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Abstract: We introduce a compromise value for non-transferable util-
ity games: the Chi-compromise value. It is closely related to the Com-

promise value introduced by Borm, Keiding, McLean, Oortwijn, and

Tijs (1992), to the MC-value introduced by Otten, Borm, Peleg, and

Tijs (1998), and to the 
-value introduced by Berganti~nos, Casas-
M�endez, and V�azquez-Brage (2000). The main di�erence being that

the maximal aspiration a player may have in the game is his maximal

(among all coalitions) marginal contribution. We show that it is well

de�ned on the class of totally essential and non-level games. We pro-

pose an extensive-form game whose subgame perfect Nash equilibrium

payo�s coincide with the Chi-compromise value.

Key words: NTU game, compromise value.

1 Introduction

The purpose of this paper is to introduce a new compromise value for non-
transferable utility games (NTU-games): the Chi-compromise value. As with
all compromise values it chooses as the solution of the game the e�cient vec-
tor lying in the segment between the vectors of maximal and minimal utilities
that each player may expect to obtain; that is, it is a compromise between
their maximum and minimum aspirations. For pure bargaining problems
(that is, situations where all agreements have to be unanimous) the Kalai-
Smorodinsky solution (Kalai and Smorodinsky (1975)) is based on a com-
promise of this type. When partial agreements are possible and utility is
transferable across players (that is, TU-games) we de�ned (Berganti~nos and
Mass�o (1996)) a compromise value called the Chi value. Our proposal here
extends these two particular solutions to general problems where players may
reach partial agreements and utility is not necessarily transferable (that is,
NTU-games).
We propose as the maximum aspiration for a player in a game his maximal

(among all coalitions) marginal contribution and as the minimum aspiration
the maximum remainder he can obtain by going with a coalition of players
and o�ering them their maximum aspirations. In non-level and totally essen-
tial NTU-games our proposed vectors of aspirations have the following three

1



properties: (1) Giving players their maximum aspirations will always exhaust
all possible gains from cooperation. (2) The vector of maximum aspirations
is component-wise larger than the vector of minimal aspirations. (3) The
minimum aspiration obtained in this rather indirect way coincides with the
vector of individually rational payo�s. We �nd this last property interesting
because it means that we have as a result that the minimum aspiration for
each player in a game coincides with what he can obtain without any coop-
eration. It seems to us that this property may also be a good indication that
the proposed maximum aspiration is meaningful.
The paper is organized as follows. Section 2 is a preliminary section which

gives the main notation and concepts. Section 3 contains the de�nition of the
Chi-compromise value; Propositions 1 and 2 and Corollary 1 which establish
that properties (1), (2), and (3) above hold for non-level and totally essential
NTU-games; the demonstration that the Chi-compromise value exists for all
non-level and totally essential NTU-games; and �nally, a number of examples
which illustrate the new value. Section 4 provides two characterizations of the
Chi-compromise value using the following axioms: Pareto Optimality, Covari-
ance, Symmetry, and Restricted Monotonicity (or Strong Symmetry instead
of Symmetry and Restricted Monotonicity). Section 5 proposes (as a general-
ization of Moulin (1984)'s implementation of the Kalai-Smorodinsky solution
for pure bargaining problems) a non-cooperative extensive-form game whose
subgame perfect equilibrium payo�s coincide with the Chi-compromise value.
Section 6 proposes a di�erent compromise value based on applying our Chi-
value for TU-games to the characteristic function obtained by the classical
��transfer approach. Section 7 concludes by comparing, brie
y, our value
with other well-known NTU-values.

2 Preliminaries

Players are the elements of a �nite set N = f1; :::; ng where n � 2. A non-
empty subset of players is called a coalition. We denote by s the number of
players of coalition S and, abusing notation, by i the singleton set fig.
A (cooperative) game with non-transferable utility (NTU-game) is an or-

dered pair (N; V ) where N = f1; :::; ng is the set of players and V is a
mapping, called the characteristic function, which assigns to each non-empty
coalition S a non-empty subset of IRS. By convenience, we set V (;) = ;. The
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set V (S) is interpreted as the collection of payo�s or utilities that members
of S can reach by cooperating among themselves. We will concentrate only
on games with non-transferable utility having the standard properties that
for each coalition S, the set V (S) is closed, non-empty, and comprehensive
(i.e., x 2 V (S) and y � x imply y 2 V (S)). Given x; y 2 IRK , y � x
means yi � xi for all i 2 K while y < x means yi < xi for all i 2 K. Given
x 2 IRK and a coalition S � K, denote by xS the restriction of x to the
coordinates corresponding to the members of S; i.e., xS = (xi)i2S. For each
player i 2 N there exists a payo� wi 2 IR, called the individually rational
payo�, such that V (i) = fx 2 IR j x � wig. Also, for each coalition S, the
set V (S)+ := fx 2 V (S) j x � wSg is bounded. We denote by VN the class
of games with non-transferable utility with set of players N .
We will often use the following properties of games with non-transferable

utility.

