
TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Codecast: Code-based routing and delivery
in Delay-Tolerant Networking

Álvaro Garcı́a Cantalejo

Abstract– In this paper, a new code-based, dynamic adressing scheme called Codecast has been
implemented over the aDTN platform of the SeNDA research group. This adressing scheme allows
the inclusion of C source code on DTN bundles which is later executed to determine the recipients
of the bundle. This will allow to improve communications in challenged networks on inaccessible or
remote areas, or danger zones. The result was an implementation on the said platform which allows
for dynamic code-based bundle routing and delivery. This will enable further developments in this
area to create other addressing schemes based on Codecast’s flexibility.
Keywords– Codecast, active-DTN, DTN, addressing scheme, delivery, mobile-code.

Resumen– En este trabajo, un nuevo esquema de direccionamiento dinámico basado en código lla-
mado Codecast se ha implementado sobre la plataforma aDTN del grupo de investigación SeNDA.
Este esquema de direccionamiento permite la inclusión de código fuente C en bundles DTN que más
tarde se ejecuta para determinar los destinatarios del paquete. Esto permitirá mejorar las comuni-
caciones en redes desafiadas en zonas inaccesibles o remotas, o zonas de peligro. El resultado
fue una aplicación sobre dicha plataforma que permite el enrutamiento y entrega de bundles basado
en código dinámico. Esto permitirá nuevos desarrollos en este área para crear otros esquemas de
direccionamiento basado en la flexibilidad de Codecast.
Palabras clave– Codecast, Active-DTN, DTN, esquema de direccionamiento, entrega, código móvil.

F

1 INTRODUCTION

1.1 Context

THERE exist certain situations where traditional net-
works lose effectivity. For instance, when consider-
ing rural settings with no pre-existing infrastructure,

it might be inviable to establish a traditional network, due
to the inability to connect to the Internet or establish costly
infrastructures.

However, in this kind of settings, another type of net-
works might be set up. DTN (Disruption or Delay Toler-
ant Networks) [2] are opportunistic networks characterizd
by intermitent conectivity, asymmetric bandwidth, high and
variable latency and arbitrary mobility patterns. These kind
of networks are based on the assumption that there isn’t
a stable connection between all members of the network.
In fact, it’s possible to establish a DTN among nodes that
aren’t connected between them, given the assumption that
network members will eventually come into contact with
each other.

E-mail de contacte: alvaro.gcantalejo@gmail.com
Menció realitzada: Tecnologies de la Informació
Treaball tutoritzat per: Sergi Robles (Departament d’Enginyeria de

l’Informació i les Comunicacions)

In this kind of disconnected networks, nodes communi-
cate between them with bundles, which are literally bun-
dles of messages which are grouped together to be more
easily sent. This grouping is managed by a new protocol
called Bundle Protocol [7] which operates in the Applica-
tion Layer. This protocol allows transmission in DTN net-
works since the rest of layers are oriented to constant trans-
mission which cannot be adapted to the intermitent service
of a DTN network. Thus, the sender can send multiple mes-
sages in a single bundle; allowing the Bundle Protocol to
see inferior layers as a transmission method in DTN net-
works.

In a DTN network adressing and routing are performed
differently than in traditional networks. Given the intermi-
tent connection between endpoints, physical directions are
pointless, so directions in a DTN network are merely ar-
bitrary identifiers. This constraint makes it impossible to
route messages in the traditional way, which is one of the
most important problems in DTN environments. Thus, the
only possible strategy to route a message through a DTN
network is to disseminate it throughout the network and the
efficiency of this process will depend on the dissemination
strategy.

1.2 Motivation
As we can see, DTN networks are interesting because they
allow networks to exist where they previously could not,

Juny de 2015, Escola d’Enginyeria (UAB)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/78532393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 EE/UAB TFG INFORMÀTICA: CODECAST: CODE-BASED ROUTING AND DELIVERY IN DELAY-TOLERANT NETWORKING

as we can see in [1]. It is in this kind of challenged net-
works that we can find an opportunistic take on network
communication, allowing messages to be relayed without a
pre-existing infrastructure. This allows to bring networks
even to challenged areas or danger zones to provide better
communication where there is currently none.

