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MAXIMUM NUMBER OF LIMIT CYCLES FOR CERTAIN
PIECEWISE LINEAR DYNAMICAL SYSTEMS

JAUME LLIBRE1, DOUGLAS D. NOVAES1,2 AND MARCO A. TEIXEIRA2

Abstract. In this paper we compute the maximum number of limit cycles
of some classes of planar discontinuous piecewise linear differential systems
defined in two half–planes separated by a straight line Σ. Here we only
consider non–sliding limit cycles, i.e. the limit cycle does not contain any
sliding segment. Among all the cases that we study, in particular, we prove
that this maximum number of limit cycles is 2, 1 or 1 if one of the two linear
differential systems of the discontinuous piecewise linear differential system
is a focus in Σ, a center, or a weak saddle, respectively. We also provide
some normal forms for these systems.

1. Introduction and statement of the main results

Nonsmooth dynamical system appear in a natural way modelling many real
processes and phenomena, for instance, recently piecewise linear differential
equations appeared as idealized models of cell activity, see [9, 32, 33]. Due to
that, in these last years the mathematical community became very interested
in understanding the dynamics of these kind of system. In general, some of the
main source of motivation to study nonsmooth systems can be found in control
theory [4], impact and friction mechanics [5, 7, 24], nonlinear oscillations [1, 30],
economics [16, 21], and biology [3, 23]. See for more details the book [11] and
the references therein. Particularly the study of continuous and discontinuous
piecewise linear differential systems has started with Andronov and coworkers
[1].

Lum and Chua [29] in 1990 conjectured that a continuous piecewise linear
vector field in the plane with two zones separated by a straight line, which is
the easiest example of this kind of system, has at most one limit cycle. This
conjecture was proved by Freire et al [13] in 1998. We remark that even in
this relatively easy case, only after a serious work it was possible to show the
existence of at most one limit cycle.

In this paper we consider the problem of Lum and Chua extended to the
class of discontinuous piecewise linear differential systems in the plane with two

2010 Mathematics Subject Classification. 34C05, 34C07, 37G15.
Key words and phrases. discontinuous differential system, limit cycle, piecewise linear

differential system.
1

This is a preprint of: “Maximum number of limit cycles for certain piecewise linear dynamical
systems”, Jaume Llibre, Douglas D. Novaes, Marco Antonio Teixeira, Nonlinear Dynam., vol.
82(3), 1159–1175, 2015.
DOI: [10.1007/s11071-015-2223-x]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/78533733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
10.1007/s11071-015-2223-x


2 J. LLIBRE, D.D. NOVAES AND M.A. TEIXEIRA

zones separated by a straight line, which is very related to the Hilbert’s 16th
problem [20] for this kind of system. Of course, limit cycles of discontinuous
piecewise linear differential systems with two zones separated by a straight line
have been studied recently by several authors, see among others [2, 8, 10, 12,
14, 15, 17, 18, 19, 25, 26, 27, 28]. Nevertheless the problem of Lum and Chua
remains open for this class of differential equations. In this work we give a
partial solution for this problem.

The difficulty in solving the problem of Lum and Chua for the class of
differential equation that we are interested is due for basically two reasons.
First, even being easy the computations of the solutions in any linear region,
the time that each orbit requires to pass from one linear region to the other
is not easy to compute, and consequently the matching of the corresponding
solutions is a difficult problem. Second, the number of parameters to consider
in order to be sure that one controls all possible configurations is generally not
small, so the obtention of efficient canonical forms with fewer parameters is
important.

It is worth to say that when the whole family of planar piecewise linear
differential systems with two zones separated by a continuous curve is consid-
ered, then the maximum number of limit cycles that a system of this family
can have does not exist. It is a consequence of a conjecture stated by Braga
and Mello in [6] and then proved by Novaes and Ponce in [31].

In this paper we deal with planar vector fields Z expressed as ż = F (z) +
sign(x)G(z), where z = (x, y) ∈ R2, and F and G are linear vector fields in R2

or, equivalently,

(1) ż =





X(z) if x > 0,

Y (z) if x < 0,

whereX(z) = (F (z)+G(z))/2 and Y (z) = (F (z)−G(z))/2. The line Σ = {x =
0} is called discontinuous set. Our main goal is to study the maximum number
of limit cycles that the discontinuous piecewise linear differential system (1)
can have.

The systems ż = X(z) and ż = Y (z) are called lateral linear differential
systems (or just lateral systems) and more specifically right system and left
system, respectively.

A linear system is degenerate if the determinant of system is zero, otherwise
is non–degenerate. System (1) can be classified according to the singularities
of the lateral linear differential systems.

A non–degenerate linear differential system can have the following singu-
larities: saddle (S), node (N), focus (F ), and center (C). Among the above
classes of singularities we shall also distinguish the following ones: a weak
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saddle, i.e. a saddle such that the sum of its eigenvalues is zero (S0); a di-
agonalizable node with distinct eigenvalues (DN); a diagonalizable node with
equal eigenvalues or star node (DN); and a non–diagonalizable node (nDN).
We say that the discontinuous differential system (1) is a LR–system with
L,R ∈ {S, S0, DN,DN, nDN,F,C}, when the left system has a singularity of
type L and the right system has a singularity of type R.

We define subclasses of LR–systems according to the position of the singu-
larity of each lateral system. The right system can have a virtual singularity
(Rv), i.e. a singularity p = (px, py) with px < 0; a tangency singularity (Rd),
i.e. a singularity p = (px, py) with px = 0; or a real singularity (Rr) i.e. a
singularity p = (px, py) with px > 0. The left system can have a virtual singu-
larity (Lv), i.e. a singularity p = (px, py) with px > 0; a tangency singularity
(Ld), i.e. a singularity p = (px, py) with px = 0; or a real singularity (Lr) i.e.
a singularity p = (px, py) with px < 0.

We denote by N (L,R) the maximum number of non–sliding limit cycles
that a LR–system can have. Here a non–sliding limit cycles is a limit cycle
that does not contain any sliding segment in Σ. Clearly N (L,R) = N (R,L).

In this paper we prove that N (L,R) ≤ 2 always when one of the lateral
systems is a degenerate linear differential system, a saddle of kind Sv, Sd, S

0,
a node of kind DNr, DNd, DN , nDNr, nDNd, a focus of kind Fd, and a C.
Moreover we compute the exact value of N (L,R) in all the above cases.

If one of the lateral systems is a degenerate linear differential system, then
system (1) does not admits the existence of limit cycles. Indeed, for a degener-
ate linear differential system always there exists a straight line of singularities
such that the solutions are all either parallel or perpendicular to this line. So
the first return map on the straight line x = 0 is not defined. It means that
N (L,R) = 0 in this case.

It is easy to see that if one of the lateral linear differential systems is of
type Sv, Sd, DNr, DNd, DN , nDNr, or nDNd, then the first return map on
the straight line x = 0 of system (1) is not defined. Consequently system (1)
does not admit limit cycles in all these cases. So N (R,L) = 0 for the systems
having one of these kind of equilibria.

It remains to study the cases when one of the lateral system is Fd, C or S0
r .

For studying such cases we shall use the following theorems.

Theorem 1. All numbers N (Fd, Fv), N (Fd, Fr), N (Fd, DNv), N (Fd, nDNv)
and N (Fd, Sr) are equal to 2, and all numbers N (Fd, Fd), N (Fd, C) and N (Fd, S

0
r )

are equal to 1.