De�nition 1. A game (N; V ) is non-level if for each coalition S we have
that for all x; y 2 V (S)+ such that y � x � wS and x 6= y there exists
z 2 V (S) with the property that z > x.
De�nition 2. A game (N; V ) is totally essential if wS 2 V (S) for all
S � N .
We denote by CN the subclass of non-level and totally essential games

with non-transferable utility.
A solution on a subclass of games GN � VN is a function ' :GN ! IRN

which assigns to each (N; V ) 2GN a vector ' (N; V ) 2 V (N).
We will consider, and use as references, two special subclasses of games.

A game (N; V ) has transferable utility if there is a real-valued function v
such that V (S) =

�
x 2 IRS j

P
i2S xi � v (S)

	
; namely, each coalition S can

achieve a maximum level of utility v (S) which can be distributed amongst its
members in all possible ways. We denote by vN the subclass of games with
transferable utility with set of players N . A generic game with transferable
utility will be denoted by (N; v). A game (N; V ) is a bargaining game if
it is totally essential and V (S) =

�
x 2 IRS j x � wS

	
for every coalition

S 6= N ; namely, there are gains from cooperation and they come only from
unanimous agreements. We denote by BN the subclass of bargaining games
with set of players N . A generic bargaining game will be denoted by (w;B),
where B stands for the set V (N) and w represents the disagreement point.
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We are specially interested in extending two compromise solutions of these
subclasses to games with non-transferable utility. The �rst one is the Kalai-
Smorodinsky solution (Kalai and Smorodinsky (1975)) on bargaining games
which represents an e�cient compromise between the maximal aspiration of
each player, compatible with individual rationality of the others, and the dis-
agreement point. Formally, given (w;B) 2 BN de�ne the Kalai-Smorodinsky
solution, denoted by KS (w;B), as follows: for all i 2 N

KSi (w;B) = �M
KS
i (w;B) + (1� �)wi;

whereMKS
i (w;B) = max

�
xi 2 IR j

�
xi; xNni

�
2 B and

�
xi; xNni

�
� w

	
and

� 2 [0; 1] is such that KS (w;B) 2 P (B). P (B) denotes the Pareto fron-
tier of B. In general, given a set A � IRK , the Pareto frontier of A is
the set P (A) = fx 2 Aj@y 2 A satisfying y � x; y 6= xg and the weak Pareto
frontier of A is the set WP (A) = fx 2 Aj@y 2 A satisfying y > xg. By con-
venience, we set P (;) = ; and WP (;) = ;. Given a set A and a vector y
we say that y is undominated for A if @x 2 A such that x � y and x 6= y.
Obviously, if y 2 V (S) n P (V (S)) then y is dominated for V (S).
The second one is the Chi value (Berganti~nos and Mass�o (1996)) on the

subclass of games with transferable utility. It is also based on selecting an
e�cient compromise between maximal and minimal aspirations of players.
In this case, the maximal aspiration of a player is his largest marginal con-
tribution while his minimal aspiration is the largest remainder he can obtain
after conceding to the other players their maximal aspiration. Formally, let
(N; v) be a game with transferable utility. For each i 2 N , de�ne player i's
maximum aspiration in the game as

M�
i (N; v) = max

S�N;i2S
fv (S)� v (S n i)g:

Given the vectorM� (N; v) de�ne player i's minimum aspiration in the game
as

m�
i (N; v) = max

S�N;i2S
fv (S)�

P
j2Sni

M�
j (N; v)g:

De�ne the Chi value on vN , denoted by � (N; v), as the unique e�cient vector
in the lineal segment having as extreme points m� (N; v) andM� (N; v); that
is,

� (N; v) = 
M� (N; v) + (1� 
)m� (N; v) ;
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where 
 2 [0; 1] is such that
P

i2N �i (N; v) = v (N). Berganti~nos and Mass�o
(1996) showed that the Chi value exists in the class of essential games with
transferable utility (i.e.;

P
i2N v(i) � v(N)).

3 The Chi-compromise value

In this section we de�ne and study a compromise value for NTU-games.
Let (N; V ) be a game in VN . For each i 2 N de�ne player i's maximum
aspiration in the game as

M�
i (N; V ) = max

S�N;i2S

�
t 2 IR j (t; x) 2 V (S)+ ; x 2 P (V (S n i))

	
:

Remark 1. M�
i (N; V ) � wi (take S = fig and t = wi).

