ∈ V(B) \ V(N) if and only if λ∗ corresponds to
any nonlinear center of (5) and the result follows as consequence of
Proposition 15 and Theorem 14. �

After Theorem 16 it is natural to consider perturbations of the lin-
ear center ż = iz inside family (5). The following result goes in this
direction and proves statement (b) of Theorem 4.

Theorem 17. There are perturbations of the linear center ż = iz inside
family (5) in such a way that six small amplitude limit cycles bifurcate
from the origin.

Proof. First we will see that the point λ∗ = 0 corresponding to the
linear center ż = iz is not isolated from the set of points in the pa-
rameter space Λ corresponding to a system in family (5) possessing
a sixth order weak focus at the origin. More precisely if we per-
turb from λ∗ = 0 to λ(ε) = (ε/

√
2, ε, 0, 0, 0, 0, ε, ε) with the small

real perturbation parameter ε then f2 = f̃4 = f̃6 = f̃8 = f̃10 = 0
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and f̃14 = −18(1 + 2
√

2)ε7 ̸= 0, and therefore the perturbed system
ż = iz + zz̄(A(ε)z3 + B(ε)z2z̄ + C(ε)zz̄2 + D(ε)z̄3) has a sixth or-
der weak focus at the origin. Since the conditions B(ε) = C(ε) =
4|A(ε)|2 − 3|D(ε)|2 = 0 and D(ε) = ε(1 + i) ̸= 0 hold it follows from
statement (i) in Theorem 5 of [12] that a further arbitrarily small per-
turbation can produce six limit cycles bifurcating from the focus at the
origin. �

5.1. The cyclicity of some subfamilies. Although B16 is not radical
in the ring R[λ] we notice that when we fix b1 as a constant (not a
parameter) in family (5) then the resulting ideal

B[b1]
16 = ⟨f2(λ), f̃4(λ), f̃8(λ), f̃10(λ), f̃14(λ), f̃16(λ)⟩

in the ring R[λ\b1] is radical. The same phenomena occurs for the

analogous ideals B[c1]
16 , B[c2]

16 , B[A]
16 and B[D]

16 in the rings R[λ\c1], R[λ\c2],
R[λ\{a1, a2}] and R[λ\{d1, d2}], respectively. Then we will prove the
following results. In particular Proposition 6 is proved.

Proposition 18. The cyclicity of the center at the origin in the sub-
families of (5) obtained by fixing either the parameter c1 or c2 is 3 and
is 2 when we fix D = 0.

Proof. We only prove the first part of the theorem for the subfamily
having fixed c1 because the other case (to fix c2) is almost identical.

Fixing c1, hence working in the ring R[λ\{c1}], we get that f̃i ≡ 0 for

i ∈ {8, 10, 14, 16}. Moreover

√
B[c1]

6 = B[c1]
6 in that ring. Then Propo-

sition 15 and Theorem 9 gives B[c1] = B[c1]
6 . Since {f̃2(λ), f̃4(λ), f̃6(λ)}

is a minimal basis of the Bautin ideal in this case we get the Bautin
depth 3.

For the second subfamily with D = 0 it follows that f̃i ≡ 0 for

i ∈ {6, 8, 10, 14, 16} and

√
B[D]

4 = B[D]
4 in the ring R[λ\{d1, d2}]. Again

by Proposition 15 and Theorem 9, the Bautin ideal is given by B[D] =

B[D]
4 = ⟨f̃2(λ), f̃4(λ)⟩ and has Bautin depth 2.

Now we will see by using Corollary 3 that the former upper bounds
3 and 2 of the cyclicity are sharp. More precisely we will see that there
are perturbations λ(ε) of points λ∗ on the component V(J2) of the
center variety of each of the above subfamilies of (5) producing 3 and
2 limit cycles, respectively.
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In the subfamily with constant c1 we take the parameters λ∗ =
(a1, a2, b1, b2, c2, d1, d2) = (−c1/3, a2, 0, b2, 3a2, d1, d2) ∈ V(J2) and per-
turb to

λ(ε) = λ∗ + (λ2(ε), λ3(ε), λ4(ε), λ5(ε), λ7(ε), λ8(ε), λ9(ε)) ∈ R7,

with λi(ε) =
∑

j≥1 λi,j ε
j for i ∈ {2, 3, 4, 5, 7, 8, 9}. We assume from

now that a2 ̸= 0 and we choose the perturbation with λ4,1 = λ4,2 =
0 and λ2,1 = − c1

