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displace the equilibrium point. In order to eliminate the offset an integral term
is added to the control law. As a consequence, analyzing the stability of the
system using Lyapunov functions is a very tough problem. This paper is about
the space of trajectories (or solutions) of the closed loop system. The tools used
are the Routh–Hurwitz criterion, the Poincaré compactification method and
the theorem of continuous dependence on initial conditions and parameters
in [3]. The first tool allows describing the behaviour of the finite equilibrium
points. The second tool is to analyze the infinite equilibrium points, and the
third tool helps describing part of the space of trajectories between finite and
infinite equilibrium points. It is worth mentioning that, because of its com-
plexity, it is not possible to perform a global phase portrait analysis in R3.
Therefore, the control law includes a restriction that allows to describe the
trajectories where the power converter operates and, at the same time, facil-
itates the use of the Poincaré compactification method as if the closed loop
system were defined in R2. The results are not conclusive when the restriction
is not enforced and the present analysis is done when the power converter is
operating in continuous mode.

For a practical approach, this analysis may be redone taking into consid-
eration the particular characteristics of a real system, using for instance the
Joule model presented in [7]; however, the use of a pulse width modulator
(PWM) to drive the Buck-Boost power converter makes the analysis harder,
because the proposed technique only allows to address systems of polynomial
nonlinear differential equations.

2 Buck-Boost power converter dynamics

Figure 1 depicts a circuital scheme of the Buck-Boost power converter. Here,
the output voltage v increases or decreases with respect to the power supply
E, and has an inverted polarity. This is, if E > 0, then v < 0.
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Fig. 1 The Buck–Boost power converter.
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An average model of the Buck-Boost power converter may be readily ob-
tained using Kirchhoff and Ohm laws. This model is as follows:

L
di

dt
= (1− µ) E + µ v, C

dv

dt
= −µ i− v

R
, (1)

where the variable i represents the inductor current, v is the capacitor volt-
age or output voltage, and µ is the control action. The parameters are the
inductance L, the capacitance C, the power supply E and the load resistor R.

Let T be a nonsingular transformation defined as

T =

(
x
y

)
=




1

E

√
L

C
0

0
1

E




(
i
v

)
, τ =

t√
LC

. (2)

It is possible to write a normalized system by using the linear transformation
(2) in the differential system (1). This is

dx

dτ
= (1− µ) + µ y,

dy

dτ
= −µ x− y

Q
, (3)

where Q = R
√
C/L, see [5].

Based on the exact error dynamics passive output feedback, the control
action may be represented as

µ = µ̄− γ

(
− (1− Vd) (x− x̄) + Vd (1− Vd)

(y − ȳ)

Q

)
, (4)

where µ̄ =
1

1− Vd
, x̄ = −Vd

(1− Vd)

Q
, ȳ = Vd (for more details see [5] and [6]).

The construction characteristic Vd is negative (Vd < 0). Note that the
parameter Q appears both in (3) and (4). When the controller for the Buck-
Boost power converter is implemented, the parameter Q in equation (3) may
change because it corresponds to an external resistor. In this case the finite
equilibrium point is moved and generates an offset level. To eliminate the
offset level and return the finite equilibrium point to its original coordinates,
an integral output error term is added to the control law, which becomes

µ =
1

1− ȳ
−γ

(
(1− ȳ) (y − ȳ)

ȳ

Q
− (1− ȳ)

(
x+ (1− ȳ)

ȳ

Q

))
+β

∫
(y − ȳ) dτ.

(5)
Note that the notation might be abused because the normalized system is
function on τ instead of t.
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With the control action (5), and writing β = εb, γ = εd, the normalized
Buck-Boost power converter (3) becomes the differential system

ẋ = −

(
Q+ (1− ȳ)

2
εd
)
ȳ

Q (1− ȳ)
− (1− ȳ) εdx+

Q+ 2(1− ȳ)
2
ȳεd

Q (1− ȳ)
y

−εbz + (1− ȳ) εdxy + εbyz − (1− ȳ) ȳεd

Q
y2,

ẏ = −Q+ (1− ȳ)
2
ȳεd

Q (1− ȳ)
x− 1

Q
y +

(1− ȳ) ȳεd

Q
xy − εbxz

− (1− ȳ) εdx2,

ż = y − ȳ.

