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Abstract—DNA microarrays are one of the fastest-growing new
technologies in the field of genetic research, and DNA microarray
images continue to grow in number and size. Since analysis
techniques are under active and ongoing development, storage,
transmission and sharing of DNA microarray images need be
addressed, with compression playing a significant role. However,
existing lossless coding algorithms yield only limited compression
performance (compression ratios below 2:1), whereas lossy coding
methods may introduce unacceptable distortions in the analysis
process. This work introduces a novel Relative Quantizer (RQ),
which employs non-uniform quantization intervals designed for
improved compression while bounding the impact on the DNA
microarray analysis. This quantizer constrains the maximum
relative error introduced into quantized imagery, devoting higher
precision to pixels critical to the analysis process. For suitable pa-
rameter choices, the resulting variations in the DNA microarray
analysis are less than half of those inherent to the experimental
variability. Experimental results reveal that appropriate analysis
can still be performed for average compression ratios exceeding
4.5:1.

Index Terms—DNA microarray images, Image compression,
Quantization

I. INTRODUCTION

The lossy compression of DNA microarray images can at-
tain almost arbitrary compression ratios at the cost of distorting
the results of subsequent analysis algorithms performed on
them. Nevertheless, if the introduced distortion is smaller than
the experimental variability that is inherent to DNA microar-
rays, the lossy compression can be considered acceptable [1]–
[3]. Several generic image compression methods have been
adapted or directly applied to DNA microarray images [1], [2],
[4]–[6]. However, to the best of the authors’ knowledge, no
lossy compression technique specifically designed for microar-
ray images has been published. This work aims to introduce
such a technique with the goal of significantly outperforming
existing lossy compressors.
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Fig. 1: Outline of an example DNA microarray image acqui-
sition procedure. Samples from healthy and tumoral tissue are
dyed with fluorescent pigments and put on a DNA microar-
ray chip (1), which is optically scanned using two different
wavelength lasers to produce two microarray images (2).

A. DNA Microarrays

DNA microarrays are widespread tools in biological and
medical research. They are useful to analyze the function and
regulation of individual genes from many organisms, including
humans. The fight against Cancer, HIV and Malaria are among
their most important applications.

In a typical DNA microarray experiment, two biological
samples are compared. One sample corresponds to control
(e.g., healthy) cells, and the other sample corresponds to exper-
imental (e.g., tumoral) cells. A given gene can have different
expression intensities –i.e., different amounts of activity– in
the two biological samples. By studying the expression inten-
sity differences between these two biological samples, it is
possible to analyze the function of each gene in an illness or
in other biological processes.

Samples coming from the healthy and tumoral tissues are
first dyed with, respectively, green and red fluorescent markers
(step (1) in Fig. 1). After that, the biological samples are left
to react on the surface of the DNA microarray chip, which
contains microscopic holes or spots arranged in a regular grid,
as shown in Fig. 2a. Each of the spots is related to a single
gene of the organism, and the quantity of each dyed biological
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(a)

22831 21698 21631 11488
20030 23157 13673 4524
17021 10024 3330 869
3779 1408 242 1
1223 41 314 1055
871 179 284 46

(b)

Fig. 2: Example DNA microarray images. (a) 100×100 crop
of slide 1-red image from the Arizona corpus with hexagonal
grid spot layout. Gamma levels have been adjusted for visu-
alization purposes; (b) Pixel intensity values of a 6×4 crop of
134044022 Cy5 from the IBB corpus. Pixels belonging to a
spot are highlighted in bold font.

sample that remains in it is proportional to the activity of that
gene in the corresponding biological sample. The chip is then
optically scanned while exciting the fluorescent marker used
to dye one of the biological samples (step (2) in Fig. 1). This
results in an unsigned 16 bit per pixel (bpp) grayscale image.
The chip is scanned again while exciting the other fluorescent
marker in order to produce a second 16 bpp grayscale image.
In each of these images –usually referred to as the green
and red channels because of the associated dye color– the
brightness of each spot is related to the activity of the gene
related to that spot in the corresponding biological sample.

Once DNA microarray images have been obtained,
microarray-specific image analysis software is employed to
quantify the genetic expression intensities in each of the
biological samples. Finally, the extracted data are processed
to detect relevant genetic expression differences between the
control and experimental tissue samples, which enables the
study of the function of individual genes.

DNA microarray image analysis is an active research
field [7]–[13]. As new analysis techniques are developed, it
will be possible to re-analyze existing images to obtain more
accurate genetic data. Since it is not practical to preserve
the biological samples indefinitely nor share them among
laboratories around the world, replicating the whole DNA
microarray experiment is usually not feasible or convenient. A
preferable alternative is to store the DNA microarray images.
Image coding techniques can help alleviate the costs associated
with the storage and management of this data, and can also
accelerate their transmission to other researchers wishing to
perform analysis (or re-analysis with new techniques).

B. Compression of DNA Microarray Images

DNA microarray images present several features that render
their compression a very challenging task. In each of the
grayscale images, thousands of round spots of varying inten-
sities are displayed on a dark background following a regular
pattern. A crop of an example DNA microarray image with
hexagonal grid is shown in Fig. 2a. As a consequence of the
abrupt pixel intensity variations induced by the spots, as shown
in Fig. 2b, DNA microarray images contain high frequencies
which are hard to code efficiently. Furthermore, the original
image data are represented with 16 bpp, and typically 7 or

more of the least significant bitplanes exhibit binary entropy
values close to 1 bpp [14].

A complete review of the state of the art in both lossless
and lossy compression of DNA microarray images can be
found in [14]. When lossless compression is employed, perfect
pixel fidelity is guaranteed. However, the best reported lossless
compression ratios (summarized later in Table V) are smaller
than 2:1 for most corpora. This is believed to be a practical
bound to lossless compression methods [1], [15].