However, we can find two main problems in DTN net-
working. In the one hand, we find the routing problem,
or how to decide which route should bundles take to reach
their destination. On the other hand, we find the delivery
problem, or how to decide to whom the bundle should be
delivered when we can’t identify it unequivocally.

Thus, to help improve DTN networks and allow them
to improve, we find the need for a new mechanism which
can solve these problems to improve DTN communications.
This project will focus on developing a new code-based, dy-
namic adressing scheme named Codecast to solve the deliv-
ery problem in opportunistic networks.

1.3 Objectives
For all this, this project will try to implement a new ad-
dressing scheme called Codecast starting with the base of
the aDTN platform of the SeNDA investigation group of
the dEIC [11].

Project objective Develop a code-based routing and de-
livery mechanism over the aDTN platform of the SeNDA
investigation group.

To accomplish this objective, the project will be divided
in three main objectives, shown below:

Objective 1: Analyze the viablity of the implementation
of Codecast over the aDTN platform.

The analysis has as objective to determine the require-
ments to implement Codecast, as well as checking which
ones are already in the platform.

Finally, we will be able to determine if it is possible to
realize this implementation, its difficulty and which tasks
are necessary to carry them out.

Objective 2: Design and implement Codecast over the
aDTN platform.

Based on the requirement list determined in the analysis,
it will be necessary to create a model of the behaviour of
Codecast that allows to extrapolate a design, and finally im-
plement the design over the aDTN platform. Likewise, it
will be necessary to realize performance tests to verify the
correctness of the implementation.

Objective 3: Realize tests and simulations to test the be-
haviour of Codecast over systems with big amounts of end-
points.

Once implemented Codecast, a series of proof of concept
tests will be created to be executed in a DTN simulation to
get results on Codecast’s behaviour.

All this will allow us to determine if Codecast is a reliable
and efficient mechanism.

2 STATE OF THE ART

The most significant contribution to the study of DTN stems
from the IRTF investigation group on Delay-Tolerant Net-
works. This group defined on 2007 the underlying archi-
tecture of a DTN in the RFC 4838 [2], and the Bundle
Protocol in the RFC 5050 [7]. These RFC introduce the

concept of bundle as a set of data blocks that allow appli-
cations to progress, as well as the store-carry-and-forward
paradigm, in which every endpoint can store data to relay to
other nodes when contact is established.

Clare, Burleigh y Scott, establish in [3] how the bundles
of a DTN are routed through arbitrary identifiers that are
not required to have topologic nature. Thus, a DTN can use
any addressing scheme it wishes, since conventions have
not been established on which schemes should be used and
how they would interact between them.

There also have been some studies on the use of mobile
code in DTN environments. In [1], a new paradigm called
store-carry-process-and-forward is proposed, in which mo-
bile code is used to implement a DTN in a grid to provide
access to a network of sensors intermittently connected.
Thus it is achieved a system that dynamically adapts to in-
termittent disconnections and solves the problem of routing.
A similar proposal is found in [5] using a message relay, but
this proposal does not propose an architecture or specific
implementation.

Finally, we also find several proposals on group com-
munications in DTN environments. In [6], the concept of
group-based communications in DTN using the Manycast
paradigm is proposed. In [4], a study of Multicast in DTN
is presented, comparing it with the Unicast paradigm and
formulates the relay selection problem for Multicast as a
knapsack problem.

3 METHODOLOGY

For this project a waterfall methodology with regression
and prototyping has been employed, providing methods to
return to an earlier stage if identifying a problem. This
methodology breaks down the project into tasks which are
performed in a linear order, one at a time. After each task,
a backup of the project’s state is made, so that changes can
be reverted if they need be.

The project has been broken down into three main tasks,
which are the feasibility study, the design and the imple-
mentation. The feasibility study includes the requirements
analysis and the platform review, and intends to establish
the bases of what needs to be done to carry out the project.
The design includes all of Codecast’s behaviour, on how it
operates over the platform and how it carries out it’s func-
tions. The implementation comprises the actual coding of
the design into the platform.

For the feasibility study, all of Codecast’s possible fea-
tures have been identified, and have been subdivided into
individual features as specific as possible. These features
make up the requirements, which have been divided into
functional requirements and nonfunctional requirements,
according to whether they attend a function or specific cri-
teria for assessing the system.