(6)

Furthermore, when ε = 0, the differential system (6) becomes

ẋ = − ȳ

1− ȳ
+

1

1− ȳ
y,

ẏ = − 1

1− ȳ
x− 1

Q
y,

ż = y − ȳ.

(7)

2.1 Finite equilibrium points of systems (6) and (7)

Proposition 1 The differential system (7) has a straight line of finite equi-
librium points. The system has a family of invariant parallel planes under its
flow. Every plane contains one of these equilibrium points. On every invariant
plane the equilibrium point is a global attractor. (The second column of table 1
contains the finite equilibrium points of the system, projected over the Poincaré
disc, depicted in figure 6 of the appendix).

Region Finite equilibrium point p Infinite Equilibria in S1

0 < Q <
1− ȳ

2
Stable Node 2 Saddles 2 Repeller Nodes

Q =
1− ȳ

2
Stable Node 2 Saddle-Nodes

Q >
1− ȳ

2
Stable Focus ∅ (Periodic Orbit in ∞)

Table 1 Equilibrium points in the Poincaré disc of system (7) restricted to the invariant
planes Z = Z0.
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Proof The finite equilibrium points of system (7) filled the straight line pz =

pz(x, y, z) =

(
− (1− ȳ)ȳ

Q
, ȳ, z

)
, for all z ∈ R. The Jacobian matrix at the

point pz is given by 


0
1

1− ȳ
0

− 1

1− ȳ
− 1

Q
0

0 1 0




,

whose characteristic polynomial is

p (λ) = −λ3 − λ2

Q
− λ

(−1 + ȳ)
2 .

The roots of the polynomial p(λ) are

λ1 = 0,

λ2 = − 1

2Q
−

√
(1− ȳ)

2 − 4Q2

2Q (1− ȳ)
,

λ3 = − 1

2Q
+

√
(1− ȳ)

2 − 4Q2

2Q (1− ȳ)
.

In order to study the roots λ2 and λ3 we define the quantity ∆ = (1− ȳ)
2−

4Q2 and use Theorem 2.15 of [2]. Then there are three possibilities:

1. If 0 < Q <
1− ȳ

2
in each invariant plane there is a stable node.

2. If Q =
1− ȳ

2
in each invariant plane there is a stable node with equal

values, which is not diagonalizable as it will be show later on.

3. If Q >
1− ȳ

2
in each invariant plane there is a stable focus.

Since system (7) restricted to every invariant plane is a linear differen-
tial system in R2, then the basin of attraction of the equilibrium pz con-
tained in this plane is the full plane. Next, the dynamics on each one of
these invariant planes, plus the behaviour at infinity will be described. For
this purpose, the equilibrium point pz of the differential system (7) will be
moved to the origin of coordinates using the change of variables (x, y, z) →(
x1 −

(1− ȳ) ȳ

Q
, y1 + ȳ, z1

)
. Thus we get the following differential system:

ẋ1 =
y1

1− ȳ
,

ẏ1 = − 1

1− ȳ
x1 −

1

Q
y1,

ż1 = y1,

(8)
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whose equilibrium point is located at (0, 0, 0).

The differential system (8) will be written in its real Jordan normal form
for each of the range of values that Q may attain. This is:

1. When 0 < Q <
1− ȳ

2
doing the change of variables




X

Y

Z


 =




1− ȳ −
√
(1− ȳ)

2 − 4Q2

2Q
1 0

1− ȳ −
√
(1− ȳ)

2 − 4Q2

2Q
1 0

−(1− ȳ) 0 1







x1

y1

z1


 ,

system (8) may be written as




Ẋ

Ẏ

Ż


 =




− 1

2Q
−

√
(1− ȳ)

2 − 4Q2

2Q (1− ȳ)
0 0

0 − 1

2Q
+

√
(1− ȳ)

2 − 4Q2

2Q (1− ȳ)
0

0 0 0







X

Y

Z


 .