Lossy compression, on the other hand, can provide es-
sentially any desired compression ratio, but at the expense
of introducing changes (distortion) in the image data. De-
pending on this distortion, the results for current and future
image analysis methods may be severely affected, which may
render images unusable. For this reason, it is necessary to
assess the impact of lossy compression on the analysis of
DNA microarray images. Previous work has indicated that
lossy compression can produce acceptable results when the
distortion introduced is smaller than the variability observed
in replicated experiments [1]–[3].

To the best of the authors’ knowledge, no existing com-
pression technique in the literature has been designed to
directly take into account the DNA microarray image analysis
process (e.g., [1], [2], [4]–[6]). The main novelty of this
work consists in the design of a lossy compression method
specifically conceived to minimize its impact on subsequent
analysis processes applied on DNA microarray images. In
particular, it aims at providing significant reductions in errors
introduced into the CRM, compared to existing lossy coding
techniques.

C. Paper Structure

A Relative Quantizer (RQ) designed for DNA microarray
images is proposed in Section II and its impact on the
genetic data extraction process is addressed in Section III. The
effectiveness of (further) lossless compression on images that
have been quantized using the RQ is discussed in Section IV.
Some conclusions are drawn in Section V.

II. THE RELATIVE QUANTIZER

A. Motivation

In a DNA microarray image, the brightness of each spot is
related to the expression intensity of the gene (in the biological
sample) associated with that spot. In order to quantify the
expression intensities for the different genes under test, mi-
croarray image analysis techniques segment the red and green
channel to detect the position of the spots and differentiate spot
pixels from background pixels. A recent review of the state of
the art on microarray image segmentation can be found in [12].
The positions and shapes of the spots are not perfectly regular,
so that segmentation is a challenging task.

If the red and green images are subjected to lossy com-
pression prior to analysis, the resulting distortion may cause
the segmentation process to fail to detect a spot in at least
one of the two images and no genetic information will be
subsequently extracted from it. A spot that is correctly detected
in both images is hereinafter referred to as positively detected.
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Even if a spot is positively detected, pixels belonging to the
spot may be incorrectly tagged as background and vice versa.
Thus, the segmentation step is crucial in the analysis process.
Since a large fraction of the spots have low intensities [14], the
absolute distortion introduced in low-intensity pixels should be
limited, so that spots can be accurately separated from the dark
background.

After the spots are segmented, the pixel values from the
co-located spots (i.e., the spot at the same location of the red
and green channel images) are compared to assess whether
the gene corresponding to that spot is expressed differently
in the two biological samples. Even though spots can exhibit
different sizes in the two images, approximate co-location in
both images is necessary for a correct detection and compar-
ison of these spots. To this end, professionals working with
DNA microarrays usually employ the corrected ratio of means
(CRM) of each positively detected spot [12], defined as

CRM =
µred
spot − µred

localBG

µgreen
spot − µgreen

localBG

. (1)

Here, µspot and µlocalBG are the average pixel intensity within
a spot and its local background, while the red and green
superscripts refer to the channel being analyzed, respectively.
The µlocalBG is subtracted from µspot to compensate for back-
ground noise and unavoidable inaccuracies in the segmentation
process. The local background of each spot is calculated as a
region of background pixels surrounding the spot. The exact
shape and size of the local background is determined by the
segmentation algorithm. Several local background definitions
have been proposed in the literature [16]. Three of these are
illustrated in Fig. 3: a circular crown which surrounds but does
not include the spot pixels (depicted in pink), a square crown
(depicted in yellow), and the union of four diamond-shaped
regions (depicted in orange). In this figure, the spot is depicted
by the gray circle.

For more than 20 years, statistical analyses of DNA mi-
croarray data have consistently relied on segmenting images
into spots and then extracting a CRM value for each pair of
spatially corresponding spots [17]. Hence, it is reasonable to
expect future image analysis techniques to also be based on
this principle. Therefore, lossy compression methods applied
to DNA microarray images should aim to minimize the impact
on this type of analysis. As mentioned previously, certain
aspects of the analysis have been the subject of intensive
recent research [7]–[13]. The proposed Relative Quantizer is
designed specifically to minimize the impact to segmentation
and to the ratios of spot intensities (CRM), regardless of the
specific algorithmic details used within the analysis process.

In what follows, the error introduced in the CRM is taken
as a measure of distortion introduced by lossy compression
within positively detected spots. Because the CRM is defined
as a quotient, the absolute error introduced in the image inten-
sities is not enough to characterize the impact on the CRM.
For instance, an absolute error of εabs in the numerator of (1)
will induce different absolute errors in the CRM depending on
the value of the denominator of (1). For example, the absolute
error in the CRM will be 2 times larger for a denominator
of value d than for a denominator of value 2d. On the other

Fig. 3: Different local background definitions.

hand, if a relative error of εrel is introduced in the numerator,
the same relative error is introduced in the CRM, regardless
of the value of the denominator. In this paper, the relative
error is defined as εrel = εabs/voriginal, where voriginal is the
original value without errors. Therefore, it is arguably more
useful to limit the relative error than to limit the absolute error.
That is, the error introduced in each pixel should be bounded
by a certain percentage of the original pixel value. This is
in stark contrast to traditional lossy compression algorithms,
which attempt to limit the squared (absolute) error.

B. Definition and Properties

In what follows, we assume that DNA microarray images
are analyzed subsequent to lossy compression. Motivated by
the discussion above, we propose a Relative Quantizer (RQ)
designed to provide superior compression performance for
DNA microarray images while limiting the impact on the
analysis of these images. Specifically, the quantizer is designed
to have minimal impact on segmentation, as well as on CRM
values. The impact on segmentation is controlled by limiting
errors in the pixels having small values, while errors in the
CRM are controlled by limiting the pixel-wise relative error,
thence the name “Relative”.