Theorem 2. All numbers N (S0
r , F ), N (S0

r , DNv), N (S0
r , nDNv) and N (S0

r , Sr)
are equal to 1, and all numbers N (S0

r , C) and N (S0
r , S

0
r ) are equal to 0.
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We shall see that the next result can be obtained as an immediately corollary
of the proofs of Theorems 1 and 2.

Corollary 3. All numbers N (Cd, F ), N (Cd, DNv), N (Cd, nDNv) and N (Cd, Sr)
are equal to 1, and all numbers N (Cd, C) and N (Cd, S

0
r ) are equal to 0.

The equalities of Corollary 3 can be extended for all linear centers.

Theorem 4. All numbers N (C,F ), N (C,DNv), N (C, nDNv) and N (C, Sr)
are equal to 1, and all numbers N (C,C) and N (C, S0

r ) are equal to 0.

2. Preliminary results

A linear change of variables in the plane preserving the vertical lines will be
called in what follows a vertical lines–preserving linear change of variables.

Proposition 5. Let M = (mij)i,j be a 2× 2 matrix. If the linear differential
system

(2) (ẋ, ẏ)T = M(x, y)T

is a

(a) S–system then after a vertical lines–preserving linear change of vari-
ables and a time–rescaling system (2) becomes (ẋ, ẏ)T = M1(x, y)T ;

(b) DN–system then after a vertical lines–preserving linear change of vari-
ables and a time–rescaling system (2) becomes (ẋ, ẏ)T = M2(x, y)T ;

(c) F–system then after a vertical lines–preserving linear change of vari-
ables and a time–rescaling system (2) becomes (ẋ, ẏ)T = M3(x, y)T ;

(d) nDn–system then after a vertical lines–preserving linear change of vari-
ables and a time–rescaling system (2) becomes (ẋ, ẏ)T = M4(x, y)T ,

where

M1 =


 a 1

1 a


 with |a| < 1; M2 =


 a 1

1 a


 with |a| > 1;

M3 =


 a 1

−1 a


 with a ∈ R; and M4 =


 λ λ

0 λ


 with λ = ±1.

Proof of Proposition 5. Let S = (sij)i,j be a 2× 2 matrix. The change of vari-
ables (u, v)T = S(x, y)T is a vertical lines–preserving linear change of variables
if and only if s12 = 0 and s11 = 1. Indeed, S(x, y) = (s11x+ s12y, s21x+ s22y)
and s11x + s12y = x for every x ∈ R if and only if s11 = 1 and s12 = 0. So in
what follows we fix s12 = 0 and s11 = 1.

Claim 1. The statement (a) holds.
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Taking

s21 =
m11 −m22√

4m12m21 + (m11 −m22)
2
, and s22 =

2m12√
4m12m21 + (m11 −m22)

2
,

it follows that

SMS−1 =
1

2


 m11 +m22

√
4m12m21 + (m11 −m22)

2

√
4m12m21 + (m11 −m22)

2 m11 +m22


 .

We note that
√

4m12m21 + (m11 −m22)
2 6= 0, because otherwise the singular-

ity would be a node with equal eigenvalues DN . Then we can rescale the time
by

τ =

√
4m12m21 + (m11 −m22)

2 t.

Denoting a = (m11 +m22) /
√

4m12m21 + (m11 −m22)
2 system (2) becomes


 x′

y′


 =


 a 1

1 a




 x

y


 .

where now the prime denotes the derivative with respect to the new time
variable τ . Computing the eigenvalues of the above system {−1 + a, 1 + a}
we conclude that |a| < 1, because this system is a saddle, i.e. the eigenvalues
have different sign. Therefore we have proved statement (a).

Claim 2. The statement (b) holds.

The proof of statement (b) follows similar to the proof of statement (a).
Nevertheless we conclude that |a| > 1, because in this case the system is a
diagonalizable node, i.e. the eigenvalue have the same sign. Thus we have
proved statement (b).

Claim 3. The statement (c) holds.

Taking

s21 =
m11 −m22√

−4m12m21 − (m11 −m22)
2
, and s22 =

2m12√
−4m12m21 − (m11 −m22)

2
,

it follows that

SMS−1 =
1

2


 m11 +m22

√
−4m12m21 − (m11 −m22)

2

−
√
−4m12m21 − (m11 −m22)

2 m11 +m22


 .
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From hypotheses this system is a focus thus
√
−4m12m21 − (m11 −m22)

2 > 0.

So we can rescale the time by τ =
√
−4m12m21 − (m11 −m22)

2 t. Denoting

a = (m11 +m22) /
√

4m12m21 + (m11 −m22)
2 system (2) becomes


 x′

y′


 =


 a 1

−1 a




 x

y


 .

where now the prime denotes the derivative with respect to the new time
variable τ . Computing the eigenvalues of the above system {−i+ a, i+ a} we
conclude that a 6= 1, because this system is a focus. Hence statement (c) is
proved.

Claim 4. The statement (d) holds.

One of the entries m12 or m21 are distinct of zero. Indeed, Suppose that
m12 = 0, so {m11,m22} are the eigenvalues of the matrix M . Since system
(2) is a non–diagonalizable node we have that m11 = m22 which implies that
m21 6= 0, in other way the matrix M would be diagonalizable. On the other
hand, supposing that m21 = 0 we obtain m12 6= 0. From here we assume
without loss of generality that m12 6= 0.

We also have that m11 + m22 6= 0. Indeed, in this case ±
√
m2

11 +m12m21

are the eigenvalues of the matrix M . Again, since system (2) is a non–
diagonalizable node we have that the matrix M has only one eigenvalue with
multiplicity 2. This implies that

√
m2

11 +m12m21 = 0, which is a contradic-

tion. It is also easy to see that 4m12m21 + (m11 −m22)
2 = 0.

Taking

s21 =
m11 −m22

2m12

and s22 =
2m12

m11 +m22

,

it follows that

SMS−1 =
1

2


 m11 +m22 m11 +m22

0 m11 +m22


 .

So we can rescale the time by τ = |m11 +m22| t system (2) becomes

 x′

y′


 =


 λ λ

0 λ




 x

y


 .

where λ = ±1, and now the prime denotes the derivative with respect to the
new time variable τ . This completes the proof of statement (c). �
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We say that an ordered set of complex–valued functions F = (f0, f1, . . . , fn)
defined on I is an Extended Chebyshev system or ET–system on I if and only
if any nontrivial linear combination of the functions of F has at most n zeros
counting multiplicities. We say that F is an Extended Complete Chebyshev sys-
tem or an ECT–system on I if and only if for any k, 0 ≤ k ≤ n, (f0, f1, . . . , fk)
is an ET–system. For more details, see the book of Karlin and Studden [22].

In order to prove that F is a ECT–system on I it is sufficient and nec-
essary to show that W (f0, f1, . . . , fk)(t) 6= 0 on I for 0 ≤ K ≤ n. Here
W (f0, f1, . . . , fk)(t) denotes the Wronskians of the functions (f0, f1, . . . , fk)
with respect to t. We recall the definition of the Wronskian.

W (f0, f1, . . . , fk)(t) =

∣∣∣∣∣∣∣∣∣∣∣∣

f0(t) f1(t) · · · fk(t)

f ′0(t) f ′1(t) · · · f ′k(t)
...

...
. . .