(9)
In other words, Ż = 0 and therefore, all planes Z = Z0 are invariant with
respect to the flow. Thus the differential (9) has a global stable node in each
invariant plane Z = Z0.

2. When Q =
1− ȳ

2
doing the change of variables




X
Y
Z


 =




1− ȳ 0 0
1 1 0

−(1− ȳ) 0 1







x1

y1
z1


,

system (8) may be written as




Ẋ

Ẏ

Ż


 =




− 1

2Q
1 0

0 − 1

2Q
0

0 0 0







X

Y

Z


 . (10)

Again Ż = 0, and therefore all planes Z = Z0 are invariant with respect to
the flow. Thus the differential system (10) has a global stable node with equal
eigenvalues, but is not diagonalizable in each invariant plane Z = Z0.



Orbits of Buck-Boost with linear plus integral controller 7

3. When Q >
1− ȳ

2
using the change of variables




X

Y

Z


 =




1− ȳ√
4Q2 − (1− ȳ)

2

2Q√
4Q2 − (1− ȳ)

2
0

1 0 0
−(1− ȳ) 0 1







x1

y1

z1


,

system (8) may be written as




Ẋ

Ẏ

Ż


 =




− 1

2Q

√
4Q2 − (1− ȳ)

2

2Q (1− ȳ)
0

−

√
4Q2 − (1− ȳ)

2

2Q (1− ȳ)
− 1

2Q
0

0 0 0







X

Y

Z


 , (11)

and Ż = 0, therefore all planes Z = Z0 are invariant with respect to the flow.
Thus, the differential system (11) has a global stable focus in each invariant
plane Z = Z0.

Proposition 2 For ε = 0 there is a straight line filled of equilibrium points
for system (6). For ε 6= 0 this straight line disappears and there appears a
unique finite equilibrium point p. If ε is sufficiently small and bε < 0, then the
equilibrium point p is locally stable.

Proof The finite equilibrium points for system (6) are given by p =

(
− (1− ȳ) ȳ

Q
,

ȳ, 0). A way to study its local phase portrait is by computing its Jacobian ma-
trix at p which is




−d(1− ȳ)
2
ε −d(1− ȳ)

2
ȳε−Q

Q (1− ȳ)
−b(1− ȳ)ε

d(1− ȳ)
3
ȳε+Q

Q (1− ȳ)
−d(1− ȳ)

2
ȳ2ε+Q

Q2

b (1− ȳ) ȳε

Q

0 1 0




.

The associated characteristic polynomial p(λ) is

λ3 +
Q+ d(1− ȳ)

2 (
Q2 + ȳ2

)
ε

Q2
λ2 +

Q− (1− ȳ)
3
(bȳ − d (1− ȳ)) ε

Q(1− ȳ)
2 λ− bε.
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By virtue of the Routh-Hurwitz stability criterion, the following conditions
must be satisfied:

bε < 0,

s1 = Q+ d(1− ȳ)
2 (

Q2 + ȳ2
)
ε > 0,

s2 = Q− (1− ȳ)
3
(bȳ − d (1− ȳ)) ε > 0,

s3 = bε+
(Q+ d(1− ȳ)

2 (
Q2 + ȳ2

)
ε)

(
Q+

(
Q2 + ȳ2

)3
(ȳ (b+ d)) ε− d

)

Q3(1− ȳ)
2 > 0.

It is easy to check that

lim
ε→0

s1 = Q, lim
ε→0

s2 = Q, lim
ε→0

s3 =
1

Q(1− ȳ)
2 ,

when ε → 0. Therefore if ε is sufficiently small and bε < 0, then the finite
equilibrium point p is locally stable.