The fixed-rate scalar quantizer that minimizes relative error
for continuous-amplitude sources has been described in the
literature [18]. For sources with probability density functions
equal to f(x) = a/x, a ∈ R, the optimal solution is a
logarithmic quantizer DNA microarray image pixel distribu-
tions, in which low values are much more probable than
high values [14], can be approximated by such density func-
tions. Therefore, the design of the proposed RQ is based on
the logarithmic quantizer to minimize the pixel-wise relative
error and, in turn, control the impact on the CRM values
extracted from the quantized images. On the other hand,
the proposed RQ is designed for discrete-amplitude (integer
pixel) sources, rather than continuous-amplitude (real number)
sources. Additionally, in order to minimize the impact on
the spot segmentation, the RQ further prioritizes low-intensity
pixels. As explained above, low-intensity pixels are critical to
detect spots and separate them from the dark background of
DNA microarray images. Specifically, as described in detail
below, low-intensity pixels that fall within a prescribed range
are guaranteed to be preserved perfectly.

The RQ is applied independently to each pixel of the
original image. Each such pixel is assumed to be an unsigned
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TABLE I: Original pixel values (Orig.), quantization indices (QI) and reconstructed values (Rec.) for the RQ using B = 4
and k = 2. Bits preserved in each value are highlighted in bold font. The interval midpoint rounded up is employed for the
reconstruction.

Orig. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

QI 0 1 2 3 4 4 5 5 6 6 6 6 7 7 7 7

Rec. 0000 0001 0010 0011 0101 0101 0111 0111 1010 1010 1010 1010 1110 1110 1110 1110
0 1 2 3 5 5 7 7 10 10 10 10 14 14 14 14

integer of bitdepth B ≥ 1. The RQ is parameterized by an
integer k in {1, . . . , B}. As explained in detail below, the
parameter k determines the number of quantization intervals
and their size, which in turn controls the fidelity with which
each individual pixel is preserved. Small values of k yield low
fidelity, while increasing k yields higher fidelity. Indeed, when
k = B, the size of all quantization intervals is exactly 1, so no
quantization is applied, and all pixels are preserved perfectly.
In order to describe the quantization intervals, it is useful to
consider pixel values in their binary representation. For a given
pixel, let N be the position of its most significant bit having
value equal to 1, where B − 1 and 0 are the most and least
significant positions, respectively. For example, let B = 4.
Then pixels having values v1 = 00012, v2 = 01002 and
v3 = 01012 have N1 = 0, N2 = 2 and N3 = 2, respectively.

The main idea of the RQ is to then preserve only the bits in
positions B− 1, . . . , N − k+1. Note that, by definition, only
the k bits in positions N, ..., N − k+1, can be different from
0. Thus, the parameter k effectively determines the maximum
number of non-null bits that are preserved for each pixel. From
this observations, it follows that if N < k, then all bits of
the pixels are preserved. That is, all pixels having values in
{0, 1, . . . , 2k − 1} are preserved losslessly.

Table I shows the operation of the RQ for B = 4 and
k = 2. The first two rows in the table show the decimal
and binary representations for each possible pixel value. The
bits to be preserved are highlighted in bold font. Pixel values
that are identical in the preserved positions are assigned to
the same quantization interval, and hence, have the same
quantization index, as given in the third row. The fourth and
fifth rows show the binary and decimal representations of the
reconstructed pixel values at the output of the dequantizer. The
interval mid-point rounded up to the next integer has been used
for reconstruction. As an example, two pixels taking values
01002 and 01012 belong to the same quantization interval.
They share a common quantization index of 4, and are both
reconstructed as 5. As expected, pixels having values less than
2k = 4 are preserved perfectly.

As seen in Table I, when B = 4 and k = 2, there are 8
distinct quantizer indices. To calculate the number of quantizer
indices for arbitrary B and k, it is illustrative to view the RQ
as a quantizer having non-uniform intervals. For any choice of
B, the first 2k intervals correspond to preserving all bits of any
pixel having value 0 ≤ p < 2k. Each interval thus contains
only one value. That is, each interval is of size 20 = 1. The
next 2k−1 intervals correspond to preserving all but the least
significant bit of any pixel with value 2k ≤ p < 2k+1. Hence,

two values are assigned to each interval. That is, each interval
is of size 21. The next 2k−1 intervals correspond to preserving
all but the two least significant bits of any pixel with value
2k+1 ≤ p < 2k+2. Each such interval is of size 22. Each
subsequent group of 2k−1 intervals has size 23, 24, etc. Finally,
the 2k−1 intervals of the last group each have size 2B−k. This
last group of intervals preserves the k most significant bits of
any pixel having value 2B−1 ≤ p < 2B .

For any values of B and k, the exact number of quantization
intervals Ik can then be easily calculated. Since there are 2k

intervals of size 1 and 2k−1 intervals of each size s with s ∈
{21, 22, . . . , 2B−k}, there are exactly 2k + (B − k)2k−1 =
(B − k + 2)2k−1 quantization intervals. Table II provides Ik
for several values of B and k.