For the design, the Universal Modeling Language (UML)
has been used to elaborate a flow chart, a sequence dia-
gram and use case diagram, because it provides methods
to model the behavior unequivocally applications. The flow
chart represents Codecast’s program flow, and how it op-
erates normally. The sequence diagram accurately depicts
the interaction between modules. The use case diagram de-
scribes each use case and the modules that participate in it.



ÁLVARO GARCÍA CANTALEJO: CODECAST: CODE-BASED ROUTING AND DELIVERY IN DELAY-TOLERANT NETWORKING 3

To ease the implementation, it has been broken down in
different subtasks as performed due to the design, it is rela-
tively easy to implement on existing code on the platform.
The subtasks that the implementation has been divided into
consisted of the modification of a single module individu-
ally, so the chances of causing an error in the existing code
are reduced, and if there was one it would be easier to find
because of this. Once the modification of a module is com-
pleted, a white-box testing ensues to ensure the correct be-
haviour of the module and its outputs are as expected.

After finishing the entire implementation, a phase of
module integration has followed, in which each module has
been adapted to ensure that the behaviour as a whole is the
expected; and a white-box testing has also been made on
the platform together with several bundles to verify that the
bundles are routed and delivered properly according to the
destination code and routing code.

4 DEVELOPMENT

4.1 Feasibility Study
The feasibility study consists of two main parts. On the one
hand, the requirement analysis, in which the requirements
to implement Codecast are listed; and on the other hand, the
review of the aDTN platform, in which the requirements
which are already found on the aDTN platform are listed,
and therefore need not be implemented.

The requirements will be broken down into functional re-
quirements, which specify what Codecast must be able to
do and what features it should have; and nonfunctional re-
quirements, which indicate how Codecast must fulfill the
functional requirements, but do not express a feature it
should have.

The requirement analysis yielded the following require-
ments for the implementation of Codecast:

Functional Requirements:

• Ability to send bundles through the network.

• Ability to embed C source code in bundles sent over
the network.

• Ability to embed different code fragments in the same
bundle. These fragments must be of the following
types:

– Lifetime code

– Routing code.

– Destination code.

• Shared data region that allows communication be-
tween code fragments.

• Ability to receive bundles sent over the network.

• Ability to store bundles received in a data structure.

• Ability to individually process bundles stored follow-
ing a preset policy.

• Ability to run the code embedded in messages.

• A routing list indicating which neighbors the message
should be sent to must be built.

• A recipient list indicating the applications the message
should be delivered to must be built.

• Ability to define whether the message will continue
stored in the data structure or dropped.

Nonfunctional requirements:

• Source code must be written in C.

• Embedded code in messages must be written in C.

• The code must be processed quickly and efficiently.

• It should be a robust system.

We can see that there is a vast majority of functional re-
quirements, with a few non-functional requirements. This
is because Codecast’s functionality must be fragmented into
as many requirements as possible to ease the design and im-
plementation phases, whereas those requirements that are
not from their functionality are rather scarce.

Having established the requirements that are necessary
to implement Codecast, it has undertaken a review of the
aDTN platform. After analyzing the code of the platform, it
has been found that it already meets the following require-
ments:

• Ability to send bundles through the network.

• Ability to embed C source code in bundles sent over
the network.

• Ability to embed different code fragments in the same
bundle. These fragments must be of the following
types:

– Lifetime code

– Routing code.

• Ability to receive bundles sent over the network.

• Ability to store bundles received in a data structure.

• Ability to individually process bundles stored follow-
ing a preset policy.

• Ability to run the code embedded in messages.

• Source code must be written in C.

• Embedded code in messages must be written in C.

• It should be a robust system.

As shown, the aDTN platform already fulfills a large ma-
jority of the requirements for implementing Codecast, so
the amount of functionality to be implemented is largely re-
duced. Therefore, it can be said that the implementation
of Codecast on the aDTN platform is feasible based on the
requirement analysis performed.



4 EE/UAB TFG INFORMÀTICA: CODECAST: CODE-BASED ROUTING AND DELIVERY IN DELAY-TOLERANT NETWORKING

Figure 1: Use Case Diagram

4.2 Design

In this section, the design of Codecast will be explored.
This design has been made to reflect its global behaviour.
Codecast’s behaviour has been considered for several use
cases (see Figure 1). It is a complex process consisting of
multiple use cases, which are described below.