2.2 The neighborhood of infinity

The next step is to describe the complete behaviour of the polynomial dif-
ferential system (3) at infinity, when the control action (5) is enforced, with
β = bε and γ = dε. Then two of the three eigenvalues are equal to cero at the
infinity equilibrium point, this fact makes very complex to describe the dy-
namics near the infinity of R3. An alternative and easier approach is resorting
to use the Poincaré compactification method on R2 for describing the global
phase portrait of systems (9), (10) and (11) at infinity and near infinity. Using
the notation given in appendix, the degree of the polynomial components for
systems (9), (10) and (11) is one (m = 1).

Proposition 3 The local phase portraits at the infinite equilibrium points on
the Poincaré disc, corresponding to an invariant plane of systems (9), (10)
and (11) are shown in the third column of table 1.

Proof There are three cases

1. Assume 0 < Q <
1− ȳ

2
. Then in the local chart U1 the coordinates (u, v)

are defined by x = 1/v and y = u/v. Using equation (15) from the appendix,
the differential system (9) may be rewritten as

u̇ =

√
(1− ȳ)

2 − 4Q2

Q (1− ȳ)
u, v̇ =


 1

2Q
−

√
(1− ȳ)

2 − 4Q2

2Q (1− ȳ)


 v.

In the chart U1 the infinite equilibrium point corresponds to (0, 0). Now, since
the eigenvalues are

λ1 =

√
(1− ȳ)

2 − 4Q2

2Q (1− ȳ)
> 0, λ2 =

1

2Q
+

√
(1− ȳ)

2 − 4Q2

Q (1− ȳ)
> 0,
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then the origin (0, 0) of U1 is a repeller node.

In the local chart U2 the coordinates (u, v) are defined by x = u/v and
y = 1/v. Using equation (16) from the appendix, the differential system (9)
may be written as

u̇ = −

√
(1− ȳ)

2 − 4Q2

Q (1− ȳ)
u, v̇ =


 1

2Q
−

√
(1− ȳ)

2 − 4Q2

2Q (1− ȳ)


 v.

In the local chart U2 the infinite equilibrium point is (0, 0). Since the eigen-
values are

λ1 =
1

2Q
−

√
(1− ȳ)

2 − 4Q2

2Q (1− ȳ)
> 0, λ2 = −

√
(1− ȳ)

2 − 4Q2

Q (1− ȳ)
< 0,

then the origin (0, 0) of U2 is a saddle point.

For the local charts V1 and V2 it is found that the origin of V1 is a repeller
node, and the origin of V2 is a saddle point.

2. Assume Q =
1− ȳ

2
. In the local chart U1 the differential system (9) becomes

u̇ = −u2, v̇ =
1

2Q
v − uv.

In the chart U1 the infinite equilibrium point corresponds to (0, 0). The

eigenvalues are λ1 =
1

2Q
and λ2 = 0. So the origin is a semi–hyperbolic

equilibrium point, which is analyzed using the Theorem 2.19 of [2], to conclude
that the origin of U1 is a saddle–node.

In the local chart U2 the differential system (9) may be expressed as

u̇ = 1, v̇ =
1

2Q
v.

Hence in the chart U2 does not exist infinite equilibrium point.

3. Finally suppose Q >
1− ȳ

2
. In the local chart U1 the differential system (9)

writes

u̇ = −

√
4Q2 − (1− ȳ)

2

2Q (1− ȳ)
−

√
4Q2 − (1− ȳ)

2

2Q (1− ȳ)
u2,

v̇ =
1

2Q
v −

√
4Q2 − (1− ȳ)

2

2Q (1− ȳ)
uv.

Hence in the local chart U1 there are no infinite equilibrium points.