...

f
(k)
0 (t) f

(k)
1 (t) · · · f

(k)
k (t)

∣∣∣∣∣∣∣∣∣∣∣∣

.

Now consider the functions

ξ1(t) = 1,

ξ12(t) = cot(t)− eat csc(t), ξ22(t) = coth(t)− eatcsch(t),

ξ13(t) = cot(t)− e−at csc(t), ξ32(t) = coth(t)− e−atcsch(t),

ξ23 =
1− et
t

, ξ33 =
1− e−t

t
,

ξ42(t) = csc(t) sinh(at), ξ52(t) = csch(t) sinh(at),

ξ62(t) =
sinh(t)

t
.

We define the sets of functions F i = {ξ1, ξi2, ξi3} for i = 1, 2, 3, and F i =
{ξ1, ξi2} for i = 4, 5, 6.

Lemma 6. The following statements hold.

(a) The set of functions F1 is a ECT–system on the intervals (0, π) and
(−π, 0) for every a 6= 0.

(b) The set of functions F2 is a ECT–system on R+ for every a /∈ {0,±1}.
(c) The set of functions F3 is a ECT–system on R+.
(d) The set of functions F4 is a ECT–system on the intervals (0, π) and

(−π, 0) for every a 6= 0.
(e) The set of functions F5 is a ECT–system on R+ for every a /∈ {0,±1}.
(f) The set of functions F6 is a ECT–system on R+.
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Proof. To prove the statements (a)–(f) we compute the Wronskians W1(t) =
W (ξ1)(t), W

i
2(t) = W (ξ1, ξ

i
2)(t) for i = 1, 2, . . . , 6, and W i

3(t) = W (ξ1, ξ
i
2, ξ

i
3)(t)

for i = 1, 2, 3.

W1(t) = 1,

W 1
2 (t) = csc(t)

(
eat(cot(t)− a)− csc(t)

)
,

W 1
3 (t) = 2

(
1 + a2

)
csc2(t) (csc(t) sinh(at)− a) ,

W 2
2 (t) = csch(t)

(
eat(coth(t)− a)− csch(t)

)
,

W 2
3 (t) = 2

(
1− a2

)
csch2(t) (csch(t) sinh(at)− a) ,

W 3
2 =

et(1− t)− 1

t2
,

W 3
3 =

2 (t− sinh(t))

t3
,

W 4
2 (t) = csc(t) (a cosh(at)− cot(t) sinh(at)) ,

W 5
2 (t) = csch(t) (a cosh(at)− coth(t) sinh(at)) ,

W 6
2 (t) =

t cosh(t)− sinh(t)

t2
,

From here it is easy to see that for each a 6= 0 the Wronskians W 1
2 , W 1

3 and W 4
2

do not vanish at any point of the interval (0, π) or (−π, 0); for each a /∈ {0,±1}
the Wronskians W 2

2 , W 2
3 and W 5

2 do not vanish at any point of R+; and the
Wronskians W 3

2 , W 3
3 and W 6

2 do not vanish at any point of R+. So the lemma
is proved. �

For a = 0 we define the sets of functions Gi = {ξ1, ξi2} for i = 1, 2. Lemma
6 is stated assuming a 6= 0. When a = 0 we will need the following lemma.

Lemma 7. Assume that a = 0. Then following statements hold.

(a) The set of functions G1 is a ECT–system on the intervals (0, π) and
(−π, 0).

(b) The set of functions G2 is a ECT–system on R+.
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Proof. Proceeding analogously to the proof of Lemma 6 we compute the Wron-
skians.

W1(t) = 1,

W 1
2 (t) = csc(t) cot(t)− csc2(t),

W 2
2 (t) = csch(t) coth(t)− csch2(t).

From here it is easy to see that the Wronskian W 1
2 does not vanish at any

point of the interval (0, π) or (−π, 0), and that the Wronskian W 2
2 does not

vanish at any point of R+. �

Lemma 8. For u1 > 0 we consider the functions

(3)
F (t) = u1

(
e−at csc(t)− cot(t)

)
, G(t) = u1

(
e−atcsch(t)− coth(t)

)
,

H(t) =
u1 (e−t − 1)

t
.

The following statements hold.

(a) For every a ∈ R, F (t) is a monotonic increasing function in the interval
(−π, π) such that F (t) < −au1 for t ∈ (−π, 0), and F (t) > −au1 for
t ∈ (0, π).

(b) For |a| > 1 G(t) is a monotonic increasing function in R such that
G(t) > −au1 for t > 0; and for |a| < 1 G(t) is a monotonic decreasing
function in R such that G(t) > −au1 for t > 0.

(c) H(t) is a monotonic increasing function such that H(t) < −u1 for
t < 0, and H(t) > −u1 for t > 0.

Proof. To prove statement (a) we compute

F ′(t) = u1 csc2(t)
(
1− e−at(cos(t) + a sin(t))

)
= u1 csc2(t)p(t),

where p(t) = 1− e−at(cos(t) + a sin(t)), and p′(t) = (1 + a2)e−at sin(t). Now, if
u1 > 0 and 0 < t < π, then p′(t) > 0. Since p(0) = 0 we conclude that p(t) > 0
and F ′(t) > 0 for every 0 < t < π, which implies that F (t) > −au1 for every
0 < t < π, because limt→0 F (t) = −a u1. On the other hand, if u1 < 0 and
−π < t < 0, then p′(t) < 0. So analogously we conclude that F (t) > −au1 for
every 0 < t < π. Moreover, we have shown that the function F is increasing
for 0 < t < π when u1 > 0, and for −π < t < 0 when u1 < 0.
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To prove statement (b) we compute

G′(t) = u1csch(t) (csch(t)− e−at(a+ coth(t)))

=
e−atu1csch(t)

(et − 1)(et + 1)
(a− 1− e2t − ae2t + 2et+at)

=
e−atu1csch(t)

(et − 1)(et + 1)
q(t),

where q(t) = a−1−e2t−ae2t+2et+at. We compute q′(t) = −2(1+a)et (et − eat).
Now, if |a| > 1, then p′(t) > 0 for every t > 0. Since q(0) = 0 we conclude
that q(t) > 0 and G′(t) > 0 for every t > 0, which implies that G(t) > −a u1
for every t > 0, because limt→0G(t) = −a u1. On the other hand, if |a| < 1,
then q′(t) < 0 for every t > 0. So analogously we conclude that G(t) < −a u1
for every t > 0. Moreover, we have shown that the function G is increasing for
t > 0 when |a| > 1, and that G is decreasing for t > 0 when |a| < 1.

To prove statement (c) we compute

H ′(t) =
u1e
−t

t2
(et − t− 1) =

u1e
−t

t2
r(t),

where r(t) = et − t − 1. We compute r′(t) = et − 1 > 0. Since r(0) = 0 we
conclude that r(t) > 0 and H ′(t) > 0 for every t > 0, and that that r(t) < 0
and H ′(t) < 0 for every t > 0. Thus we obtain that H(t) > −u1 for every
t > 0, and that H(t) < −u1 for every t < 0, because limt→0H(t) = −u1.
Moreover, we have shown that the function H is increasing for t ∈ R. �

3. Proof of Theorems 1, 2 and 4, and Corollary 3

The proofs of Theorem 1 and Corollary 3 will be immediately consequences
of Propositions 9 –14; the proof of Theorem 2 will be an immediately conse-
quence of Propositions 14–19; and the proof of Theorem 4 will be an immedi-
ately consequence of Propositions 20–23 and Corollary 3.