The first use case is bundle reception. bundle reception
runs asynchronously in a Receiver module. Each Receiver
will listen for bundles from nearby nodes and each time it
receives one, it will be stored in a bundle queue. This re-
ception is run separately from the rest of the application, so
that it can still be run even if multiple simultaneous bundles
are received or Codecast is processing a bundle at the time.

This queue will be managed by a Queue Manager mod-
ule, which is responsible for ordering bundles within the
same. This queue can store these bundles for an indefinite
period. The Queue Manager will extract the bundles from
the queue orderly following the queue management policy
defined for the system.

The next use case is bundle processment, which is per-
formed after removing a bundle from the queue. It consists
of several steps (see Figure 2). First, the bundle is removed
from the queue and sent to the Processing module, which is
responsible for processing bundles and for communicating
with the Executor module to send bundle code execution re-
quests. This use case also includes the code execution use
case, which is performed by the Executor module under de-
mand of the Processing module.

The code execution use case is performed by the Execu-
tor module. This code is always executed in the same order
to maintain consistency in the performance of the system
(see Figure 3). Firstly, the lifetime code is run, and deter-
mines whether the bundle’s life has expired. This code can
directly remove the bundle from the Processing module if
the lifetime has expired.

Figure 2: Sequence Diagram

Figure 3: Flowchart

Then, if the bundle has not expired, the data in the shared
data area, which is a DTN metadata block [9] in which des-
tination and routing codes can write and read data to be
stored and shared among them . Thus, they can communi-
cate with each other, even between different network nodes.
These data are passed as parameters to both the routing code
and the destination code.

Subsequently the destination and routing codes are run.
First is run the destination code, which receives as a pa-
rameter a list of applications which are subscribed to the
platform. From this execution, a delivery list is built, which
is a list of applications the bundle should be delivered to,
according to each application’s parameters. Then is run the
routing code, which receives as a parameter a list of avail-
able neighbors. From this execution, a routing list is built,
which is a list of neighbours the bundle should be forwarded
to.

Both the routing code and the destination code can affect
the permanence of the bundlein the queue, allowing them
to return a boolean variable which indicates if the bundle
should remain in the queue or not. In this case, due to the
order of execution, the routing code’s decision overwrites
the destination code’s decision.

Finally, once the code has been run, the system proceeds
to carry out the decisions, which comprises the last two use



ÁLVARO GARCÍA CANTALEJO: CODECAST: CODE-BASED ROUTING AND DELIVERY IN DELAY-TOLERANT NETWORKING 5

cases. In the delivery use case, the Processing module de-
livers the bundle to those applications in the delivery list. In
the forwarding use case, the Processing module sends the
bundle to the Sender module to forward it to those neigh-
bors in the routing list. Finally, the bundle is dropped if it is
decided that it shouldn’t continue in the queue. Otherwise,
the bundle is put back in the queue waiting to be processed
again. This allows bundles to be persistent in the system
and can be delivered or forwarded multiple times.

4.3 Implementation

In the implementation, Codecast’s design has been carried
out over the aDTN platform. Because the platform had al-
ready implemented much of the functionality required by
Codecast, it was decided to maintain the existing source
code and make additions or modifications thereto.

First, the Bundle module has been modified to add the
constants that define the type of destination code and data
area to the existing code types. This enables the addition of
destination code and shared data zone to bundles generated
by the platform. Subsequently, a default destination code
has been created temporarily, that simply delivers the bun-
dle to the first application on the list. This allows destination
code to be run even if it is not included in the bundle.

After the inclusion of the destination code as a new type
of code, it has been necessary to modify the Executor mod-
ule so that destination code can be run, as it behaves differ-
ently depending on the type of code to execute. For this, the
Worker module and the Executor executor have been modi-
fied to load all the parameters needed to run the destination
code, as the list of applications, and aDTNDHelper module
has been created, which is a dynamic library, and is linked
with the destination code to provide the list of applications
to be returned.

Then the logical flow of the program has been modified
to include destination code execution. First, the Receiver
module has been modified; previously it performed the de-
livery function by checking the ID of the recipient directly
with the identifier of the platform before placing the mes-
sage in the queue. As decided in the design, delivery func-
tionality lies with the Processor module, so it was removed
from the Receiver module.

