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Cell-based 2-Step Scalar Deadzone Quantization

for High Bit-Depth Hyperspectral Image Coding
Joan Bartrina-Rapesta and Francesc Aulı́-Llinàs, Senior Member, IEEE

Abstract—Remote sensing images often need to be coded
and/or transmitted with constrained computational resources.
Among other features, such images commonly have high spatial,
spectral, and bit-depth resolution, which may render difficult
their handling. This paper introduces an embedded quantization
scheme based on 2-step scalar deadzone quantization (2SDQ) that
enhances the quality of transmitted images when coded with a
constrained number of bits. The proposed scheme is devised for
use in JPEG2000. It is named cell-based 2SDQ since it uses cells,
i.e., small sets of wavelet coefficients within the codeblocks defined
by JPEG2000. Cells permit a finer discrimination of coefficients
in which to apply the proposed quantizer. Experimental results
indicate that the proposed scheme is especially beneficial for high
bit-depth hyperspectral images.

Index Terms—Embedded quantization, 2-step scalar deadzone
quantization, high bit-depth images, JPEG2000.

I. INTRODUCTION

THE bit-depth resolution of remote sensing images is often

very high. Such images are produced by sensors with

advanced dynamic range capabilities and very precise analog-

to-digital converters, and/or by post-acquisition processing

techniques. Whereas natural images typically have a bit-depth

of 8 bits per sample (bps), remote sensing images have 12 or

even 16 bps. Some sensors with high bit-depth capacity are, for

instance, the Airborne Visible/Infrared Imaging Spectrometer

(AVIRIS) or the Hyperion. In addition to high bit-depth, most

images employed in remote sensing also have high spatial

resolution and are composed from tens to hundreds of spectral

components. This makes their compression challenging.

To achieve high compression ratios and allow progressive

transmission, high bit-depth hyperspectral images can be han-

dled through lossy, or lossy-to-lossless, coding systems. A key

feature of such systems is that they improve the quality of

the whole image gradually as more data are transmitted. In

wavelet-based compression schemes, this is achieved by an

embedded quantizer together with a bitplane coding engine.

Embedded quantization splits the quantization index repre-

senting the magnitude of the wavelet coefficient in short words,

possibly bits. Each word is a suffix of the previous (if any). Its

transmission increases the precision with which the coefficient

is reconstructed. The most popular scheme is uniform scalar

deadzone quantization (USDQ) [1]. USDQ partitions the range

of input values in intervals of the same size except for the
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interval that contains the zero, which is twice the size of the

others. Intervals are assigned to quantization indices whose

magnitude has a linear relation with values that they represent.

Bitplane coding engines transmit the binary representation

of the quantization indices bit by bit, beginning by the most

significant bit from all indices and finishing with the least

significant. The collection of bits of all indices in the same

binary position is called a bitplane. Bitplane coding together

with USDQ achieves quality progressivity. Its implementation

is not complicated, so such a scheme has been adopted in

myriad wavelet-based coding systems [2], [3] and standards

such as JPEG2000 (ISO/IEC 15444-1) or CCSDS 122.0-B-1.

Recently, embedded quantization for wavelet-transformed

images has been studied from a more general point of view

in [4]. The aim of [4] is to find schemes that achieve (near-

)optimal coding performance while requiring the minimum

number of quantization stages. The best schemes found in [4]

are embodied in the 2-step scalar deadzone quantization

(2SDQ), which is applied in the framework of the JPEG2000

standard in [5]. The main idea behind 2SDQ is to use quan-

tization intervals of two different sizes that are employed de-

pending on the magnitude of the coefficient. Large-magnitude

coefficients are sparse in wavelet subbands. To use larger

quantization intervals for such coefficients does not affect

coding performance significantly and reduces the number of

quantization stages (or, equivalently, bitplanes) that are coded.

Experimental results in [5] indicate that when the number

of bits to represent the quantization indices is constrained,

2SDQ enhances the quality of the transmitted images notably

as compared to a conventional JPEG2000 codec.