10 J. Llibre, M. Spinetti-Rivera and E. Colina-Morles

In the local chart U2 the differential system (9) may be expressed as

u̇ = −

√
4Q2 − (1− ȳ)

2

2Q (1− ȳ)
+

√
4Q2 − (1− ȳ)

2

2Q (1− ȳ)
u2,

v̇ =
1

2Q
v +

√
4Q2 − (1− ȳ)

2

2Q (1− ȳ)
uv.

Again in the local chart U2 the are no infinite equilibrium points.

Theorem 1 The global phase portraits in the Poincaré disc, corresponding to
the invariant planes Z = Z0 of system (7), with ε = 0 are described in Figure
2.

Proof It follows immediately from Propositions 1 and 3, and the fact that
system (7) with ε = 0 is a linear differential system.

NN
N

U (0,0)
11V (0,0)

(a)

S

S

U (0,0)
2

V (0,0)2

S-NS-N
N

U (0,0)
11V (0,0)

(b)

F

(c)

Fig. 2 The three global phase portraits in the Poincaré disc of system (7), corresponding
to the invariant plane Z = Z0 of systems (9), (11) and (10), respectively.

Three comments on the results of Figure 2.
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(i) If 0 < Q <
1− ȳ

2
, then there exists a global stable node p in R2 (the

interior of the Poincarè disc). The infinite equilibrium points are composed
by a pair of diametrically opposed repeller nodes and a pair of diametrically
opposed saddles, corresponding to the origins of the charts U1, U2, V1 and
V2, respectively. See Figure 2(a).

(ii) If Q =
1− ȳ

2
, then there exists a global stable node in R2, and at infinity

there is a pair of diametrically opposed saddle–nodes. These two saddle–
nodes correspond to the origins of U1 and V1, respectively. See Figure 2(b).

(iii) If Q >
1− ȳ

2
, then there exists a global stable focus in R2. Since there

is no infinite equilibrium point and the infinity S1 of the Poincaré disc is
invariant, it follows that S1 is a periodic orbit. See Figure 2(c).

In summary, the results of Theorem 1 show that any solution of system
(7) with ε = 0, defined in a space R3, tends in forward time to a unique finite
equilibrium point belonging to the straight line filled of equilibrium points.

The Theorem of Continuous Dependence on Initial Conditions and Param-
eters, in [3], states that any solution γ of system (6), with ε sufficiently small
and with initial conditions (x0, y0, z0), follows as close as it is desired the so-
lution γ0 with the same initial conditions of (7), for ε = 0. Consequently, the
solution γ turns out close to the curve of equilibrium points which exist for
ε = 0; but for ε sufficiently small, such curve does not exist and only exists
the stable equilibrium p if bε < 0. If γ enters in the basin of attraction of the
equilibrium point p, then γ tends to this equilibrium point. Otherwise, it is
not known where the orbit γ tends. It might be the infinity, or some other
invariant object created by a bifurcation, which appears when the parameter
ε goes away from zero.

3 Example

As an example, it is taken ȳ = Vd = −1 and Q = {1/2, 1, 2}, which are used

to represent the three regions 0 < Q <
1− ȳ

2
, Q =

1− ȳ

2
and Q >

1− ȳ

2
. For

each value of Q there exists a straight line of finite equilibrium points pz of
system (7) with ε = 0. Some of these straight lines of equilibrium points are
shown in Figure 3.

An analysis of the three regions for different values of Q gives the following
results:

(i) With Q = 1/2 the differential equations system (9) is transformed into



Ẋ

Ẏ

Ż


 =



−1.866.. 0 0

0 −0.1339.. 0
0 0 0





X
Y
Z


 . (12)
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−4

−3

−2

−1

−2

−1.5

−1

−0.5

0
−1

−0.5

0

0.5

1

1.5

2

 ← Q=2.0 ← Q=2.0 ← Q=2.0 ← Q=2.0 ← Q=2.0

x

 ← Q=1 ← Q=1.0 ← Q=1.0 ← Q=1 ← Q=1

Straigth Line of Finite Equilibrium Points to Q={0.5,1,2} and V
d
=−1

 ← Q=0.5 ← Q=0.5 ← Q=0.5 ← Q=0.5 ← Q=0.5

y

z

Fig. 3 Finite equilibrium points of system (6) with ε = 0.