Subsequently the processing of the bundles in the Pro-
cessor module has been changed so that when processing
a bundle first modifies the RIT, a tree-like structure that
stores information about the local aDTN platform, load-
ing temporarily in the branch /data/¡bundleID¿ the shared
data area so that it can be modified at runtime. Then it runs
the destination code, and then the routing code, and from
these executions, receives the delivery list and the routing
list. Once it has finished running the code, the bundle is de-
livered to those applications in the delivery list and sent to
those neighbors in the routing list.

Finally the API of the platform in the aDTN module
has been changed so that when a DTN socket is bound the
branch /application/¡appname¿ is also inserted into the RIT,
which describes the application, and serves for the applica-
tion to insert its own data that wants to offer to the destina-
tion code execution.

5 RESULTS

Once concluded the implementation of Codecast on the
aDTN platform, it has been checked for for proper per-
formance, using different tests. First, the code has been
compiled using the platform’s CMake, properly edited to in-
clude new modules and how they are linked, and have been
found to compile correctly on 64-bit Unix-based operating
systems.

Then, there have been white-box testing in the aDTN
platform to verify the implementation of Codecast work-
ing properly and modules are integrated among themselves
as they should. These tests have been successful, and it has
been observed that the modules work properly together.

Finally, there have been several black-box testing to test
several bundles bundles that are routed and delivered prop-
erly according to the destination code and routing code.
These tests have been conducted on the default codes de-
fined in the platform, and have been successful, as the codes
have behaved as expected.

The results obtained indicate a correct performance of
Codecast within challenged networks. Previously, all deliv-
ery in opportunistic networks has been performed as strictly
Unicast, since the Bundle Protocol [7] standard defines the
delivery condition by comparing the destination identifier
in the bundle with the platform identifier.

However, with Codecast, new kind of addressing
schemes may be used, since it allows for any kind of code
snippet to be inserted, which allows to address any kind of
delivery condition. This might allow us to replicate, for in-
stance, Manycast behaviour in a DTN network, as proposed
in [4]. This would allow for more efficient routing and de-
livery in opportunistic networks. Therefore, the results ob-
tained are considered satisfactory with respect to the initial
objectives of the project, as Codecast works correctly in the
aDTN platform.

6 DISCUSSION

The results show that the implementation of Codecast
works correctly with simple conditions. Codecast allows
the use of dynamic routing schemes that are determined by
code, as opposed to traditional addressing schemes in which
the set of receivers is statically determined.

However, other considerations should be taken into ac-
count. In this section Codecast restrictions and possible fea-
tures that could help improve it will be explored. First, the
limitations of Codecast should be noted. Codecast is limited
firstly by the size of code to be included in the bundle. The
larger the code size, the greater the time it takes to transmit,
build and run.

Another restriction is that Codecast runs any code in-
cluded in the bundle. This could make it vulnerable to
attacks including malicious code in the bundle. Since en-
tering the code analysis field to determine malicious intent
would be very difficult, it would be interesting to have a
scheme similar to PGP in which codes that are trusted to be
executed could be signed, or even other endpoints for total
trust on all the codes they send. This would add a layer of
security to Codecast that it now lacks.

Another limitation of Codecast is the way how it may
interact with other addressing schemes, such as unicast or



6 EE/UAB TFG INFORMÀTICA: CODECAST: CODE-BASED ROUTING AND DELIVERY IN DELAY-TOLERANT NETWORKING

multicast. Since Codecast determines recipients based on
code execution destination, it is only compatible with other
addressing schemes that it can operate over, for example,
Multicast, so that only the endpoints subscribed to a partic-
ular multicast address actually run the Codecast code to see
if they are recipients of the Bundle.

Finally, we should also consider the practical uses of
Codecast. Theoretically, different addressing schemes al-
low better dissemination of messages through the network.
However, let us take a practical case to set an example. Mes-
sage routing and delivery in in rural areas with no existing
infrastructure is very difficult, because there isn’t an under-
lying network that allows the rapid transmission of mes-
sages, and these rural areas tend to be large and sparse.
An emergency in such areas could go unnoticed without
any means of communication. However, with Codecast it
would be possible to disseminate messages quickly through
opportunistic routing and delivery in these areas employing
a code which delivers through geolocation, as proposed in
[10], enabling quick communication in areas where previ-
ously it wasn’t possible.