This work brings 2SDQ one step further. The conventional

coding unit of JPEG2000 is the codeblock, i.e., a small set of

adjacent wavelet coefficients within a subband. In [5], 2SDQ

is applied considering the codeblock the smallest structure

in which the quantization scheme can be applied. Herein,

codeblocks are further divided in smaller units called cells. The

selective application of 2SDQ in cells –instead of codeblocks–

provides coding gains. The use of cells poses some difficulties

such as the selection of the cells in which the scheme is

applied, the parameters of the 2SDQ employed, and the effect

in the rate-distortion optimization procedure. Our previous

work [6] explores the use of the cell-based 2SDQ scheme

for natural images. We found that the highest gains are

obtained for high bit-depth hyperspectral images that have

been transformed via the most effective transform strategies

currently known [7]–[9], i.e., a 1D wavelet transform or a

Karhunen-Loève transform in the spectral domain and then

a 2D wavelet transform in the spatial domain (1D+2D and

KLT+2D, respectively). This works extends [6] by determining

with more accuracy the parameters of 2SDQ and applying it
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to high bit-depth hyperspectral AVIRIS images.

The remainder of the paper is structured as follows. Sec-

tion II briefly reviews USDQ and 2SDQ. Section III describes

the proposed scheme and Section IV assesses its performance

when coding AVIRIS images. The last section concludes this

work with a brief summary.

II. REVIEW OF USDQ AND 2SDQ

Let ω be a coefficient of a wavelet-transformed image.

USDQ quantizes ω according to

υ =

⌊

|ω|

∆

⌋

, (1)

with ⌊·⌋ denoting the floor operation and ∆ the step size of the

quantization interval. Fig. 1(a) depicts the intervals produced

by such a scheme in each quantization stage. W denotes the

largest magnitude of the to-be-quantized coefficients. The first

stage divides the range of input values into two intervals of

equal size. This is produced when the most significant bit,

say bM−1, of quantization index υ is transmitted. M denotes

a sufficient number of bits to represent all coefficients. If

bM−1 = 0, the decoder reconstructs ω as ω̂ = 0. If bM−1 = 1
the decoder reconstructs it as a number within the correspond-

ing interval (i.e., ω̂ ∈ [2M−1, 2M )). The typical mid-point

reconstruction value is depicted in the figure with gray dots.

The following quantization stages divide each previous interval

into two sub-intervals of equal size, carrying out the coefficient

reconstruction similarly as before. In general, the operation

performed by the decoder is expressed as

ω̂ =

{

0 if j′ > s

sign(ω) (υ̂ + δ)∆2j
′

otherwise
, (2)

with υ̂ being all bits {bj},M − 1 ≥ j ≥ j′ transmitted for υ

up to j′, and s denoting the position of the first non-zero bit

of υ. bs is called significant bit. δ controls the reconstruction

point within the interval, which is commonly δ = 0.5. The

sign of ω is transmitted just after bs so that the decoder can

reconstruct the coefficient immediately after its significant bit.

Contrarily to USDQ, 2SDQ employs two step sizes, which

are denoted by ∆L and ∆H . As depicted in Fig. 1(b), ∆H

defines the intervals employed for large-magnitude coeffi-

cients, i.e., for ω ≥ αW , whereas ∆L is employed for the

remaining coefficients. The relation between these two step

sizes is bounded by

∆H =
(1− α)∆L

α
, (3)

so that the number of intervals below and above αW is the

same. This assures that conventional bitplane coding strategies

can be employed. The encoder quantizes the coefficients

according to

υ′ =



















⌊

|ω|

∆L

⌋

if |ω| < αW

⌈

αW

∆L

⌉

+

⌊

|ω| − αW

∆H

⌋

otherwise

, (4)
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Fig. 1: Quantization intervals produced by (a) USDQ and

(b) 2SDQ. Only the magnitude of the coefficient is depicted.