We write system (1) as

(4)


 ẋ

ẏ


 =






 a11 a12

a21 a22




 x+ u1

y + u2


 if x > 0,


 b11 b12

b21 b22




 x+ v1

y + v2


 if x < 0,

The solution of the non–smooth piecewise linear differential system (4) can be
easily computed, because it is a piecewise linear differential systems. So let
ϕ+(t, x, y) =

(
ϕ+
1 (t, x, y), ϕ+

2 (t, x, y)
)

be the solution of (4) for x > 0 such that
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ϕ+(0, x, y) = (x, y). Similarly, let ϕ−(t, x, y) =
(
ϕ−1 (t, x, y), ϕ−2 (t, x, y)

)
be the

solution of (4) for x < 0 such that ϕ−(0, x, y) = (x, y).

In what follows, let t+(y) be the smallest positive time such that ϕ+
1 (t+(y), 0,

y) = 0; let t+(y) be the biggest negative time such that ϕ+
1 (t+(y), 0, y) = 0;

let t−(y) be the biggest negative time such that ϕ−1 (t−(y), 0, y) = 0; t−(y) be
the smallest positive time such that ϕ−1 (t−(y), 0, y) = 0. Observe that the
functions t+(y), t+(y), t−(y), and t−(y) are not necessarily always defined.

Assuming that t+(y) and t−(y) are defined then there exists a limit cycle
passing through the point (0, y) with y ∈ J∗ = Dom(t+)∪Dom(t−) if and only
if ϕ+

2 (t+(y), 0, y) = ϕ−2 (t−(y), 0, y). Thus, in this case, we must study the zeros
y∗ of the function

(5) f(y) = ϕ+
2 (t+(y), 0, y)− ϕ−2 (t−(y), 0, y),

on the domain J∗.

Of course if t+(y) and t−(y) are defined then there exists a limit cycle passing
through (0, y) with y ∈ J∗ = Dom(t+)∪Dom(t−) if and only if ϕ+

2 (t+(y), 0, y) =
ϕ−2 (t−(y), 0, y). Thus, in this case, we must study the zeros y∗ of the function

(6) f(y) = ϕ+
2 (t+(y), 0, y)− ϕ−2 (t−(y), 0, y),

on the domain J∗.

Since the vectors fields X and Y are linear, then a limit cycle passing through
a point (x0, y0) must contain points (0, y∗) and (0, y∗) such that y∗ ∈ J∗ and
y∗ ∈ J∗.

Let X = (X1, X2) and Y = (Y1, Y2). We say that a point (0, y) is an

(a) invisible fold point for the right system when

X1(0, y) = 0 and
X1

∂y
(0, y)X2(0, 0) < 0;

(c) invisible fold point for the left system when

Y1(0, y) = 0 and
Y1
∂y

(0, y)Y2(0, 0) > 0.

An affine (linear) change of variables in the plane preserving the straight
line x = 0 will be called in what follows a Σ–preserving affine (linear) change
of variables, and a Σ–preserving affine (linear) change of variables which also
preserves the semiplane x > 0 will be called in what follows a Σ+–preserving
affine (linear) change of variables. Clearly a Σ+–preserving affine (linear)
change of variables also preserves the semiplane x < 0.

The case when the left system has a focus or a center on Σ will be study in
subsection 3.1, the case when the left system has a weak saddle will be study
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in subsection 3.2, and the case when the left system has a virtual or real center
will be study in subsection 3.3.

3.1. Left system has a focus or a center on Σ. In this case v1 = 0,
4b12b21 + (b11 − b22)2 < 0 and the point (0,−v2) is a singularity of focus type.

Let Γ =
√
−4b12b21 − (b11 − b22)2. The function t−(y) is defined for every

y > −v2, and we compute t−(y) = −2π/Γ. Analogously the function t−(y) is
defined for every y < −v2, and we compute t−(y) = 2π/Γ.

In order to fix the clockwise orientation of the flow of system (4) we assume
that Y1(0, 1− v2) = b12 > 0.

Proposition 9. The equalities N (Fd, Fv) = 2, N (Fd, Cv) = N (Cd, Fv) = 1
and N (Cd, Cv) = 0 hold.

Proof. From Proposition 5 (c) we can assume that a11 = a22 = a with a ∈ R,
a12 = −a21 = 1, and by a Σ+–preserving translation we can take u2 = 0.
Moreover u1 > 0 because the right system has a focus which is virtual for
system 4.

It is easy to see that the point (0,−a u1) ∈ Σ is an invisible fold point for
the right system. So the function t+(y) is defined for every y > −a u1. On the
other hand its image is the interval (0, π). Indeed, given y > −a u1 consider the
line `(y) passing through the focus point (−u1, 0) and (0, y). The trajectory
of the left system starting at (0, y) returns to the line `(y) at t = π, so it must
return to Σ in a time t < π. Thus t+(y) ∈ (0, π) for every y > −a u1.

We know that ϕ+
1 (t+(y), 0, y) = 0 for every y > −a u1, that is

−u1 + eat
+(y)

(
u1 cos(t+(y)) + y sin(t+(y))

)
= 0.

Hence taking y+ = F |(0,π) we have that y+ (t+(y)) = y for every y > −a u1.
The function F is defined in (3).

Now we claim that t+ (y+(t)) = t for every t ∈ (0, π). Indeed, for t0 ∈ (0, π)
let y0 = y+(t0). From Lemma 8 (a) y0 > −a u1, so from the above comments
we obtain that y0 = y+ (t+(y0)). Thus y+(t0) = y+ (t+(y0)). Again from
Lemma 8 (a) y+(t) = F (t) is injective on the interval (0, π), so t0 = t+(y0).
Hence t0 = t+(y0) = t+ (y+(t0)). Since t0 was arbitrarily chosen in (0, π)
we conclude that t+ (y+(t)) = t for every t ∈ (0, π). Therefore the function
t+ : (−a u1,∞) → (0, π) is invertible with inverse equal to y+ : (0, π) →
(−a u1,∞).

Let YM = max{−a u1,−v2}, so computing the zeros of the function (5) for
y > YM is equivalent to compute the zeros of the function

(7) g1(t) = f(y+(t)) = k1 ξ1 + k2 ξ
1
2 + k3 ξ

1
3
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for t ∈ I ⊂ (0, π), where k1 = v2(1 + δ), k2 = u1, k3 = −δ u1, δ = e−
(b11+b22)π

Γ ,
and I = t+ ((YM ,∞)). Note that if v2 ≥ au1 then I = (0, π).

Applying Lemma 6 (a) we conclude that N (Fd, Fv) ≤ 2. Now choosing
a = −1, u1 = 8, v2 = 8/9, and bi,j for i, j = 1, 2 such that δ = 1/8 we obtain
k1 = −5, k2 = 8, and k3 = −1 which implies that (7) has 2 zeros on (0, π),
namely t1 ≈ 0.770 and t2 ≈ 2.203. Since y+(t1) ≈ 16.572 and y+(t2) ≈ 95.667,
for this choice of coefficients, there exists two limit cycles of system (4) passing
respectively through the points (0, y+(t1)) and (0, y+(t2)).