7 CONCLUSIONS

The objective of this project was to develop Codecast, a
code-based mechanism for bundle delivery on challenged
networks, over the aDTN platform of the SeNDA research
group. We consider that this objective has been met, since
the Codecast has been implemented on the aDTN platform
and works satisfactorily.

The requirements specified during the requirements anal-
ysis have also been completed for the project, and has been
obtained as a result a functional software that can route and
deliver bundles by the code embedded in the bundle itself,
as it was intended.

As a result, the student has obtained a much more de-
tailed knowledge in software design and requirements anal-
ysis; as well as C programming and, specifically, in the
environment of the aDTN platform, which has given him
broad knowledge about the workings of memory and code
building in low-level languages, as well as communication
in asynchronous networks.

It is worth mentioning that the project has had to deviate
from the plan due to time constraints and complications in
the time schedule, which have prevented the test and sim-
ulation phase from being carried out to verify the perfor-
mance of Codecast over other methods of routing in chal-
lenged networks.

7.1 Future lines
It should also be noted that the project still has the following
to develop future lines:

• Tests and simulations to verify the behaviour of Code-
cast.

• Implementation of different routing and destination
codes to create different distribution patterns.

• Implementing a code-signing PKI over Codecast to
avoid malicious code injection.

• Codecast implementation over the new version of the
aDTN platform in C ++.

• Improved API offered to the destination code through
the dynamic library.

ACKNOWLEDGEMENTS

Firstly, I would like to thank Sergi Robles for his patience
and encouragement with this project.

I would also like to thank my friend Marc Palenzuela for
giving me ideas and lending a hand when needed.

And last, but not least, I would like to thank my mother
and my father for all their support when I most needed it.

REFERENCES

[1] Carlos Borrego and Sergi Robles. A store-carry-
process-and-forward paradigm for intelligent sensor
grids. Information Sciences, 222(0):113 – 125, 2013.

[2] V Cerf, S Burleigh, A Hooke, L Torgerson, R Durst, K
Scott, K Fall, and H Weiss. RFC 4838, Delay-tolerant
networking architecture. RFC 4838 (Informational),
2007.

[3] Loren Clare, Scott Burleigh, and Keith Scott. End-
point naming for space delay/disruption tolerant net-
working. In Aerospace Conference, 2010 IEEE, pages
1–10. IEEE, 2010.

[4] Wei Gao, Qinghua Li, Bo Zhao, and Guohong Cao.
Multicasting in delay tolerant networks: a social net-
work perspective. In Proceedings of the tenth ACM in-
ternational symposium on Mobile ad hoc networking
and computing, pages 299–308. ACM, 2009.

[5] Qun Li and Daniela Rus. Communication in discon-
nected ad hoc networks using message relay. Journal
of Parallel and Distributed Computing, 63(1):75–86,
2003.

[6] Samuel C Nelson, Yih-Chun Hu, and Robin Kravets.
Anycast, multicast and beyond: The role of manycast
in dtn communication. 2011.

[7] K. Scott and S. Burleigh. RFC 5050, Bundle proto-
col specification. RFC 5050 (Experimental), Novem-
ber 2007.

[8] David L Tennenhouse, Jonathan M Smith, W David
Sincoskie, David J Wetherall, and Gary J Minden. A
survey of active network research. Communications
Magazine, IEEE, 35(1):80–86, 1997.

[9] S Symington. RFC 6258, Delay-Tolerant Network-
ing Metadata Extension Block. RFC 6258 (Informa-
tional), 2011.

[10] Adrián Sánchez-Carmona, Sergi Robles, Carlos Bor-
rego, and Gerard Garcia-Vandellós. PrivHab: A Mul-
tiagent Secure Georouting Protocol for Distributing
Podcasts in Disconnected Areas. In Proceedings of the
2015 International Conference on Autonomous Agents
and Multiagent Systems, 2015.



ÁLVARO GARCÍA CANTALEJO: CODECAST: CODE-BASED ROUTING AND DELIVERY IN DELAY-TOLERANT NETWORKING 7

[11] Carlos Borrego, Sergi Robles, Angela Fabregues,
Adrián Sánchez-Carmona. A mobile code bundle ex-
tension for application-defined routing in delay and
disruption tolerant networking. In Computer Net-
works, Volume 87, 20 July 2015, Pages 59-77.