Figure reproduced from [5].

where ⌈·⌉ denotes the ceiling operation. The decoder recon-

structs the coefficients as

ω̂′ =























































0 if j′ > s

sign(ω) (υ̂′ + δ)∆L2
j′

if j′ ≤ s and υ̂′2j
′

<

⌈

αW

∆L

⌉

sign(ω)
[

αW +

(

(υ̂′ + δ)2j
′

−

⌈

αW

∆L

⌉)

∆H

]

otherwise.
(5)

Note that the linear relation between ω and υ of the USDQ

scheme does not hold in 2SDQ. When employing rate-

distortion optimization methods, this compels to adjust the

distortion decreases produced by the coding of each bit of

υ′ (see below).

III. CELL-BASED 2SDQ

2SDQ can be applied in any wavelet-based coding system.

It is mostly effective in systems in which the number of

bits employed to represent the quantization indices is con-

strained. Such a situation may happen in devices in which

the hardware processing units employed to code the image

have data structures with a limited number of bits. Also, the

proposed scheme helps to reduce the computational costs of

the codec since fewer data are coded. In [5], 2SDQ is applied

in JPEG2000 by modifying the quantization indices of selected

codeblocks. Briefly described, let Mx denote the number of

magnitude bits needed to represent the quantization indices

produced by conventional USDQ in codeblock x. Assume

that the maximum number of magnitude bits that can be

employed is Mmax. 2SDQ is applied in codeblocks whose

Mx > Mmax. If Rx = Mx−Mmax, then the relation between

the step sizes of USDQ and 2SDQ is
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∆′
L = ∆

α2Mx

2Mmax−1
= ∆α2Rx+1 , (6)

and

∆′
H = ∆(1− α)2Rx+1 . (7)

Evidently, the codeblocks in which 2SDQ is applied must

be signaled. The final codestream is not compliant with the

standard, though it keeps all its features.

The main idea behind the proposed cell-based 2SDQ (CB-

2SDQ) is to apply 2SDQ in coding units smaller than the

codeblock. This permits a more fine discrimination of the

(sets of) coefficients in which such a scheme is beneficial.

CB-2SDQ can be employed in the same scenarios as those

previously discussed for 2SDQ. The cell is defined as a square

set of coefficients within the codeblock. Such a structure is

also employed in [10] to accelerate the bitplane coding engine.

Three aspects must be considered when employing CB-2SDQ.

The first is that the application of 2SDQ is not dictated by Mx

but by the number of magnitude bits needed to represent all

indices within the cell, denoted by Mc. 2SDQ is selectively

applied in those cells in which Mc > Mmax. The step sizes

employed in each cell are computed according to (6) and (7)

but replacing Mx by Mc and Rx by Rc = Mc − Mmax.

Again, the cells in which 2SDQ is applied are signaled in the

codestream.

The second aspect that the application of CB-2SDQ must

consider is the value of α employed. In [5], α is roughly

determined for a large variety of images and coding parameters

as α = 0.3. We found that high bit-depth images such

as those employed in the remote sensing field can benefit

from a more finely tuned value of α. Our objective is to

transmit the image with the highest possible quality given

Mmax bits to represent quantization indices. The optimal α

is that minimizing the distortion between the original and the

reconstructed coefficients. When the distortion metric is mean

squared error (MSE), this distortion is expressed as

D =
∑

C∈c

(ω[C]− ω̂′[C])2 , (8)

with ω[C] and ω̂′[C] representing the original and the 2SDQ

reconstructed coefficients within cell c, respectively. The dis-

tribution of coefficients within the cell determines the α that

minimizes (8). When the cell contains few coefficients with

large magnitudes, α will be lower than when the cell contains

many coefficients with large magnitudes. The distribution of

coefficients in wavelet subbands is commonly Laplace-like,

though this may not hold in some detail subbands. High bit-

depth resolution images may have cells with a probability

density function (pdf) with longer and thinner tails than that

achieved when the images have a more conventional bit-depth.

The value of α for such images is therefore lower.