Now, the right system is a center if and only if a = 0, in this case ξ12(t) =
ξ13(t) = cot(t)− csc(t), so the function (7) becomes

g1(t) = k1 ξ1 + k̄2 ξ
1
2 ,

where k̄2 = k2 + k3. From Lemma 7 (a) we obtain that N (Fd, Cv) ≤ 1. Since
now k1 and k̄2 can be chosen freely, we conclude that N (Fd, Cv) = 1.

The left system has a center if and only if b22 = −b11 and b211 + b12b21 < 0.
In this case δ = 1, k1 = 2v2, k3 = −k2 = −u1, so the function (7) becomes

g1(t) = k1 ξ1 − 2k2 ξ
4
2 .

From Lemma 6 (d) we obtain that N (Cd, Fv) ≤ 1. Rescaling the function g1
we see that the parameters k1 and k̄2 can be chosen freely, hence we conclude
that N (Cd, Fv) = 1.

Finally the lateral systems are centers if and only if a = 0, b22 = −b11 and
b211 + b12b21 < 0. In this case the function (7) becomes g1(t) = k1. So if k1 6= 0,
that is v2 6= 0, then there is no solutions for the equation g1(t) = 0; if k1 = 0,
that is v2 = 0, then g1 = 0, which implies that all the solutions of system (4)
passing through (0, y) for y > YM are periodic solutions, in other words there
are no limit cycles. Hence we conclude that N (Cd, Cv) = 0. �
Proposition 10. The equalities N (Fd, Fr) = 2, N (Fd, Cr) = N (Cd, Fr) = 1
and N (Cd, Cr) = 0 hold.

Proof. From Proposition 5 (c) and by a Σ+–preserving translation we can
assume that a11 = a22 = a with a ∈ R, a12 = −a21 = 1, u2 = 0, and u1 < 0
because the right system has a focus which is real for system (4).

In the case that a < 0 it is easy to see that the focus (−u1, 0) is an attractor
singularity and that the point (0,−au1) ∈ Σ is a visible fold point for the right
system. So the function t+(y) is defined for every y < −au1. On the other
hand its image is the interval (−π, 0). Indeed given y < −au1 consider the
line `(y) passing through the focus point (−u1, 0) and (0, y). The trajectory of
the left system starting at (0, y) returns to the line `(y) at t = −π, so it must
return to Σ for t > −π. Thus t+(y) ∈ (−π, 0) for every y < −au1 (see Figure
3.1 right).
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−u1

−a u1
x

y

−u1

−a u1
x

y

Figure 1. Left: Real focus for the right system when a < 0. In
this case the shaded line represents the domain of the definition
of the function t+(y). Right: Real focus for the right system
when a > 0. In this case the shaded line represents the domain
of the definition of the function t+(y).

In the other case a > 0 the focus (−u1, 0) is a repulsive singularity. Con-
sidering now the function t+(y) defined for every y > −au1, the same analysis
can be done (see Figure 3.1 left).

From now on this proof we assume, without loss of generality, that a < 0.

We know that ϕ+
1 (t+(y), 0, y) = 0 for every y < −au1, that is

−u1 + eat+(y) (u1 cos(t+(y)) + y sin(t+(y))) = 0.

Hence taking y+ = F |(−π,0) we have that y+ (t+(y)) = y for every y < −au1.
Now we claim that t+ (y+(t)) = t for every t ∈ (−π, 0). Indeed for t0 ∈

(−π, 0), let y0 = y+(t0). From Lemma 8 (a) y0 < −au1, so from the above
comments we obtain that y0 = y+ (t+(y0)). Thus y+(t0) = y+ (t+(y0)). Again
from Lemma 8 (a) y+(t) = F (t) is injective on the interval (−π, 0), so t0 =
t+(y0). Hence t0 = t+(y0) = t+ (y+(t0)). Since t0 was arbitrarily chosen in
(−π, 0) we conclude that t+ (y+(t)) = t for every t ∈ (−π, 0). Therefore
the function t+ : (−∞,−au1) → (−π, 0) is invertible with inverse equal to
y+ : (−π, 0)→ (−∞,−au1).

Let Ym = min{−au1,−v2}, so computing the zeros of the function (6) for
y < Ym is also equivalent to compute the zeros of the function (7) now for
t ∈ I ⊂ (−π, 0), where I = t+ ((−∞, Ym)). Note that if v2 ≤ au1 then
I = (−π, 0).
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Applying Lemma 6 (a) we conclude that N (Fd, Fr) ≤ 2. Now choosing
a = 1, u1 = −1/2, v2 = −2/11, and bi,j for i, j = 1, 2 such that δ = 10 we
obtain k1 = −2, k2 = −1/2, and k3 = 5 which implies that (7) has 2 zeros
on (−π, 0), namely t1 ≈ 1.155 and t2 ≈ 2.301. Since y+(t1) ≈ 0.049 and
y+(t2) ≈ −0.515, for this choice of coefficients, there exists two limit cycles of
system (4) passing respectively through the points (0, y+(t1)) and (0, y+(t2)).

The equalities N (Fd, Cr) = N (Cd, Fr) = 1 and N (Cd, Cr) = 0 follows in
a similar way to the proof of Proposition 9. This concludes the proof of this
proposition. �
Proposition 11. The equalities N (Fd, Fd) = N (Fd, Cd) = 1 and N (Cd, Cd) =
0 hold.

Proof. Here u1 = 0, because the right system have its focus on the line Σ.
From Proposition 5 (c) and by a Σ+–preserving translation we can assume
that a11 = a22 = a with a ∈ R, a12 = −a21 = 1, and u2 = 0.

The function t+(y) is defined for every y > 0, because the point (0, 0) is a
focus for the right system. Moreover we compute t+(y) = π.

Let YM = max{0,−v2}, so computing the zeros of the function (5) for
y > YM is equivalent to compute the zeros of the linear function

(8) f1(y) = k1 + k2y,

for y > YM , where k1 = v2(1 + δ) and k2 = (δ − eaπ). Hence N (Fd, Fd) ≤ 1.

Nevertheless we can choose coefficients such that ȳ > YM where ȳ =
(1 + δ)v2
eaπ − δ

is the unique zero of (8).

From here the equalities N (Fd, Cd) = 1 and N (Cd, Cd) = 0 follows similarly
to the proof of Proposition 9. This concludes the proof of proposition. �
Proposition 12. The equalities N (Fd, DNv) = 2 and N (Cd, DNv) = 1 hold.

Proof. From Proposition 5 (b) and by a Σ+–preserving translation, we can
assume that a11 = a22 = a with |a| > 1, a12 = a21 = 1, u2 = 0, and u1 > 0,
because the right system is a diagonalizable node, which is virtual for system
(4).

It is easy to see that the point (0,−a u1) ∈ Σ is an invisible fold point for
the right system.

In the case a < −1 the node (−u1, 0) is an attractor singularity. The stable
manifold and the strong stable manifold of the node intersect Σ at the points
(0, ys) and (0, yss), respectively, where ys = u1 < −a u1 and yss = −u1 < u1.
So the function t+(y) is defined for every y > −au1 (see Figure 3.1 right).

In the other case a > 1 the node (u1, 0) is an repulsive singularity. The stable
manifold and the strong stable manifold of the node intersect Σ at the points
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Figure 2. Left: Virtual diagonalizable node for the right sys-
tem when a < −1. In this case the shaded line represents the
domain of the definition of the function t+(y). Right: Virtual
diagonalizable node for the right system when a > 1. In this
case the shaded line represents the domain of the definition of
the function t+(y)

(0, ys) and (0, yss), respectively, where ys = −u1 > −a u1 and yss = u1 > −u1.
So the function t+(y) is defined for every y < −au1 (see Figure 3.1 left).