Figure 4(a) shows the behaviour near the finite node in the plane X,Y of
the differential system (12).

(ii) With Q = 1 the differential equations system (10) is transformed into



Ẋ

Ẏ

Ż


 =



−1/2 1 0
0 −1/2 0
0 0 0





X
Y
Z


 . (13)

Figure 4(b) shows the behaviour near the finite node, not diagonalizable,
in the plane X, Y of the differential system (13).

(iii) With Q = 2 the differential equations system (11) is transformed into



Ẋ

Ẏ

Ż


 =




−1/4
√
3
/
4 0

−
√
3
/
4 −1/4 0

0 0 0





X
Y
Z


 . (14)

Figure 4(c) shows the behaviour near the finite focus in the plane X,Y of
the differential system (14).

All these phase portrais are in accordance with Proposition 1.

If it is taken ȳ = Vd = −1, Q = {1/2, 1, 2} and the differential system (6)
the following equilibrium points are obtained p0.5 = (4,−1, 0), p1 = (2,−1, 0)
and p2 = (1,−1, 0), respectively, where now the subindex indicates the value
of the parameter Q. With ε = 0.01 and b = −1, it results in εb = −0.01 < 0.
Thus, for any value of d, for example d = 1, the eigenvalues of the differential
system (6) for each of the mentioned values of Q, are calculated, and the results
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Fig. 4 Phase portraits near the finite equilibrium point of systems (12), (13) and (14),
respectively.

are summarized in Table 2. These results are in concordance with Proposition
2.

Note that when the restriction ε = 0 is imposed; the differential system
(6) is transformed into the linear differential system (7). When ε 6= 0; the
differential system (6) becomes nonlinear and the equilibrium point depends
on the parameters of the system. By choosing these parameters using the
Routh–Hurwitz criterion, it is possible to assure the local stability of the finite
equilibrium point in accordance with Proposition 2.

Now it has been set that for the infinite equilibrium points of the differential
systems (12), (13) and (14) correspond the three phase portraits that system
(7) may exhibit.

Analyzing the infinity of differential systems (12), (13) and (14) yields:
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Q Eigenvalues Equilibrium point Coordinates pQ

1/2 λ1 = −2.06169.., Stable Focus-Node (4,−1, 0)
λ2,3 = −0.0691543..± 0.00825049.. i

1 λ1 = −0.72798.., λ2 = −0.307322.. Stable Node (2,−1, 0)
λ3 = −0.0446979..

2 λ1,2 = −0.254055..± 0.417338.. i, Stable Focus-Node (1,−1, 0)
λ3 = −0.041891..

Table 2 Finite equilibrium point of the differential system (5) with ȳ = −1, ε = 0.01,
b = −1 and d = 1 for the values of Q in {1/2, 1, 2}.

(i) In the local chart U1 system (12) becomes

u̇ = 1.73205..u, v̇ = 1.86603..v.

Then the infinite equilibrium point is the origin of U1 and its eigenvalues
are λ1 = 1.73205, λ2 = 1.86603. So it is an unstable node.

On the other hand, in the local chart U2 the system (12) corresponds to

u̇ = −1.73205..u, v̇ = 0.133975..v.

The infinite equilibrium point is the origin of U2 and its eigenvalues are
λ1 = 0.133975.., λ2 = −1.73205.., which is a saddle.

In the local charts V1 and V2 it is found the same behaviour, (i.e. the origin
of V1 is an unstable node and the origin of V2 is a saddle.

(ii) In the local chart U1 system (13) becomes

u̇ = −u2, v̇ = 0.5v − uv.