The optimization of α for a cell and a pre-defined Mmax

requires the conversion of the quantization indices for each

value of α tested. This is not practical when the image

TABLE I: Empirically determined α for different transform

strategies, resolution levels, and subbands (except for the LL

subband, which is fixed to α = 0.5).

1D+2D KLT+2D

dec. level HL/LH HH HL/LH HH

1 0.24 0.24 0.25 0.26

2 0.24 0.24 0.25 0.26

3 0.24 0.24 0.25 0.26

4 0.26 0.26 0.25 0.27

5 0.27 0.27 0.25 0.28

is compressed onboard satellites or in sensors with limited

computational resources. So the approach adopted herein is

to model α for the type of image in hand. As studied in

the literature [10], [11], all images of the same type (e.g.,

natural, AVIRIS, xRay,...) have a similar statistical behavior

that can be exploited in probability models or rate-distortion

optimization methods. This similarity is exploited herein to

define a lookup table (LUT) for α. To this end, an AVIRIS im-

age is transformed through a 1D+2D and a KLT+2D strategy.

Then, wavelet coefficients are conceptually partitioned in cells

of size 16×16, 32×32, and 64×64. The quantization indices

within each cell are converted to 2SDQ indices employing

Mmax = {4, 5, 6, 7, 8} and α = {0.20, 0.21, 0.22, . . . , 0.30},

computing D for each different test. Experimental evidence

suggests that D is minimized for very similar values of α

regardless of the size of the cell and the Mmax employed,

though different values are obtained depending on the wavelet

subband. Table I reports the optimal α found for these AVIRIS

images. HL and LH subbands have a similar pdf, so the values

determined for both subbands are grouped. The higher the de-

composition level, the higher the α since wavelet subbands at

high decomposition levels concentrate more the energy of the

image, which produces more coefficients of large magnitude.

Similar results are obtained for other AVIRIS images.

The third aspect that is critical for the application of CB-

2SDQ is the rate-distortion optimization procedure. Com-

monly, JPEG2000 implementations construct the final code-

stream through Lagrange optimization. Key in such a method

is to determine the rate-distortion slope of each bitstream

segment that is put in the final codestream. The slope is the

result of dividing the decrement in distortion by the increment

in rate produced when the bitstream segment is transmitted.

Typically, the distortion achieved at the end of coding pass l is

computed as the squared difference between the original and

the reconstructed coefficients of codeblock x according to

Dl
x ≈ G2

z∆
2
∑

χ∈x

(

(υ[χ] + δ)−

{

0 if j′ > s

(υ̂[χ] + δ)2j
′

otherwise

)2

,

(9)

where Gz is the energy gain factor of subband z to which

the codeblock belongs. In the above expression (υ[χ] + δ)
and (υ̂[χ]+ δ)2j

′

represent the reconstructed coefficient when

all bits, and when bits up to j′, are transmitted, respectively.

The distortion decrease that is produced when coding pass l

is transmitted is computed as △Dl
x = Dl−1

x −Dl
x.
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Dl
x ≈ G2

z∆
2































β′
L

2
∑

C∈c

(

(υ[C] + δ)−

{

0 if j′ > s

(υ̂[C] + δ)2j
′

otherwise

)2

if υ[C] < 2M
max

−1

β′
H

2
∑

C∈c

(

(υ[C] + δ)−

{

0 if j′ > s

(υ̂[C] + δ)2j
′

otherwise

)2

otherwise

(10)

Cells in which 2SDQ is employed must consider that the

distortion decrements suffer a deviation with respect to cells in

which USDQ is used. Due to the use of two step sizes, such a

deviation is different depending on whether the index is larger

or smaller than 2M
max

−1. The distortion decrease of indices

that are smaller (larger) than 2M
max

−1 must be multiplied by

βL = α2Rx+1 (βH = (α2 ln 2 − α + 1 − ln 2)2Rx+1). βL

and βH are derived in [5]. Through βL and βH , the distortion

decrement produced in codeblocks that contain cells with CB-

2SDQ indices can be finely adjusted by reformulating Eq. (9)

in Eq. (10). υ[C] denotes the quantization indices in cell c and

β′
L, β′

H denote the deviations for cell c computed with Rc

instead of Rx.