From now on this proof we assume, without loss of generality, that a < −1.

We know that ϕ+
1 (t+(y), 0, y) = 0 for every y > −au1, that is

−u1 + eat
+(y)

(
u1 cosh(t+(y)) + y sinh(t+(y))

)
= 0.

Hence taking y+ = G|R+ we have that y+ (t+(y)) = y for every y > −au1.
The image of the function t+ is R+. Indeed, computing implicitly the deriv-

ative in y of the identity y+ (t+(y)) = y we obtain

dt+(y)

dy
= P

(
t+(y)

)
, where P (θ) =

sinh(θ)

u1 (csch(θ)− e−aθ (a+ coth(θ)))
.

It is easy to see that P (θ) > 0 for every θ > 0. So any solution θ(y) of

the differential equation θ̇ = F (θ) starting at θ = θ > 0 and y = ȳ , i.e.
θ(ȳ) = θ, keeps itself positive for every y > ȳ, moreover this solution will
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be strictly increasing. Hence we conclude that t+(y) is a positive strictly
increasing function for y > −au1.

We claim that t+ (y+(t)) = t for every t > 0. Indeed for t0 > 0, let y0 =
y+(t0). From Lemma 8 (b) y0 > −au1, so from the above comments we obtain
that y0 = y+ (t+(y0)). Thus y+(t0) = y+ (t+(y0)). Again from Lemma 8
(b) y+(t) = G(t) is injective on R+, so t0 = t+(y0). Hence t0 = t+(y0) =
t+ (y+(t0)). Since t0 > 0 was arbitrarily chosen we conclude that t+ (y+(t)) = t
for every t > 0. Therefore the function t+ : (−au1,∞)→ R+ is invertible with
inverse equal to y+ : R+ → (−au1,∞).

Computing the zeros of the function (5) for y > YM is equivalent to compute
the zeros of the function

(9) g2(t) = f(y+(t)) = k1 ξ1 + k2 ξ
2
2 + k3 ξ

2
3

for t ∈ I ⊂ R+, where k1 = v2(1 + δ), k2 = u1, k3 = −δu1, δ = e−
(b11+b22)π

Γ , and
here I = t+ ((YM ,∞)). Note that if v2 ≥ a u1 then I = R+.

Applying Lemma 6 (b) we conclude that N (Fd, DNv) ≤ 2. Now choosing
a = 2, u1 = 10, v2 = 275/16, and bi,j for i, j = 1, 2 such that δ = 15 we
obtain k1 = 275, k2 = 10, and k3 = −150 which implies that (9) has 2 zeros
on R+, namely t1 ≈ 0.263 and t2 ≈ 1.838. Since y+(t1) ≈ −16.687 and
y+(t2) ≈ −10.437, for this choice of coefficients, there exists two limit cycles of
system (4) passing respectively through the points (0, y+(t1)) and (0, y+(t2)).

From here the equality N (Cd, DNv) = 1 follows similar to the proof of
Proposition 9. This completes the proof of proposition. �

Proposition 13. The equalities N (Fd, nDNv) = 2 and N (Cd, nDNv) = 1
hold.

Proof. From Proposition 5 (d) and by a Σ+–preserving translation, we can
assume that a11 = a12 = a22 = λ with λ = ±1, a21 = 0, u2 = 0, and u1 > 0,
because the right system is a non diagonalizable node, which is virtual for
system (4).

It is easy to see that for λ = ±1 the point (0,−u1) ∈ Σ is a invisible fold
point for the right system and that the invariant manifold of the node intersects
Σ at the origin (0, 0). In order to fix the clockwise orientation of the flow of
system (4) we assume that λ = 1, otherwise the first return map would not be
defined and there would not exist limit cycles. In this case the function t+(y)
is defined for every y < −u1.

We know that ϕ+
1 (t+(y), 0, y) = 0 for every y < −u1, that is

−u1 + et+(y) (u1 + y t) = 0.

Hence taking y+ = H|R− we have that y+ (t+(y)) = y for every y < −u1.



18 J. LLIBRE, D.D. NOVAES AND M.A. TEIXEIRA

−u1
−u1
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y

Figure 3. Virtual non–diagonalizable node for the right system
when λ = 1. In this case the shaded line represents the domain
of the definition of the function t+(y).

The image of the function t+ is R+. Indeed, computing implicitly the deriv-
ative in y of the identity y+ (t+(y)) = y we obtain

dt+(y)

dy
= Q (t+(y)) , where Q(θ) =

eθθ2

u1 (eθ − θ − 1)
.

So the function t+ is the solution θ(y) of the above differential equation such
that θ(−u1) = 0. It is easy to see that Q(θ) > 0, moreover by continuity we
have that Q(0) = 2. So it follows that the solution θ(y) is strictly increas-
ing. Hence we conclude that t+(y) is strictly increasing function such that
t+(−u1) = 0, which implies that t+(y) < 0 for y < 0.

Now we claim that t+ (y+(t)) = t for every t < 0. Indeed for t0 < 0, let
y0 = y+(t0). From Lemma 8 (c) y0 < −u1, so from the above comments
we obtain that y0 = y+ (t+(y0)). Thus y+(t0) = y+ (t+(y0)). Again from
Lemma 8 (c) the function y+(t) = H(t) is injective, so t0 = t+(y0). Hence
t0 = t+(y0) = t+ (y+(t0)). Since t0 > 0 is arbitrarily chosen we conclude that
t+ (y+(t)) = t for every t > 0. Therefore the function t+ : (−∞,−u1)→ R− is
invertible with inverse equal to y+ : R− → (∞,−u1).

Let Ym = min{−u1,−v2}, so computing the zeros of the function (6) for
y < Ym is equivalent to compute the zeros of the function

g3(t) = f(y+(t)) = k1 ξ1 + k2 ξ
3
2 + k3 ξ

3
3

for t ∈ I ⊂ R−, where k1 = v2(1 + δ), k2 = u1, k3 = −δu1, δ = e−
(b11+b22)π

Γ , and
here I = y− ((−∞, YM)). Note that if v2 ≥ u1 then I = R−.

Applying Lemma 6 (c) we conclude that N (Fd, nDNv) ≤ 2. Now choosing
u1 = 3/2, v2 = 90/103 ≈ 0.874, and bi,j for i, j = 1, 2 such that δ = 100/3 we
obtain k1 = 30, k2 = 3/2, and k3 = −50 which implies that (7) has 2 zeros
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on R+, namely t1 ≈ 1.422 and t2 ≈ 3.788. Since y+(t1) ≈ −0.800 > −v2 and
y+(t2) ≈ −0, 387 > −v2, for this choice of coefficients, there exists two limit
cycles of system (4) passing respectively through the points (0, y+(t1)) and
(0, y+(t2)).

From here applying Lemma 7 (b) the equality N (Cd, nDNv) = 1 follows
similar to the proof of Proposition 9. This concludes the proof of proposition.

�

Proposition 14. The equalities N (Fd, Sr) = 2, N (Fd, S
0
r ) = N (Cd, Sr) = 1

and N (Cd, S
0
r ) = 0 hold.

