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Abstract

Retail price of food products is a complex interplay between multiple factors. Overall product
quality has got one of the most serious impacts on the price in many situations. In the present
study an artificial sensory system (potentiometric electronic tongue) was employed for the
analysis of black tea samples purchased in the retail stores in Spain and Russia. It was possible to
relate the response of a potentiometric sensor system formed by 22 ion-selective electrodes with
retail prices of various black tea samples by means of partial least squares regression. PLS
regression models allowed for prediction of retail price with mean relative errors of about 15%
and 25% for Spain’s tea bags and for loose packed tea from Russia, respectively. The suggested
approach shows a good promise for the development of an instrumental analytical technique for
regulatory authorities to fight with counterfeits, and for commercial purposes to evaluate market
space.
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Introduction

Tea is a beverage widely consumed throughout the world. Green, Oolong and Black — these are
three general types of manufactured tea, which are unfermented, partially and fully fermented tea
respectively (Harbowy et al. 1997'). Tea’s brews have got very complicated chemical composition.
Numerous sophisticated analytical techniques are used for individual component determination
and the most popular are epyvarieties of high performance liquid chromatography and capillary

electrophoresis (Sang et al. 2011"; Zhao at al. 2013"). These (an many other) methods can provide
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important information about component’s content, but they are poorly relevant for assessment of
global tea quality. This task is usually accomplished by evaluation of human derived flavour
parameters. In the case of tea, which is mostly being sold at the world tea auctions, the cost of the
product is directly related to its quality, taste and flavour characteristics that are estimated by
human sensory panels. Market customers generally suppose that retail price is a function of
products quality. In most cases it is true, but it might be rather hard to confirm it without special
knowledge and skills. One of the possible ways to circumvent this hindrance is to use artificial
sensory systems for price estimation, and likely for possible counterfeit identification. In previous
research studies, different types of multisensor systems were suggested for evaluation of flavour
descriptors in beers (Rudnitskaya et al. 2009;"), wines (Legin et al. 2003"; Kang et al. 2013"),
brandies (Cet6 et al. 2013""), pharmaceuticals (Eckert et al. 2014"™), etc. It was found that sensor’s
responses of such systems are well correlated with human taste and flavour descriptors such as
bitterness, sourness, sweetness and etc.

Chemical sensors are very attractive analytical instrument due to simplicity and rapidity of the
application and affordable analysis prices. Along with discrete sensors, quite useful for certain
applications (Meyerhoff et al. 1986™), there is another approach widely called now “electronic
tongue” (ET). ET is an analytical instrument comprising an array of cross-sensitive sensors, an
appropriate data acquisition system for sensors response recording and multivariate data
processing engine (Legin et al. 1997%). Multisensor systems are able to produce qualitative or
quantitative integral information about complex analysed media (del Valle 2010™). Chemometric
techniques such as principal component analysis (PCA) (Laddi et al. 2014"), linear discrimination
analysis (LDA) (Bhattacharyya et al. 2014*%) or partial least squares discriminant analysis (PLS-
DA) (Avula et al. 2014*") could be used in the cases of classification. For quantitative analysis and
prediction of the particular properties of the samples PLS (Chen et al. 2006 **) or artificial neural
networks (ANN) (Chosh et al. 2012*") are two of the most applied strategies.

It was demonstrated that various types of multisensor systems could be employed for tea analysis.
Such systems are able to classify the tea samples according to their quality (Bhattacharyya et al.
2014), identify the samples of different geographical origin (He et al. 2009™"), partially determine
tea chemical contents (Chen et al. 2010™") and evaluate tea types (Gallardo et al. 2005, Liu et
al. 2014™). Furthermore, it was shown that the response of an ET system can be highly correlated
with specific sensory attributes and had a potential to predict these attribute in tea samples (He et
al. 2009). The capability of a multisensor system for tea grade evaluation was also demonstrated
(Chen et al. 2008™).

The most interesting applications of multisensor systems are related to the evaluation of
parameters having complex integral nature that are not directly correlated with the content of
certain chemical substances in the sample. In the present work we suggest using an artificial

sensory system for estimation of the tea retail price.



Materials and Methods

Samples

A total of 34 black tea samples were analysed in this study. The samples were bought in retail
stores in Spain and Russia. The sample set included: 19 samples of tea bags (13 from Russia, 6
from Spain), 8 samples of loose packed tea (all from Russia) and 7 samples of tea sold by weight
in specialized stores (4 from Spain, 3 from Russia). Price range was from 3 to 283 Euros per kg.

Prices of samples bought in Russia were converted into Euros at exchange rate of June 2013.

Sample preparation

The procedure of tea sample preparation was as follows: 2 g of dry tea were brewed in 100 ml of
freshly boiled distilled water during 5+0.1min. Afterwards, the sample was filtered using filter
paper and the solution was cooled down on an ice-bath to 25+1 °C. Then 30 ml of the broth were
diluted with 70 ml of distilled water and this liquid was used for measurement. Since the tea
properties depend on the temperature and brew’s lifespan it was vitally important providing for the
identical experimental conditions so that sample’s preparation procedures and chronology were

closely similar in all cases.

Artificial sensory system

A multisensor system was comprised of an array of cross-sensitive sensors, the 32-channel digital
high impedance voltmeter and PC for data acquisition. The array included 22 chemical sensors, 10
of which were anion-sensitive polyvinylchloride (PVC) plasticized ion-selective electrodes (ISEs),
8 cation-sensitive PVC — plasticized ISEs, 3 chalcogenide glass sensors with red/ox sensitivity and
one standard pH glass electrode. Electromotive force values were measured against the standard
Ag/AgCl reference electrode with 0.1 mV precision.