TABLE II: Number of quantization intervals Ik for the RQ
using B = 4 and B = 16.

k 1 2 3 4 5 6 7
Ik (B = 4) 5 8 12 16 N/A N/A N/A
Ik (B = 16) 17 32 60 112 208 384 704

In summary, no error is incurred in the 2k lowest pixel
values. Additionally, several of the next quantization interval
groups have small lengths: 2, 4, 8, 16, etc., implying small
maximum errors. As discussed in Section II-A, low intensity
pixels are crucial for the spot segmentation. Thus, the small
maximum error introduced by the RQ in this intensity range
attenuates the impact on the segmentation process. Moreover,
the maximum relative error in each pixel is bounded. Specifi-
cally, pixels having values 2k+j ≤ p < 2k+j+1 are quantized
using an interval of size exactly 2j+1, j = 0, 1, . . . , B−(k+1).
It follows that the absolute error introduced in a pixel by
quantization/dequantization is at most εabs = 2j , so that the
maximum relative error is bounded by εrel = 2j/2k+j = 2−k.
As explained in Section II-A, limiting the pixel-wise relative
error helps control the distortion in the extracted CRM values.
Note that this approach is not specifically designed for any
concrete DNA microarray image analysis algorithm. Instead,
the Relative Quantizer relies on preserving the intensity ratios,
and not on the specific way in which a particular algorithm
segments the images. Hence, using the proposed approach is
reasonable for any existing or future analysis algorithm based
on the CRM.
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III. IMPACT OF THE RELATIVE QUANTIZER ON GENETIC
DATA EXTRACTION

A. Distortion Metrics

The main drawback of lossy coding methods applied to
DNA microarray images is the possibility of distorting the
results of any subsequent genetic data extraction process. As
explained in Section II-A, the segmentation step may fail to
detect one or more spots. Also, the corrected ratio of means
(CRM) values extracted for positively detected spots may be
distorted.

CRM values are usually classified into one of three cate-
gories: a) CRM < α, b) CRM > β or c) CRM ∈ [α, β].
Typically, α = 0.5 and β = 2 [3], so that if CRM < 1/2
for a given spot (Category a)), then the gene associated with
that spot is declared to be more strongly expressed in the
“green sample” (that is, the biological sample associated with
the green florescent marker) than in the red sample. Indeed,
CRM < 1/2 implies that the denominator of Eq (1) is more
than twice as large as the numerator. Similarly, if CRM > 2
(Category b)), then the gene is declared to be more strongly
expressed in the red sample. Finally, Category c) indicates that
the gene is expressed roughly equally in both samples. This
classification is usually the only output considered, and experts
from the Genomics and Bioinformatics Service of the Biology
and Biomedicine Institute (IBB) at the Universitat Autònoma
de Barcelona (UAB) agree that any lossy process for which no
detection errors occur and the extracted CRM values remain
unmodified is equivalent to a numerically lossless process.

In practice, most CRM values are close to 1, and the fraction
of spots whose CRM lies outside [α, β] is relatively small and
depends on the type of biological samples being compared.
A histogram of the CRM values extracted from the positively
detected spots of all 22 image pairs of the IBB corpus is shown
in Fig. 4. As reported later in Table IV, the average number
of spots in the IBB set is about 14,000. For visualization
purposes, all values smaller than -1 are considered to be
exactly -1, and all values larger than 5 are considered to be
exactly 5. Note that according to the CRM definition of (1),
negative CRM values can occur when the average intensity of
the local background is larger than the average intensity of the
spot pixels.

Based on this, two full-reference distortion metrics are
defined below to assess the acceptability of the changes
introduced in the images by lossy processes, including the
proposed RQ. The first one is the average relative error in
the CRM (ARECRM). Given the analysis results of an original
and a distorted (e.g., quantized) image pair, it is defined as

ARECRM =
1

n

n∑
i=1

|CRMi − ĈRMi|
δ + |CRMi|

. (2)

Here, n is the number of spots positively detected in both
the original and the distorted image pairs. The CRM extracted
from the i-th such spot in the original and distorted image
pairs are denoted as CRMi and ĈRMi, respectively. The
parameter δ is set to 0.001 to stabilize the case CRMi = 0.
As an example, a value of ARECRM = 0.5 would indicate
that, on average, the distorted CRM values differ by 50% of
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Fig. 4: Distribution of the CRM values extracted from all 22
original image pairs of the IBB corpus.

their original values. This metric provides insight on the global
distortion in the analysis process. Similar analysis distortion
metrics have been employed in the literature [1], [2].

The second metric is the fraction of spots wrongly detected
or classified (FWDOC). It is defined as

FWDOC = (d+ c)/m, (3)

where d is the number of spots that are detected differently
in the original and quantized image pairs, c is the number
of spots that are positively detected in both the original and
quantized image pairs but are classified differently, and m is
the total number of spots. Here, a spot is considered to be
detected differently if it is positively detected in the original
image pairs but not in the quantized image pairs, or vice
versa. Note that m includes both positively detected and not
positively detected spots and, hence, m ≥ n. Similar ap-
proaches have been used in [2] and [3]. This metric quantifies
the probability of a spot becoming unusable because of the
introduced distortion. As suggested by the IBB experts, the
interval R = [α, β] = [0.5, 2] is employed in this work to
perform all classification operations.

B. Distortion Results

A number of tests have been carried out to evaluate the
performance of the RQ with respect to microarray images. The
first such test was to evaluate the distortion resulting from the
RQ for various values of k. This test was performed using a
corpus of 44 images (22 red/green image pairs), obtained from
real experiments at the IBB, hereinafter referred to as the IBB
corpus. Specifically, all images from the corpus were quantized
by the proposed RQ using k ∈ {1, . . . , 7}. The images were
then reconstructed from quantization indices by employing
interval mid-points rounded up to the next integer. The original
IBB corpus and the 7 reconstructed versions were analyzed
with the GenePix software at the IBB [19]. The results for the
original and the quantized versions were compared using the
two metrics described in Section III-A.

In the IBB corpus, each spot is replicated, i.e., there are
2 spots devoted to each gene. Ideally, identical segmentation
and CRM results should be obtained for both spots. However,
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in real experiments, they differ even in the original images
before quantization. Thus, two more metrics have been derived
from (2) and (3) to calculate the variability present between
pairs of replicated spots in the original images. Given the anal-
ysis results of an original image pair, the replicate ARECRM

(Rep-ARECRM) is defined as

Rep-ARECRM =
1

p

p∑
i=1

|CRMf
i − CRMs

i |
δ + |CRMf

i +CRMs
i |/2

, (4)

where CRMf
i and CRMs

i are, respectively, the CRM of the
first and second spots of the i-th replicated spot pair, p is
the number of such spot pairs where both spots are positively
detected, and δ = 0.001. Similarly, the replicate fraction of
spots wrongly detected or classified (Rep-FWDOC) is defined
as

Rep-FWDOC = (dpair + cpair)/q, (5)

where dpair and cpair are the number of pairs whose spots are
differently detected or classified, respectively, and q is the
total number of pairs in the image. Since not all spots are
necessarily detected, q ≥ p.