Proof. From Proposition 5 (a) and by a Σ+–preserving translation, we can
assume that a11 = a22 = a with |a| < 1, a12 = a21 = 1, u2 = 0, and u1 < 0,
because the right system is a saddle, which is real for system (4).

It is easy to see that the point (0,−au1) ∈ Σ is an invisible fold point for
the right system and that the stable and unstable invariant manifolds of the
saddle intersect Σ at the points (0, ys) and (0, yu), respectively, where ys = u1
and yu = −u1. So the function t+(y) is defined for every −au1 < y < u1.

We know that ϕ+
1 (t+(y), 0, y) = 0 for every −au1 < y < u1, that is

−u1 + eat
+(y)

(
u1 cosh(t+(y)) + y sinh(t+(y))

)
= 0.

Hence taking y+ = G|R+ we have that y+ (t+(y)) = y for every −au1 < y < u1.

In the proof of Proposition 12 we have seen that the function t+ : (−au1,∞)→
R+ is invertible with inverse equal to y+ : R+ → (−au1,∞). So its restriction
to −au1 < y < u1 is also invertible with inverse defined in t+ (−au1, u1).

Computing the zeros of the function (5) for YM < y < u1 is equivalent to
compute the zeros of the function (9) for t ∈ I ⊂ R+, where k1 = v2(1 + δ),

k2 = u1, k3 = −δu1, δ = e−
(b11+b22)π

Γ , and I = t+ ((YM ,−u1)).
Applying Lemma 6 (b) we conclude that N (Fd, Sr) ≤ 2. Now choosing

a = −1/2, u1 = −100, v2 = 1600/127, and bi,j for i, j = 1, 2 such that δ = 7/20
we obtain k1 = 80, k2 = −100, and k3 = 35 which implies that (9) has 2 zeros
on I5, namely t1 ≈ 0.689 and t2 ≈ 2.761. Since y+(t1) ≈ −22.071 ∈ (−50, 100)
and y+(t2) ≈ 50.318 ∈ (−50, 100), for this choice of coefficients, there exists
two limit cycles of system (4) passing respectively through the points (0, y+(t1))
and (0, y+(t2)). This concludes the proof of proposition.

The right system has a saddle with trace equal 0 if and only if a = 0, in this
case ξ22(t) = ξ23(t) = coth(t)− csch(t). From here the equalities N (Fd, S

0
r ) = 1,

N (Cd, Sr) = 1 and N (Cd, S
0
r ) = 0 follows as in the proof of Proposition 9. It

concludes the proof of this proposition. �
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3.2. Left system has a saddle with trace equal 0. In this case b22 = −b11,
b211 + b12b21 > 0 and v1 > 0 and the point (−v1,−v2) is a singularity of saddle
type.

Let Γ =
√
b211 + b12b21, let yu be the y–coordinate of the intersection between

the unstable manifold with Σ, and let ys be the y–coordinate of the intersection
between the stable manifold with Σ. We compute

yu = −v2 +
v1 (Γ− b11)

b12
and ys = −v2 −

v1 (Γ + b11)

b12
.

In order to fix the clockwise orientation of the flow of system (4) we assume
that ys < ys, which is equivalent to assume that b12 > 0.

The left system has an invisible fold point (0, y̌) given by

y̌ = −v2 −
b11v1
b12

.

For ys < y < yy we define

t∗(y) =
1

Γ
log

(
v1 (Γ− b11)− b12 (v2 + y)

v1 (Γ + b11) + b12 (v2 + y)

)
.

So t−(y) = t∗(y) < 0 for y̌ < y < yu and t−(y) = t∗(y) > 0 for ys < y < y̌.

Proposition 15. The equalities N (S0
r , Fv) = 1 and N (S0

r , Cv) = 0 holds.

Proof. From Proposition 5 (c) we can assume that a11 = a22 = a with a ∈ R,
a12 = −a21 = 1, and by a Σ+–preserving translation we can take u2 = 0.
Moreover u1 > 0 because the right system has a focus which is virtual for
system (4).

From the proof of Proposition 9 we know that the function t+ : (−a u1,∞)→
(0, π), such that ϕ+(t+(y), 0, y) = 0 for y > −a u1, is invertible with inverse
equal to y+ = F : (0, π)→ (−a u1,∞).

Let YM = max {−a u1, y̌}, so computing the zeros of the function (5) for
YM < y < yu is equivalent to compute the zeros of the function

(10) g4(t) = f(y+(t)) = k1 ξ1 + k2 ξ
4
2

for t ∈ I ⊂ (0, π), where k1 = 2
b11v1 + b12v2

b12
and k2 = −2u1, and here

I = t+ ((YM , y
u)).

Applying Lemma 6 (d) we obtain thatN (S0
r , Fv) ≤ 1. Rescaling the function

g4(t) we can see that the parameters k1 and k2 can be chosen freely, so we
conclude that N (S0

r , Fv) = 1.

The right system has a center if and only if a = 0. In this case ξ42 = 0 and
the function (10) becomes g4(t) = k1. So if k1 6= 0, that is b11v1 6= −b12v2,
then there are no solutions for the equation g4(t) = 0; and if k1 = 0, that is
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b11v1 = −b12v2, then g4 = 0, that is system (4) is a center. Hence we conclude
that N (S0

r , Cv) = 0. �
Proposition 16. The equalities N (S0

r , Fr) = 1 and N (S0
r , Cr) = 0 hold.

Proof. From Proposition 5 (c) we can assume that a11 = a22 = a with a ∈ R,
a12 = −a21 = 1, and by a Σ+–preserving translation we can take u2 = 0.
Moreover u1 < 0 because the right system has a focus which is real for system
4.

From the proof of Proposition 10 we know that the function t+ : (−∞,−au1)→
(−π, 0) is invertible with inverse equal to y+ = F : (−π, 0) → (−∞,−au1).
Here as we have done in the proof of Proposition 10 we are assuming, without
loss of generality, that a < 0.

Let Ym = min{−au1, y̌}, so computing the zeros of the function (6) for
ys < y < Ym is also equivalent to compute the zeros of the function (10) now
for t ∈ I ⊂ (−π, 0), where I = t+ ((ys, Ym)).

Applying Lemma 6 (d) we obtain thatN (S0
r , Fr) ≤ 1. Rescaling the function

g4(t) we can see that the parameters k1 and k2 can be chosen freely, so we
conclude that N (S0

r , Fv) = 1.

From here the equality N (S0
r , Cr) = 0 follows similar to the proof of Propo-

sition 16. It concludes the proof of this proposition. �
Proposition 17. The equality N (S0

r , DNv) = 1 holds.

Proof. From Proposition 5 (b) and by a Σ+–preserving translation, we can
assume that a11 = a22 = a with |a| > 1, a12 = a21 = 1, u2 = 0, and u1 > 0,
because the right system has a diagonalizable node, which is virtual for system
(4).

Following the proof of Proposition 12 the function t+ : (−au1,∞) → R+ is
invertible with inverse equal to y+ = G : R+ → (−au1,∞). Here as we have
done in the proof of Proposition 11 we are assuming, without loss of generality,
that a < 1.

Let YM = max{−a u1, y̌}, so computing the zeros of the function (5) for
YM < y < yu is equivalent to compute the zeros of the function

(11) g5(t) = f(y+(t)) = k1 ξ1 + k2 ξ
5
2

for t ∈ I ⊂ R+, where k1 =
2b11v1
b12

+ 2v2, k2 = −2u1, and I = y+ ((YM , y
u)).