IV. EXPERIMENTAL RESULTS

The proposed method is evaluated when coding four

AVIRIS images belonging to Yellowstone scenes referred to

as sc00, sc03, sc11, and sc18. These images have not been

employed to generate the LUT for α. They are 512×677

and have 224 components. Their bit-depth resolution is 16

bps. The aforementioned transform strategies (i.e., 1D+2D and

KLT+2D) are employed to decorrelate spatial and spectral

redundancy. JPEG2000 coding parameters are: 5 levels of

irreversible 9/7 wavelet transform (both in the spatial and,

when applicable, in the spectral domain), single quality layer,

and no precincts.

The first set of experiments assess the image quality (in

terms of signal to noise ratio (SNR)) and the coding rate (in

terms of bps) when the images are coded using Mmax = 8, 6,
and 4 bits. Table II reports the average results obtained

for the four images. Four coding methods are shown. The

first uses a JPEG2000 codec that transmits the Mmax most

significant bitplanes of each codeblock. Such a method yields

the maximum SNR possible while maintaining compliance

with the standard. The second method employs 2SDQ as it

is formulated in [5]. As indicated in [5], the performance

achieved by 2SDQ is virtually the same as that of the practical

GEQ described in [4], so the results reported for 2SDQ in

this and following tests can be regarded as equivalent to those

achieved by the practical GEQ. The third method is CB-2SDQ

as it is described in the previous section. The last method is

CB-2SDQ but it employs the optimal α for each cell instead

of using the LUT defined in Table I. We recall the last method

is not practical. It is reported herein for comparison purposes

only. The codeblock size employed for JPEG2000 and 2SDQ

is that indicated in the second row of each column. CB-2SDQ

always utilizes a codeblock size of 64×64, whereas the cell

size is that indicated in the second row of each column. For

example, the results reported in the rightest column when

Mmax = 8 utilize codeblocks of 16×16 for JPEG2000 and

2SDQ and codeblocks of 64×64 and cells of 16×16 for CB-

2SDQ.

The results of Table II indicate that, in terms of SNR, CB-

2SDQ improves the results achieved by 2SDQ. The gain varies

depending on the codeblock size, cell size, and transform

strategy, though they are generally between 0.1 to 0.7 dB

higher. Compared to JPEG2000, the proposed method yields

images of 2.8 dB higher, on average. The results of Table II

also suggest that the model of α embodied in Table I works

well in practice since the image quality achieved when the

optimal α is employed is only slightly superior to that achieved

by CB-2SDQ, except for a few cases. In terms of coding

rate, the conventional JPEG2000 implementation achieves the

lowest rates. Although all methods code the same number

of bitplanes, the bitplanes in the conventional JPEG2000

implementation convey less information (and so the image

has lower quality) than when using (CB-)2SDQ, which makes

them more compressible. The coding rate differences between

the remaining methods are not significant. We recall that the

reported rate of the proposed method already includes the

necessary ancillary information.

The progressive lossy performance achieved by the pro-

posed method is appraised in Fig. 2 for one image of the

corpus when Mmax = 6 and the codeblock size is 32×32

for JPEG2000 and 2SDQ and 64×64 with cells of 32×32 for

CB-2SDQ. Similar results are obtained for the other images,

other values of Mmax, and other sizes of codeblocks and cells.

Again, the performance achieved by the proposed method is

higher than that of 2SDQ and slightly lower than that achieved

with the implementation that computes the optimal α. The

proposed method yields a progressive coding performance

significantly superior to that achieved by JPEG2000. Only

at very low bitrates, the conventional JPEG2000 implemen-

tation achieves higher performance than that achieved by the

remaining methods. This is because the highest bitplanes of

all codeblocks can be transmitted earlier when 2SDQ is not

employed since they contain less information. Also because

the proposed method transmits more side information. At

bitrates higher than those depicted in Fig. 2, the quality of the

images is increased more progressively, though the differences

among the methods reported is approximately maintained.