Results for the quantized images and for the replicated
spots in the original images are provided in Table III. In
the most aggressive case (k = 1), large errors are apparent,
especially in the ARECRM. Nevertheless, rapid improvement
is observed as the parameter k is increased. For k ≥ 4,
the ARECRM and the FWDOC are below 8.0% and 4.5%,
respectively. Significantly, for all k > 1, the ARECRM and
the FWDOC metrics show a better behavior than the Rep-
ARECRM and the Rep-FWDOC for the replicated spots in the
original images. In the literature on lossy compression of DNA
microarray images, distortions smaller than the experimental
variability are considered acceptable [1]–[3]. The distortion
among replicated spots can be understood as a measure of this
variability. In this light, the results of Table III suggest that
the proposed RQ yields acceptable distortions for all k > 1.

Arguably, the selection of a suitable value for k might be
specific to the scanner and analysis software employed. Given
a set of images and analysis software appropriate for the
scanner from which the images were acquired, a conservative

TABLE III: Average relative error in the CRM (ARECRM) and
fraction of spots wrongly detected or classified (FWDOC) after
the RQ. Results have been averaged over all 22 image pairs of
the IBB corpus. Average data for the pairs of replicated spots
in the original images (the Rep-ARECRM and Rep-FWDOC
metrics) are provided at the bottom.

Images ARECRM FWDOC
Original vs. RQ k = 1 0.562 0.148
Original vs. RQ k = 2 0.124 0.100
Original vs. RQ k = 3 0.121 0.064
Original vs. RQ k = 4 0.078 0.044
Original vs. RQ k = 5 0.064 0.030
Original vs. RQ k = 6 0.039 0.019
Original vs. RQ k = 7 0.028 0.014

Images Rep-ARECRM Rep-FWDOC
Original 0.254 0.212

approach might be to select a value of k for which the average
distortion measured by the metrics proposed in (2) and (3) are
between one half and one third of the replicate variability as
defined in (4) and (5), respectively. For the IBB corpus and the
GenePix analysis software, this leads to the choice of k = 3
or k = 4.

Results for the test described in this section have not been
obtained for DNA microarray images from other corpora.
Other corpora employed in the literature either do not consist
of green/red channel pairs from the same DNA microarray
experiment, or no compatible analysis software is publicly
available. Thus, an exhaustive study on the impact of k on
the analysis of such corpora is beyond the scope of this
work. Nevertheless, the properties of the RQ described in
Section II-B (bounded relative error for all pixels and small
absolute error for low-intensity pixels) do not depend on the
source of the image being quantized. Moreover, since the
maximum relative error of 2−k quickly decreases as k is
increased, it is reasonable to expect the analysis distortion to
be a monotonically decreasing function of k for any image set,
and that a very small analysis distortion should be obtained
for any image whenever k > 5.

Additional tests that employ the IBB corpus, as well as other
corpora from the literature, are discussed in the next section.

IV. LOSSLESS CODING OF RQ INDICES

The previous section characterized the distortion introduced
to DNA microarray images by the proposed RQ as a function
of the parameter k. In this section, compression performance
is discussed. To this end, several techniques for storing the RQ
indices of quantized images are investigated. These techniques
can be considered as lossless coding (or compression). For
each technique, the RQ indices can be recovered exactly, and
thus the distortion introduced into the images is entirely in-
dependent of the lossless coding technique employed. Indeed,
the resulting decompressed images are identical for each and
every technique. The only difference between the differing
lossless compression techniques is the resulting compression
performance. In what follows, compression performance is
reported in terms of the average rate R in bits per pixel (bpp)
required to store the indices of an image. This quantity can
be converted into compression ratio for a 16-bit image as
CR = 16/R.

A. DNA Microarray Image Corpora

A total of 228 DNA microarray images in 7 corpora
produced by different types of scanners have been gathered to
evaluate the lossless compression of indices produced by the
proposed RQ. All images most often used for benchmarking
in the DNA microarray image compression literature –the
Yeast, the ApoA1, the ISREC, the Stanford and the MicroZip
corpora– have been included. Additionally, the Arizona and
IBB corpora, which contain images representative of the
output of more modern DNA microarray scanners, have been
included. Table IV summarizes some of the most impor-
tant image characteristics. In particular, the total number of
grayscale images in each corpus is provided in the Images
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TABLE IV: Image corpora used for benchmarking in this work. Original image pixels are unsigned 16-bit integers.

Property Yeast [20] ApoA1 [21] ISREC [22] Stanford [23] MicroZip [4] Arizona [24] IBB [25]
Year 1998 2001 2001 2001 2004 2011 2013
Images 109 32 14 20 3 6 44
Size 1024×1024 1044×1041 1000×1000 > 2000×2000 > 1800×1900 4400×13800 2019×6235
Spot count ∼ 9 · 103 ∼ 6 · 103 ∼ 2 · 102 ∼ 4 · 103 ∼ 9 · 103 ∼ 2 · 105 ∼ 1.4 · 104
Avg. intensities 5.39% 39.51% 33.34% 28.83% 37.71% 82.82% 54.07%
Avg. entropy (bpp) 6.628 11.033 10.435 8.293 9.831 9.306 8.503
Best rate (bpp) [26] 5.521 10.223 10.199 7.335 8.667 8.275 8.039

row. All images are 16 bpp. Some of the corpora do not
contain green/red channel pairs, which yields an odd number
of grayscale images in some cases. Along with the spatial
size for each corpus, the average number of spots in each
image of a given corpus is reported in the Spot count row.
The percentage of the 216 possible pixel intensity values that
are actually present in each image has been computed, and
the average percentage for each corpus is reported in the Avg.
intensities row. The average first-order entropy of each corpus
is reported in the row labeled Avg. entropy. Results for the best
method known for lossless DNA microarray compression [26]
are expressed in terms of bpp in the last row. These results
were obtained for the original unquantized images using an
implementation provided by the authors of [26]. For each
corpus, the reported results are better than the first-order
entropy, due to the fact that pixel dependencies are effectively
exploited by the coding method employed.