From here, applying Lemma 6 (e) we conclude that N (S0
r , DNv) ≤ 1.

Rescaling the function g5(t) we see that the parameters k1 and k2 can be
chosen freely, so we conclude that N (S0

r , DNv) = 1. �
Proposition 18. The equality N (S0

r , nDNv) = 1 holds.
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Proof. From Proposition 5 and by a Σ+–preserving translation, we can assume
that a11 = a12 = a22 = λ with λ = ±1, a21 = 0, u2 = 0, and u1 > 0, because
the right system has a non diagonalizable node, which is virtual for system
(4).

Following the proof of Proposition 13 (d) the function t+ : (−u1,∞)→ R+

is invertible with inverse equal to y+ = H : R+ → (−u1,∞). Here as we have
done in the proof of Proposition 13 we are assuming, without loss of generality,
that λ = 1.

Let YM = max{−u1, y̌}, so computing the zeros of the function (5) for
YM < y < yu is equivalent to compute the zeros of the function

g6(t) = f(y+(t)) = k1 ξ1 + k2 ξ
6
2

for t ∈ I ⊂ R+, where k1 =
2b11v1
b12

+ 2v2, k2 = −2u1, and I = y+ ((YM , y
u)).

Applying Lemma 6 (f) we conclude that N (S0
r , nDNv) ≤ 1. Rescaling the

function g6(t) we see that the parameters k1 and k2 can be chosen freely, so
we conclude that N (S0

r , nDNv) = 1. �

Proposition 19. The equalities N (S0
r , Sr) = 1 and N (S0

r , S
0
r ) = 0 hold.

Proof. From Proposition 5 and by a Σ+–preserving translation, we can assume
that a11 = a22 = a with |a| < 1, a12 = a21 = 1, u2 = 0, and u1 < 0, because
the right system has a saddle, which is real for system (4).

Following the proof of Proposition 14 (a) the function t+ : (−au1,∞)→ R+

is invertible with inverse equal to y+ = G : I5 → (−au1, u1) where I5 =
t+ (−au1,−u1).

Let YM = max{−a u1, y̌} and Ym = min{u1, yu}, so computing the zeros of
the function (5) for YM < y < Ym is equivalent to compute the zeros of the

function (11) for t ∈ I ⊂ R+, where k1 =
2b11v1
b12

+ 2v2 and k2 = −2u1.

From here, applying Lemma 6 (e) we conclude thatN (S0
r , Sr) ≤ 1. Rescaling

the parameters of the function (11) we see that the parameters k1 and k2 can
be chosen freely, so we conclude that N (S0

r , Sr) = 1.

The right system has a saddle with trace equal 0 if and only if a = 0. In
this case ξ52 = 0 and the function (11) becomes g5(t) = k1. So if k1 6= 0, that is
b11v1 6= 0, then there are no solutions for the equation g5(t) = 0; and if k1 = 0,
that is b11v1 = 0, then g5 = 0, which implies that all the solutions of system
(4) passing through (0, y) for YM < y < Ym are periodic solutions, in other
words there are no limit cycles. Hence we conclude that N (S0

r , S
0
r ) = 0. �
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3.3. Left system has a virtual or real center. In this case v1 6= 0, b11 =
−b22, b211 + b12b21 < 0 and the point (−v1,−v2) is a singularity of center type.

The left system has a fold point (0, y̌) given by

y̌ = −v2 −
b11v1
b12

.

which is visible if v1 > 0, and invisible if v1 < 0.

Let Γ = 2
√
−b211 − b12b21. The function t−(y) is defined for every y > y̌,

and we compute

t−(y) =
4

Γ

(
arctan

(
2 (b11v1 + b12(v2 + y))

v1Γ

)
− π

)
.

Analogously, the function t−(y) is defined for every y < y̌, and we compute

t−(y) =
4

Γ

(
arctan

(
2 (b11v1 + b12(v2 + y))

v1Γ

)
+ π

)
.

In order to fix the clockwise orientation of the flow of system (4) we assume
that Y1(−v1, 1− v2) = b12 > 0.

Proposition 20. The equalities N (C,Fv) = N (C,Fr) = 1 and N (C,Cv) =
N (C,Cv) = 0 hold.

Proof. In Corollary 3 these equalities have already been proved when the left
system has a center in Σ. So we can take v1 6= 0.

To prove N (C,Fv) = 1 we follow the proof of Proposition (9) and then we
compute the solutions of the function (5) for y > YM = max{y̌,−a u1}. To
prove N (C,Fr) = 1 we follow the proof of Proposition 10 and then we compute
the solutions of the function (6) for y < Ym = min{y̌,−a u1}. In both case the
equations to solve are equivalent to

(12) k1 + k2ξ
4
2 = 0,

where k1 = (b11v1 + b12v2)/b12 and k2 = −u1. So applying Lemma 6 (d) we
conclude that N (C,Fv) = N (C,Fr) = 1.

From here the equality N (C,Cv) = N (C,Cv) = 0 follows similar to the
proof of Proposition 15. It concludes the proof of this proposition. �
Proposition 21. The equalities N (C,Fd) = 1 and N (C,Cd) = 0 hold.

Proof. In Corollary 3 these equalities have already been proved when the left
system has a center in Σ. So we can take v1 6= 0.

Following the proof of Proposition (9) we compute the solutions of the func-
tion (5) for y > YM = max{y̌, 0}, which is equivalent to compute the zeros of
the following equation

k1 + k2y = 0,
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where k1 = 2(b11v1 +b12v2)/b12 and k2 = (1−eaπ). So analogously to the proof
of Proposition (11) we conclude that N (C,Fv) = 1.

From here the equalities N (C,Fd) = 1 and N (C,Cd) = 0 follows similar to
the proof of Proposition 9. It concludes the proof of this proposition. �
Proposition 22. The equalities N (C,DNv) = N (C, Sr) = 1 and N (C, S0

r ) =
0 hold.

Proof. In Corollary 3 these equalities have already been proved when the left
system has a center in Σ. So we can take v1 6= 0.

To prove the equality N (C,DNv) = 1 we follow the proof of Proposi-
tion (12), then we compute the solutions of the function (5) for y > YM =
max{y̌,−a u1}. To prove the equality N (C, Sr) = 1 we follow the proof
of Proposition 14, then we compute the solutions of the function (5) for
YM < y < u1. In both case the equations to solve are equivalent to

k1 + k2ξ
5
2 = 0,

where k1 = 2(b11v1 + b12v2)/b12 and k2 = −2u1. From here the proof of
the equality N (C,DNv) = N (C, Sr) = 1 follows similar to the proof of the
Propositions 17 and 19, and the equality N (C, S0

r ) = 0 follows similar to the
proof of Proposition (19). It concludes the proof of this proposition. �
Proposition 23. The equality N (C, nDNv) = 1 holds.

Proof. In Corollary 3 this equality has already been proved when the left sys-
tem has a center in Σ. So we can take v1 6= 0.

Following the proof of Proposition (13) we compute the solutions of the
function (6) for y < Ym = {y̌,−u1}, which is equivalent to compute the zeros
of the following equation

k1 + k2ξ
6
2 = 0,

where k1 = (b11v1 + b12v2)/b12 and k2 = −u1. So analogously to the proof of
Proposition (18) we conclude that N (C, nDNv) = 1. It concludes the proof of
this proposition. �
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