Therefore, the infinite equilibrium point is the origin of U1 and its eigen-
values are λ1 = 0.5, λ2 = 0. This is a semi–hyperbolic infinite equilib-
rium point, which corresponds to a saddle–node, (see Theorem 2.19 of [2]).
Therefore the origin of the local chart V1 is also a saddle–node.

In the local chart U2 the system has no infinite equilibrium points.

(iii) System (14) has no infinite equilibrium points in the local charts U1 and
U2; so there is a periodic orbit at infinity.

All the above results are in concordance with Proposition 3.
Finally Theorem 1 describes the global phase portraits of system (7) in its

invariant planes using the Poincaré disc. This is shown in Figure 2.
With Vd = −1, Q = 0.5, b = −1, d = 1, four solutions δ1 and δ2 of the dif-

ferential system (6), and ζ1 and ζ2 of the differential system (7) are simulated.
The solutions δ1 and ζ1 have the same initial conditions icδ1,ζ1 = (0, 0, 0). The
solutions δ2 and ζ2 also have the same initial conditions icδ2,ζ2 = (1,−1, 0). The
differential system (6) has a unique finite equilibrium point pδ1,δ2 = (4,−1, 0),
as it is stated in Proposition 2. The differential system (7) has one straight
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line of equilibrium points, (i.e. the two equilibrium points pζ1 = (4,−1, 8) and
pζ2 = (4,−1, 6), see Proposition 1. As stated by the Theorem of Continuous
Dependence on Initial Conditions and Parameters, both solutions δ1 and ζ1,
with same initial condition, are closed to one another until they are near to
the position of the stable node pζ1 . Similar behaviour can be observed for the
solutions δ2 and ζ2. All information contained in this paragraph is summarized
in Figure 5.
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Fig. 5 Some solutions of the differential systems (6) and (7).

4 Comments and Perspectives concerning the Operation of
Buck-Boost Converters

When it is intended to design a controller, the basic strategy may involve
obtaining a globally stable closed loop system in the Lyapunov sense. In some
cases this strategy is too much complicated, if not impossible to obtain. In the
example considered in this paper, a control law which leads to a semi-globally
stable system is used, (see (1)). This control law depends on the parameters R,
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L and C of the Buck-Boost converter; which is a disadvantage as variations of
these parameters produce a displacement of the equilibrium point. Normally,
this technique includes an integral term to eliminate the offset and return the
finite equilibrium point to the corresponding coordinates (see (2)). When the
control law with the integral term is included, the resulting closed loop system
is a nonlinear one (see (4)), and the stability in the Lyapunov sense is not
guaranteed.

A question to deal with is related to the possibility to operate the con-
trolled system in a globally or semi globally stable behaviour. This question
has no definite answer, yet a proper answer is connected to a study of the local
stability, which requires knowing the basin of attraction of the finite equilib-
rium point. A new approach proposed here, is in terms of describing the global
phase portrait of the controlled differential system for some values of its pa-
rameters. This global phase portrait includes the infinity equilibrium points,
using the Poincaré compactification theorem for describing the behaviour of
the system solutions near the infinity. However, it is not possible to describe
the dynamics of the Poincaré compactification in R3 because there may appear
equilibrium points at infinity with two eigenvalues equal to zero.

To obtain a semi–global solution of this problem, the following three tools
are applied:

(1) Use the Routh–Hurwitz criterion for local stability analysis of the finite
equilibrium point (see Proposition 2).

(2) For a set of values of the parameters, some of them very small, the con-
trolled differential system becomes a set of linear differential systems. For
these linear differential systems, it is possible to describe the global phase
portrait, including the infinity, because they have a family of invariant
planes filling the whole space R3. Use the Poincaré compactification in R2

for each invariant plane in order to studying the behavior near the infin-
ity, including the infinite equilibrium points (see Proposition 3 and the
appendix).