We also have that M�
i (N; V ) < +1 because V (S)+ is compact and

P (V (S n i)) is closed. Therefore, M�
i (N; V ) is well de�ned for all (N; V ) in

VN .
Given the vector M� (N; V ) de�ne player i's minimal aspiration in the

game as

m�
i (N; V ) = max

S�N;i2S
ft 2 IR j (t;M�

Sni (N; V )) 2 V (S)g:

Remark 2. m�
i (N; V ) � wi (again, take S = fig and t = wi).

Notice that for each S containing i, the projection of V (S) on i's co-
ordinate is closed and bounded above. Therefore the maximum de�ning
m�
i (N; V ) does exist for all (N; V ) in VN .
From now on, and when this does not lead to confusion, we will omit the

reference to the game (N; V ) to denote the aspiration vectors m� and M�.
Propositions 1 and 2 and Corollary 1 below state that the three important

properties of the vectors of aspirations already explained in the Introduction
hold for non-level and totally essential NTU-games. Proposition 1 says that,
for every coalition S, the vector of maximum aspirations is undominated for
V (S).

Proposition 1. For all (N; V ) 2 CN and all S � N

M�
S =2 V (S) n P (V (S)):
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Proof: If S has only one player the result holds. Suppose it is true when S
has at most p� 1 players; we will show that the statement holds in the case
of coalitions with p players.
In order to get a contradiction assume that S has p players and M�

S 2
V (S) n P (V (S)). Then, there exists yS 2 V (S) such that yS � M�

S and
i 2 S with yi > M�

i . As M
�
Sni =2 V (S n i) n P (V (S n i)) (by the induction

hypothesis) and (N; V ) is non-level we can �nd xSni 2 P (V (S n i)) such that
xSni � M�

Sni. Then, by comprehensiveness,
�
yi; xSni

�
2 V (S) and therefore

M�
i � yi > M

�
i .

Proposition 2 below states that, for non-level and totally essential NTU-
games, the vector of minimal aspirations coincides, as it should, with the
vector of individually rational payo�s. But, again, notice that m� is ob-
tained endogenously as the maximum reminder after giving to other players
in the coalition their maximal aspirations. We interpret this property as an
indication that our de�nition of maximal aspiration is sensible.

Proposition 2. For all (N; V ) 2 CN ,

m� = w:

Proof: From Remark 2 we already know thatm�
i � wi. To see thatm

�
i � wi

it will be su�cient to show that t � wi for all t 2 IR and all S � N such
that i 2 S and (t;M�

Sni) 2 V (S). The proof is by induction on the number
of players in the coalition S.
Assume that S = fi; jg. If (t;M�

j ) 2 V (fi; jg) and t > wi then, by
comprehensiveness of the game, (x;M�

j ) 2 V (fi; jg) for all x � t, which is
impossible by non-levelness of the game and the de�nition of M�

j .
Assuming that the result is true if S contains p � 2 players (the induction

hypothesis), we will show that it is true for all coalitions with p+ 1 players.
Let S = fi1; :::; ip; ig be any set with p + 1 players containing i and assume
that (t;M�

Sni) 2 V (S).
First we prove that if t > wi and (t;M

�
Sni) 2 V (S) then (t;M

�
i1
; :::;M�

ip�1) 2
V (S n ip) : Assume that (t;M�

i1
; :::;M�

ip�1) =2 V (S n ip). As t > wi; M
�
j � wj

for any j 2 N; and V is totally essential we can �nd x 2 P (V (S n ip)) such
that wSnip � x � (t;M�

Snfi;ipg). Therefore, (x;M
�
ip
) � (t;M�

Sni) 2 V (S) im-
plying, by non-levelness of the game, that we can �nd a vector y 2 V (S)+
with the property that y > (x;M�

ip
). Therefore, yip > M

�
ip
which contradicts

the de�nition of M�
ip
.
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Now t � wi would follow by the induction hypothesis.
Example 1 below shows that the conclusion of Proposition 2 does not

hold for level NTU-games.

Example 1. Let (N; V ) be the NTU-game where N = f1; 2g, w1 = w2 = 0,
and V (N) = comp (conv (f(1; 1) ; (2; 0)g)). In general, if A � IRK , comp(A)
denotes the comprehensive hull of A (i.e., the smallest comprehensive set
containing A) and conv(A) the convex hull of A. The vector of maximum
aspirations is M� (N; V ) = (2; 1) and the vector of minimum aspirations is
m� (N; V ) = (1; 0) which for player 1 is strictly larger than w1 = 0.