B. Compression Experiments

All images from the described corpora were quantized by
the proposed Relative Quantizer (RQ) and the quantization in-
dices were stored as an image. Each resulting index image was
then subjected to lossless compression using several lossless
algorithms. As mentioned previously, each of these algorithms
may yield a different value for compression performance (in
bpp). However, the resulting image distortion (and indeed, the
images themselves) will be identical for each algorithm. This
experiment was performed for each value of k ∈ {1, 2, . . . , 7}.
Since k = 7 already yields analysis distortions 10 to 20 times
smaller than the experimental variability (see Section III-B),
larger values of k have not been considered here.

The tested lossless coding algorithms include generic
data compressors (bzip2), image and video compressors
not specifically designed for DNA microarrays (JPEG-
LS [27], CALIC [28], lossless JPEG2000 [29] and lossless
HEVC/H.265 [30]), and the best lossless microarray-specific
image compressor (Neves and Pinho’s method [26]). Unless
stated otherwise, all codecs were invoked with default pa-
rameters. The HEVC coder was invoked using coding unit
size equal to 64× 64, and bypassing the lossy stages (which
would be enabled by default). For the HEVC experiments, all
images were stored using YUV 4:2:2 format, with the U and
V components being exactly zero. The exact configuration pa-
rameters employed for HEVC are available at http://deic.uab.
es/∼mhernandez/media/software/hevc lossless.cfg. Note that
publicly available CALIC codecs support only images up to
8 bpp, i.e., 256 different pixel values. As can be seen from

Table II, the proposed RQ yields index images with 384 or
more intensities whenever k ≥ 6. Therefore, CALIC has only
been applied for k < 6. The H.264 standard has not been
included in this study since it does not support image sizes
large enough for many DNA microarray images [31].

In addition to the variable-rate methods listed in the previous
paragraph, fixed-rate coding is also considered. The simplest
such strategy is to assign to each index a fixed length codeword
of length dlog2 Ike bits. For example, when k = 4 (and B =
16), a codeword length of dlog2 112e = 7 bits will suffice.
If a block of L indices are coded together, a codeword of
length dlog2 ILk e will suffice. The rate of the resulting code
is then 1

Ldlog2 I
L
k e < log2 Ik + 1

L . Thus, fixed length coding
can approach log2 Ik bits per pixel as closely as desired.

Table V presents the results obtained for each value of
k by the different coding techniques. Data for the original
images before quantization is also provided. Results are given
in bits per pixel, calculated as the combined size in bits of all
compressed images divided by the total number of pixels in
a corpus. The fixed-rate results do not depend on the corpus
and are reported once at the top of the table for block size
L = 2000. The Lossless JPEG2000 row contains results for
Kakadu v7.4 using the best choice of parameters for each
column1.

As expected, the bitrate decreases (compression ratio in-
creases) as k is decreased for all tested coders. For example,
bitrate reductions of over 20% are observed for k = 7, as
compared to the original images. As another example, 60%
reductions are observed for k = 3. For a specific corpus
and specific value of k, the rates resulting from different
coders are typically within 0.5 bits per pixel, with several
notable exceptions. For example, the state-of-the-art video
coder HEVC/H.265 produces very poor results for the original
images, but provides more competitive performance for RQ
index images. For every value of k, the best-performing coder
for all image corpora is that of Neves and Pinho [26]. This
should be expected, at least for the case of the original DNA
microarray images, for which it was designed. Therefore,
Neves’ method is hereinafter used to losslessly code the quan-
tization indices produced by the proposed Relative Quantizer.

C. Rate-distortion Analysis

The previous sections have demonstrated that compression
systems based on the proposed RQ can provide significant

1Ssigned=no and 0 wavelet decomposition levels for 1 ≤ k ≤ 4;
Ssigned=no and 3 DWT decomposition levels for 5 ≤ k ≤ 6; Ssigned=yes
and 0 DWT decomposition levels for k = 7 and for the original images.
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TABLE V: Compression results in bpp for RQ followed by different lossless coding algorithms. Lossless compression results
for the original images are also provided.

Corpus Algorithm RQ index images Original images
k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

Fixed-length coder 4.087 5.000 5.907 6.807 7.700 8.585 9.459 16.000

Yeast

Average entropy 1.854 2.474 3.272 4.156 5.074 5.945 6.294 6.628
bzip2 1.028 1.614 2.462 3.399 4.355 5.250 5.655 6.075
JPEG-LS 1.007 1.497 2.231 3.082 3.986 4.989 5.892 8.580
CALIC 0.977 1.503 2.268 3.075 3.940 – – –
Lossless JPEG2000 1.355 1.473 2.282 3.417 4.339 5.308 6.219 5.903
HEVC/H.265 1.241 1.844 2.632 3.532 4.495 5.532 6.650 10.660
Neves & Pinho 0.900 1.339 2.017 2.921 3.887 4.769 5.056 5.511