9a2
(3λ3,1 − λ7,1), then we obtain f2(λ(ε) = O(ε3),

f4(λ(ε) = O(ε2) and f8(λ(ε) = O(ε) so that |f2(λ(ε)| ≪ |f4(λ(ε)| ≪
|f8(λ(ε)| ≪ 1 for |ε| sufficiently small. In addition we can take, as a
simple example, a2 = d1 = c1 = d2 = λ3,1 = λ7,1 = λ2,2 = λ4,3 = 1 and
λ3,2 = λ7,2 = 0 yielding f2(λ(ε) = ε3 + O(ε4), f4(λ(ε) = −25

9
ε2 + O(ε3)

and f8(λ(ε) = 4
3
ε + O(ε2). Hence for |ε| ≪ 1 the following alternate

signs hold: f2(λ(ε) > 0, f4(λ(ε) < 0 and f8(λ(ε) > 0. From Corollary
3 we get that 3 is the cyclicity in this subfamily.

Analogously for the subfamily with D = 0, we choose the initial
point λ∗ = (a1, a2, b1, b2, c1, c2) = (a1, a2, 0, b2,−3a1, 3a2) ∈ V(J2) and
perturb to λ(ε) = λ∗ + (O(ε2),O(ε2), ε2, 0,O(ε2), ε) ∈ R6. If we take
now, for example, a1 = 1 then we obtain f2(λ(ε) = ε2 + O(ε3) and
f4(λ(ε) = −ε + O(ε2). Thus using Corollary 3 two limit cycles are
created finishing the proof. �

Proposition 19. The cyclicity of the center at the origin in the fol-
lowing three subfamilies of (5) obtained by fixing the parameters either
(i) b1 = 0 or (ii) D ̸= 0 is constant or (iii) A is fixed; is bounded by 6.

Proof. We start the proof of statement (i). Fixing b1 we get that√
B[b1]

16 = B[b1]
16 in the ground ring R[λ\b1]. Now since the unperturbed

family has a center, it is clear that initially b1 = 0 because g2(λ) = b1.
Since we perturb inside the subfamily with fixed b1 then we always
have b1 = 0. Taking into account the center problem of (5) is already

solved we know that V(B[b1]) = V(

√
B[b1]

16 ). Finally taking into account

Proposition 15 and Theorem 9 we get B[b1] = B[b1]
16 . Additionally when

b1 = 0 then g2(λ) ≡ 0 and a minimal basis of de Bautin ideal B[b1] is

{f̃4(λ), f̃6(λ), f̃8(λ), f̃10(λ), f̃14(λ), f̃16(λ)}, thus the Bautin depth is 6.

Let us prove now in a similar way the rest of the parts of the propo-
sition.

(ii) We fix D and therefore we check that f̃16 ≡ 0 and that

√
B[D]

14 =

B[D]
14 in the ring R[λ\{d1, d2}]. Hence V(B[D]) = V(

√
B[D]

14 ) and



HOPF CYCLICITY AND POLYNOMIAL CENTERS 21

from Proposition 15 and Theorem 9 one has that the Bautin

ideal is B[D] = B[D]
14 with

(20) {f̃2(λ), f̃4(λ), f̃6(λ), f̃8(λ), f̃10(λ), f̃14(λ)}
as minimal basis when D ̸= 0. Then the Bautin depth is 6.

(iii) Fixing A yields f̃16 ≡ 0 and

√
B[A]

14 = B[A]
14 in the reduced ring

R[λ\{a1, a2}]. We therefore have from Proposition 15 and The-

orem 9 that B[A] = B[A]
14 being (20) a minimal basis of the Bautin

ideal. Then the Bautin depth is 6.

The proof is finished. �
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1051, pp. 95–114.

[14] V. G. Romanovski and D.S. Shafer, The center and cyclicity problems: a
computational algebra approach. Birkhäuser Boston, Inc., Boston, MA, 2009.
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[17] H. Żo la̧dek, Quadratic systems with center and their perturbations, J. Dif-
ferential Equations 109 (1994), 223-273.
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