Electrochemical measurements were carried out in the following galvanic cell:

Cu | Ag| AgCl, KCI | sample solution | membrane | solid inner contact | Cu

All tea samples were measured at least in 4 replicas in random order. The measurement time in
each sample was 3 min. After each sample measurement, the sensors array was washed 3 times
with distilled water. The total wash cycle duration was 9 minutes, which allowed sensors’ potential

to get back to the initial readings in water.

Data processing

The relationship between the sensor system’s responses and the price of black teas was studied by
PLS regression. Detailed information about this technique could be found in literature (Esbensen
2001**%). Sensor responses were averaged over 4 replicas. Mean values were included into the data
matrix, which size was 35 (samples) x 22 (sensors). Samples prices were recalculated per kilo of
the tea and these values were used as reference ones. PLS models were computed using The

Unscrambler® 9.7 (CAMO Software AS, Norway).



Results and Discussion

As the first step, a PLS model was built for the data set containing sensor responses in all tea
samples. Interrelation between sensors responses and reference data can be roughly estimated with
the squared correlation coefficient (R?). The resulted R* for the first model was 0.07. This value
suggests that there is no relationship between the sensor array response and the price. This result
can be explained taking into account the way of pricing. Retail price includes the costs of the
wholesale purchase, delivery, customs duties, taxes and charges. Russia and Spain are situated in
the different geographic regions that assume different transportation costs. Customs duties and
taxes differ too in different countries. Thereby individual model should be likely calculated for
each country. Fig. 1 deals with PCA score plot for the ET data in all tea samples. This plot is a
map of samples, where similar samples are placed close to each other while the samples while
those different in overall chemical composition located far from each other. It can be seen on Fig.
1 that the samples are split into two groups according to packing type. Teas in bags are located on
the right side and the other types of teas on the left side of the score plot. One of the possible
reasons for the splitting is that the quality of tea leaves in the bags could be lower than those of
loose tea (Cao te al. 2006™™). This was shown earlier by comparing the fluoride levels correlated
with concentration of polyphenols and amino acids, which are largely responsible for tea quality
(Lu et al. 2004™™). The cost of tea bag additionally includes an extra outlay for pre-packing and
packing. Therefore, it is better building a model for each type of tea from each country separately.
It was impossible to do this kind of modeling for the teas with the highest prices since there were
only 4 samples from Russia and 3 from Spain. Therefore only three PLS models were constructed,
for tea bags from both countries and for loose tea from Russia. Due to a small number of samples
in the subsets there was no opportunity to split them into calibration and test sets therefore full-
cross validations (FCV) were employed for the verification of the models performance. The

parameters of resulted PLS models are presented in Table 1.



Fig. 1. PCA score plot for the ET data in all tea samples (first and second principal components)

m tea bags
O loose tea and tea from
specialized stores
60 -} -
40 -
O ]
o © - [
o]
o]
— 20 - ]
&
= " - |
(o}
0
n
8 O@ = ]
© o
20 e} o (o]
u
Q = - - m R
o]
-40
————

1 1 )
-120 -100 -80 -60 -40 -20 O 20 40 60 80 100 120
PC 1 (73%)

The PLS model for the subset of tea bags bought in Russian shops was not capable of price
prediction. One of the possible ways to explain this phenomenon is that the costs for packaging,
advertising and other related expenses are relatively high and they significantly eliminate the
impact of the raw material prices. On the other hand, the correlation coefficients for the other
subsets were close to unity and other characteristics were promising. Root-mean square error of
prediction (RMSEP) was calculated in the price units. The artificial sensory system was able
predicting the retail price of the loose packed tea with the errors around + 4.6 Euro per kg. Price
range for this tea type was from 2.8 to 52.0 Euro per kg and the mean relative error (MRE) thus
was 15 %. The resulted MRE was found being 25 % for Spanish tea bags with retail price span 11-
44 Euro per kg. The errors in both cases were rather significant, but it could be the consequence of
the comparatively small size of calibration sets and various factors involved in the tea pricing. At
the same time the correlation coefficients were highly significant (R*>0.96). Taking into account a
very unusual task formulation, this result can be considered as quite promising for regulating
authorities. Application of an artificial sensory system may help detecting counterfeits in a fast and
simple way. It must be pointed out that further studies with extended set of samples are required
for thorough evaluation of possible limitations of the approach. Also, this procedure, used as
diagnostic tool may be useful for commercial purposes to evaluate market space. From this kind
of information, it could be visualized if the different brands are correctly positioned in the market,

or, as a second example, a new brand might evaluate its potential prize in a certain market.



Table 1. Parameters of the PLS models for full cross-validation

Slope Offset RMSEP, R? #HLV
euro
Tea bags, Russia
0.26 17.7 15.4 -0.01 4
(13 samples)
Tea bags, Spain
0.91 2.5 32 0.96 4
(8 samples)
Loose tea, Russia
0.89 2.6 4.6 0.96 4

(6 samples)

Conclusion

An artificial sensory system is suggested as a tool for global quality assessment of black teas in
terms of their retail price. In spite of a very unusual formulation of the task this type of analysis
can be of high interest since it returns the estimate of global quality in a way, which is clear and
well understood at the mundane level. PLS modelling of the ET response allowed for prediction of
retail price with a reasonable precision of 15-25 %. This promising result was obtained despite the
fact that there are numerous other factors influencing the price and they can be not related to the
chemical composition of the samples at all. The results show a perspective of the development of
an analytical instrument for fast and simple counterfeit detection in the tea market. Its use might
also be considered as the current trend of examining the available ‘big data’ information sets, in

this case, originated from sensors, in order to extract new trends or predict consumers’ behaviour.
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