ApoA1

Average entropy 1.704 2.504 3.442 4.423 5.417 6.415 7.414 11.033
bzip2 1.357 2.121 3.062 4.052 5.063 6.090 7.106 11.064
JPEG-LS 1.258 1.921 2.746 3.691 4.680 5.728 6.698 10.606
CALIC 1.202 1.889 2.729 3.620 4.588 – – –
Lossless JPEG2000 1.404 1.930 2.822 3.758 4.859 5.896 7.518 10.787
HEVC/H.265 1.348 2.054 2.943 3.936 5.009 6.168 7.408 14.482
Neves & Pinho 1.041 1.715 2.604 3.565 4.562 5.557 6.565 10.223

ISREC

Average entropy 2.674 3.617 4.597 5.585 6.543 7.442 8.277 10.435
bzip2 2.681 3.621 4.604 5.599 6.561 7.476 8.373 10.921
JPEG-LS 2.725 3.671 4.663 5.660 6.670 7.601 8.494 11.145
CALIC 2.639 3.526 4.482 5.471 6.464 – – –
Lossless JPEG2000 2.690 3.518 4.536 5.575 6.703 7.695 8.491 10.625
HEVC/H.265 2.623 3.618 4.705 5.880 7.102 8.503 10.077 14.876
Neves & Pinho 2.403 3.317 4.291 5.281 6.241 7.144 7.976 10.199

Stanford

Average entropy 2.021 2.863 3.801 4.785 5.777 6.662 7.268 8.293
bzip2 1.415 2.205 3.107 4.090 5.098 5.982 6.553 7.887
JPEG-LS 1.343 1.974 2.839 3.802 4.796 5.700 6.241 7.597
CALIC 1.230 2.003 2.786 3.701 4.678 – – –
Lossless JPEG2000 1.524 2.048 3.053 4.120 4.946 5.865 6.589 7.685
HEVC/H.265 1.373 2.051 2.958 3.952 5.024 6.034 6.702 8.897
Neves & Pinho 1.105 1.793 2.695 3.653 4.659 5.512 6.053 7.335

Microzip

Average entropy 1.859 2.729 3.679 4.665 5.662 6.661 7.639 9.831
bzip2 1.574 2.435 3.380 4.370 5.381 6.408 7.379 9.394
JPEG-LS 1.448 2.149 3.037 4.013 5.011 6.028 7.005 8.974
CALIC 1.383 2.176 2.977 3.915 4.904 – – –
Lossless JPEG2000 1.825 2.161 3.178 4.275 5.171 6.212 7.597 9.157
HEVC/H.265 1.609 2.403 3.339 4.343 5.447 6.638 7.893 11.179
Neves & Pinho 1.243 1.957 2.864 3.868 4.856 5.859 6.830 8.667

Arizona

Average entropy 2.094 2.959 3.902 4.887 5.881 6.877 7.781 9.306
bzip2 1.577 2.398 3.321 4.304 5.309 6.331 7.234 8.944
JPEG-LS 1.491 2.270 3.139 4.102 5.093 6.125 7.005 8.646
CALIC 1.464 2.250 3.061 4.003 4.980 – – –
Lossless JPEG2000 1.742 2.216 3.273 4.351 5.241 6.274 7.424 8.795
HEVC/H.265 1.470 2.280 3.229 4.236 5.338 6.532 7.664 10.592
Neves & Pinho 1.201 1.976 2.874 3.878 4.870 5.867 6.766 8.275

IBB

Average entropy 3.168 3.906 4.651 5.386 6.095 6.756 7.340 8.503
bzip2 3.048 3.832 4.649 5.448 6.206 6.927 7.590 9.081
JPEG-LS 3.571 4.490 5.373 6.227 7.029 7.733 8.429 9.904
CALIC 3.366 4.235 5.091 5.936 6.740 – – –
Lossless JPEG2000 3.179 3.880 4.788 5.646 7.271 8.076 7.261 8.392
HEVC/H.265 3.654 4.671 5.685 6.716 7.717 8.863 9.991 12.262
Neves & Pinho 2.653 3.363 4.105 4.844 5.556 6.214 6.800 8.039

Corpora averages

Average entropy 2.196 3.007 3.906 4.841 5.778 6.680 7.430 9.010
bzip2 1.817 2.610 3.519 4.473 5.432 6.362 7.148 9.052
JPEG-LS 1.835 2.567 3.433 4.368 5.324 6.272 7.109 9.350
CALIC 1.752 2.512 3.342 4.246 5.185 – – –
Lossless JPEG2000 2.006 2.745 3.596 4.532 5.511 6.483 7.392 9.759
HEVC/H.265 1.903 2.703 3.642 4.656 5.733 6.896 8.055 11.850
Neves & Pinho 1.507 2.209 3.064 4.001 4.947 5.846 6.578 8.321
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Fig. 5: Evaluation of the PSNR metric. (a) PSNR as a function
of the average compression bitrate; (b) PSNR as a function of
the ARECRM metric.

compression with negligible effect on the DNA microarray
analysis. In what follows, we compare the performance of RQ-
based compression with other lossy compression approaches,
using the distortion metrics developed in Section III.

As discussed in Section II-A, metrics based on the quadratic
pixel-wise error like the PSNR (or MSE) are not adequate
in this regard. Similarly, metrics based on the human visual
system such as SSIM [32] and HDR-VDP 2 [33] may not be
useful, since microarray images are analyzed by algorithms
and not by human observers. Nevertheless, it is of interest to
examine the results for these metrics yielded by the algorithms
of interest. To this end, images from the IBB corpus were
compressed with lossy JPEG20002 compression for target
bitrates R ∈ 3, 4, . . . , 7, near-lossless JPEG-LS compression
for maximum absolute error e ∈ {4, 16, 32, 64}3, lossy HEVC
with quality parameter QP ∈ {1, 4, 5} and the proposed RQ
for k ∈ {1, 2, . . . , 7}. Note that current rate-control algorithms
for HEVC are not designed for intra-coding of a single pic-

2Without applying the level offset and using 3 levels of the 9/7 irreversible
DWT, the best choice for this corpus.