V. CONCLUSIONS

Embedded quantization is a technique employed in image

coding systems to obtain quality progressive transmission.

The most common approach is to use USDQ together with

bitplane coding. Recent advances in the field have shown

that the substitution of USDQ by a scheme that quantizes
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TABLE II: Evaluation of the SNR and coding rate (first and second value in each cell, respectively) achieved, in average by

different methods when coding all the images of the corpus.

Mmax

= 8 Mmax

= 6 Mmax

= 4

64×64 32×32 16×16 64×64 32×32 16×16 64×64 32×32 16×16

1
D

+
2
D

JPEG2000 46.54, 4.32 47.88, 4.41 49.19, 4.60 33.58, 3.83 35.21, 4.04 36.79, 4.32 21.38, 2.46 22.64, 2.85 24.05, 3.35

2SDQ [5] 48.77, 4.38 49.40, 4.45 50.26, 4.62 36.41, 4.06 37.30, 4.21 38.33, 4.43 23.92, 3.04 24.87, 3.35 25.96, 3.73

CB-2SDQ 49.19, 4.41 49.58, 4.42 50.32, 4.43 37.01, 4.15 37.58, 4.22 38.45, 4.27 24.55, 3.27 25.23, 3.48 26.15, 3.66

CB-2SDQ (opt. α) 49.45, 4.42 49.67, 4.42 50.37, 4.43 37.43, 4.21 37.71, 4.24 38.50, 4.27 25.16, 3.41 25.45, 3.51 26.22, 3.66

K
L

T
+

2
D

JPEG2000 47.72, 3.19 49.42, 3.26 51.33, 3.43 34.63, 3.00 36.47, 3.11 38.66, 3.31 21.86, 2.53 23.33, 2.72 25.60, 3.00

2SDQ [5] 50.75, 3.22 51.63, 3.28 52.87, 3.45 38.04, 3.08 39.19, 3.17 40.72, 3.36 24.54, 2.74 25.57, 2.89 27.46, 3.12

CB-2SDQ 51.25, 3.23 51.89, 3.24 52.95, 3.25 38.72, 3.11 39.55, 3.14 40.83, 3.17 25.15, 2.80 25.94, 2.88 27.66, 2.95

CB-2SDQ (opt. α) 51.65, 3.24 52.02, 3.24 53.03, 3.25 39.38, 3.14 39.83, 3.15 40.94, 3.17 25.85, 2.87 26.27, 2.90 27.87, 2.95
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Fig. 2: Evaluation of progressive lossy coding performance for

transform strategies (a) 1D+2D and (b) KLT+2D, for the sc11

image.

wavelet coefficients differently depending on their magnitude

can produce images of higher quality at the same coding rates.

2SDQ is the first such a scheme introduced in the framework

of JPEG2000. It is particularly efficient when the number of

bits to represent quantization indices is constrained. This paper

extends 2SDQ by selecting more finely the coefficients in

which the quantizer is applied. Its main insight is to partition

the JPEG2000 codeblock in smaller sets of coefficients called

cells. Key to achieve competitive performance is to model the

parameters of 2SDQ for their use in cells, and to adapt the rate-

distortion optimization procedure of JPEG2000 accordingly.

The proposed cell-based 2SDQ (CB-2SDQ) scheme achieves

high efficiency for images that have a high bit-depth resolution,

like those employed in the remote sensing field. Experimental

results for hyperspectral AVIRIS images indicate coding gains

of more than 2 dB with respect to a conventional JPEG2000

implementation and between 0.1 to 0.5 dB with respect

to 2SDQ at the same coding rates. The proposed method

might also be introduced in other schemes for the coding of

hyperspectral images such as [12], [13].
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