(3) The Theorem of Continuous Dependence on Initial Conditions and Pa-
rameters [3] allows to explain partially the behavior of the solutions lying
between the infinity and the finite equilibrium point.

With these tools it is possible to have a broader understanding of the basin
of attraction of the finite equilibrium point, where it is easier to proceed with
the controller design. The term semi–globally stable is used because it has
been shown that the basin of attraction extends near infinity, which is a new
piece of information. The practical experience gained in the implementation
of the Buck-Boost controller suggests that for small values of parameters, the
converter operates properly.
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5 Conclusions

The approach proposed in this paper has allowed a qualitative analysis of
the trajectories associated with a polynomial nonlinear dynamic system. The
analysis has included both a local characterization of the equilibrium points; by
the method of Routh–Hurwitz, as the specification of the infinite equilibrium
points; using the method of compactification of Poincaré.

In order to proceed with the proposed approach, when the infinite equilib-
rium points are associated with more than two zero eigenvalues; as the case
of the Buck-Boost power converter considered in this work, it has been neces-
sary to multiply the controller parameters by an auxiliary value ε, and make a
qualitative analysis when ε = 0 as well as when ε → 0. This has allowed a char-
acterization of a portion of the solution space of the dynamical system, where
all the possible behaviors of the trajectories are shown; from a neighborhood
of the infinity equilibrium point to the finite equilibrium point.

The work has demonstrated that the Buck-Boost power converter presents
a globally stable behaviour, provided that the controller parameters are small
enough; i.e. when ε = 0 or when ε → 0.

6 Appendix

Here there are some basic results on the qualitative theory for two-dimensional
systems used in this paper.

6.1 Poincaré Compactification

Consider the polynomial vector field (P,Q) associated to the differential poly-
nomial system

ẋ1 = P (x1, x2) ,
ẋ2 = Q (x1, x2) ,

of degree m = max{degP, degQ}. To study the Poincaré compactification of
(P,Q) on the sphere S2 = {y ∈ R3 : y21 + y22 + y23 = 1} we use six local charts:
Uk =

{
y ∈ S2 : yk > 0

}
, Vk =

{
y ∈ S2 : yk < 0

}
for k = 1, 2, 3.

In the local chart U1 with coordinates (u, v) given by x1 = 1/v, x2 = u/v
the expression of the Poincaré compactification of (P,Q) is

u̇ = vm
[
−uP

(
1

v
,
u

v

)
+Q

(
1

v
,
u

v

)]
,

v̇ = −vm+1P

(
1

v
,
u

v

)
.

(15)
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In the local chart U2 with coordinates (u, v) given by x1 = u/v, x2 = 1/v
the expression of the Poincaré compactification of (P,Q) is

u̇ = vm
[
P

(
u

v
,
1

v

)
− uQ

(
u

v
,
1

v

)]
,

v̇ = −vm+1Q

(
u

v
,
1

v

)
.

(16)

The expression of chart U3 is given by

u̇ = P (u, v) ,
v̇ = Q (u, v) .

Finally, the expression in the local chart Vk is equal to the expression Uk

multiplied by (−1)
m−1

for k = 1, 2, 3.

Note that in all the local charts the infinity is given by v = 0. Moreover,
the construction of the Poincaré compactification forces that the equilibrium
points at infinity appear in pairs diametrally opposite, and the local phase
portraits in these diametrally opposite equilibria is symmetric with respect to
the center of the Poincaré sphere S2, but the flow in a neighborhood of these
equilibria is the same if the maximum degree of the polynomials P and Q is
odd, or one of these equilibria has the sense of all the orbits reversed with
respect to the other if the degree is even. For more details on the Poincaré
compactification see the chapter 5 of [2].

  v                                                                                    v

  u                                                                                    u

U = { v > 0 }

  

V = { v < 0 }

2

2

V = { u < 0 }   U = { u > 0 }
1                              1

Fig. 6 The local charts U1, U2, V1 and V2 projected on the Poincaré disc.
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