3Using parameters -ls 0 -m e.

ture [34]. Their accuracy in yielding a target bitrate is usually
low, hence only the QP is used here. Each parameter choice
for each algorithm yields a different compression treatment.
When applied to the entire corpus, each such treatment yields
an average PSNR and average compression performance (rate
in bpp). Each such PSNR/rate pair is plotted in Fig. 5a. Each
algorithm is represented by a different color in the figure.
Each parameter choice is labeled next to its corresponding
PSNR/rate pair. It can be seen that the proposed method yields
lower PSNR results than lossy JPEG2000, near-lossless JPEG-
LS and lossy HEVC. This is as expected since those algorithms
consider the absolute error in each pixel. This is exactly the
error targeted by traditional metrics such as MSE/PSNR. On
the other hand, the proposed Relative Quantizer preserves the
smaller pixel values more carefully while tolerating larger
errors in pixels having large values.

To emphasize that PSNR is not a good predictor of the errors
incurred in the CRM, all PSNR/ARECRM pairs are depicted in
Fig. 5b. Each point of this graph corresponds to one image of
the IBB corpus, one algorithm and one parameter value. The
color of each marker identifies the algorithm employed, and
different parameter values are denoted with different marker
shapes. It can be observed that the PSNR is not well correlated
with the relative error introduced in the extracted CRM.
Similar results are obtained for the MSE, SSIM and HDR-
VDP-2 metrics. Therefore, only the ARECRM and FWDOC
metrics defined in Section III-A are employed for the results
that follow.

To the best of the authors’ knowledge, all lossy algo-
rithms published in 2004 or earlier [1], [2], [4] are based
on either lossy JPEG2000 or near-lossless JPEG-LS. Two
microarray-specific lossy compression methods [5], [6] have
been published since then. The results reported in [5] are more
than 5 dB worse than JPEG2000 in terms of PSNR. Using
the authors implementation of the wavelet-fractal algorithm
reported in [6], we obtained ARECRM and FWDOC results
of 1.030 and 0.286, respectively. The results of the proposed
RQ method are significantly better for every value of k. In
light of these results, only the standard lossy JPEG2000,
lossy HEVC and near-lossless JPEG-LS algorithms are used
to provide comparisons with the proposed RQ-based coder. In
these comparisons, Neves and Pinho’s algorithm is used for
lossless compression of the RQ indices.

The resulting rate-distortion curves for the IBB corpus are
shown in Fig. 6. Results for the lossy JPEG2000 algorithm
have been obtained without applying the level offset and using
3 decomposition levels of the 9/7 irreversible DWT, the best
choice for this corpus.

It can be observed that for k > 1, the proposed system
consistently yields better results than lossy JPEG2000, near-
lossless JPEG-LS and lossy HEVC for both the ARECRM
and FWDOC metrics. Notice that for QP = 1, lossy HEVC
produces worse distortion results than the proposed RQ with
k = 2, and that, as explained above, QP = 1 corresponds to
the maximum quality for lossy HEVC and it is not possible
to generate results for higher bitrates using this algorithm.
At about only 3.4 bpp, the proposed algorithm produces less
than Rep-ARECRM / 2 and Rep-FWDOC / 2, i.e., half the
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Fig. 6: Distortion metrics versus bitrate: (a) average relative error in the CRM (ARECRM); (b) fraction of spots incorrectly
detected or classified (FWDOC). Half the average replicate CRM relative error (Rep-ARECRM/2) and half the fraction of
replicated spots wrongly detected or classified (Rep-FWDOC / 2) are shown as horizontal lines in (a) and (b), respectively.

acceptable experimental variability. This should be compared
to an average of 8.039 bpp required to achieve strictly lossless
compression of the original images without quantization (as
can be seen in Table V).

The sudden increase in ARECRM for JPEG2000 in Fig. 6a
for target bitrate R = 5 bpp is due to a small number of very
large errors introduced into the CRM by JPEG2000 at that bit
rate. In particular, 10 spots belonging to 3 different images
have relative errors of more than 1000 after compression with
JPEG2000. The sudden increase observed in Fig. 6a is due
entirely to these 10 spots. The behavior of JPEG2000 can be
explained by noting that when the denominator of Eq. (1) is
small, even small changes in the numerator or the denominator
can cause large errors in the CRM. JPEG2000 makes no
attempt to account for this issue. On the other hand, this
behavior is not present in the proposed RQ, since the error
introduced in the CRM is strictly limited by construction.

V. CONCLUSIONS

DNA microarray images are usually stored so that they can
be re-analyzed with future algorithms or in different labora-
tories. Due to the large amount of DNA microarray image
information being currently generated, image compression is
a useful tool to cope with the storage and transmission of these
data. State-of-the-art lossless coding algorithms typically yield
compression ratios of only 2:1 or less. Lossy coding methods
can attain much higher compression ratios, however, some
distortion is introduced in the decompressed images. Thus,
it is necessary to assess the acceptability of this distortion in
regards to subsequent image analysis.

In this paper, a Relative Quantizer (RQ)-based lossy com-
pression method is proposed. The RQ is designed to limit two
quantities that are crucial to the analysis process: the relative
error of all pixels and the absolute error of low-intensity
pixels. The distortion introduced by the proposed RQ results
in errors in the analysis process that are smaller than those due
to the experimental variability inherent to DNA microarrays.
The proposed coding algorithm results in compression ratios
exceeding 4.5:1 without introducing any additional analysis
error. Furthermore, the k parameter of the RQ can be adjusted
to trade off compression bitrate for analysis result precision.
The rate-distortion results of the proposed coder significantly
outperform those of state-of-the-art lossy coding algorithms.
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