Corollary 1 explicitly states that for non-level and totally essential NTU-
games the maximum aspiration is larger or equal to the minimum aspiration.

Corollary 1. For all (N; V ) 2 CN ,

m� �M�:

Proof: It follows immediately from Proposition 2 and Remark 1.

We can now de�ne the Chi-compromise value as well as state the most
important result of the paper which identi�es a large class of games (non-level
and totally essential) in which the Chi-compromise value does exist.

De�nition 3. The Chi-compromise value, denoted by �, is the unique
e�cient vector in the lineal segment having as extreme points m� and M�;
that is, for all (N; V ) 2 VN ,

� (N; V ) = 
M� (N; V ) + (1� 
)m� (N; V ) ;

where 
 is the largest number in [0; 1] satisfying � (N; V ) 2 P (V (N)).
Theorem 1. For all (N; V ) 2 CN there exists � (N; V ).
Proof: It follows by combining Propositions 1 and 2, and Corollary 1.

Remark 3. It is straightforward to show that the Chi-compromise value
coincides with the Kalai-Smorodinsky solution in bargaining problems and
with the Chi value in TU-games.

We now compare more speci�cally our value with three compromise values
in the literature: the Compromise value of Borm et al. (1992), the MC-value
of Otten et al. (1998), and the 
-value of Berganti~nos et al. (2000).
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Given (N; V ) 2 VN , the Compromise value is de�ned as the unique vector
on the lineal segment betweenMC (N; V ) and mC (N; V ) which lies in V (N)
and is closest to MC (N; V ), where for any i 2 N

MC
i (N; V ) = sup

�
t 2 IR j (t; x) 2 V (N) ; x =2 V (Nni) nWP (V (Nni)) ;

and x � wNni

�
and

mC
i (N; V ) = max

S�N;i2S

�
t 2 IR j 9x 2 IR

Sni; (t; x) 2 V (S) ;
and x > MC

Sni (N; V )

�
:

The Compromise value exists for the class of compromise admissible NTU-
games, de�ned as,

CAN =

�
(N; V ) 2VN j

mC (N; V ) �MC (N; V ) ;mC (N; V ) 2 V (N) ;
and MC (N; V ) =2 V (N) nWP (V (N))

�
:

Borm et al. (1992) proved that for any (N; V ) 2VN and any i 2 N ,
mC
i (N; V ) � wi. Suppose that (N; V ) is non-level and hence P (V (S)) =

WP (V (S)) for all S � N . Then, mC
i (N; V ) � m

�
i (N; V ). If (t; x) 2 V (N),

x =2 V (Nni) nWP (V (Nni)), and x � wNni, by non-levelness, we can �nd
x0 2 P (V (Nni)) such that x0 � x and hence (t; x0) 2 V (N)+. Now, it is easy
to conclude that MC

i (N; V ) � M�
i (N; V ). Then, in the class of non-level

NTU-games, CAN �CN ; that is, if the Compromise value exists then the
Chi-compromise value also exists.
Note that if in the de�nition of M�

i we change x 2 P (V (Sni)) to x 2
WP (V (Sni)) (denote this alternative maximum aspiration by M

�

i ) then it
is straightforward to check thatM

�

i (N; V ) �MC
i (N; V ) for all NTU-games.

Therefore, the corresponding Chi-compromise value using the M
�
vector

as maximum aspirations is de�ned whenever the Compromise value exists.
However, it seems to us that it is more appropriate to obtain the maximum
aspiration of a player i in a coalition S as the remainder assuming that the
members of coalition Sni exhaust all their possible gains of cooperation by
reaching Pareto (and not weakly Pareto) agreements.
The MC-value of Otten et al. (1998) is de�ned as the e�cient outcome

lying on the lineal segment between the vector of individually rational payo�s
and a vector of maximum aspiration obtained by giving to each player the
sum of all his marginal contributions in all possible orderings of the set of
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players. Since in many cases each component of this upper value vector may
be unfeasible it seems di�cult to justify it as a vector of maximal aspirations.
Otten et al. (1998) showed that the MC-value is well de�ned in the class of
monotonic, zero-normalized NTU-games, which is unrelated to the class of
non-level and totally essential NTU-games.
The 
-value of Berganti~nos et al. (2000) is de�ned as the e�cient outcome

lying on the lineal segment between the vector of individually rational payo�s
and the vector of maximum aspirations M
(N; V ):
The vector of maximum aspirations and the 
-value are de�ned by us-

ing induction arguments. When n = 2 the vector of maximum aspira-
tions M
(N; V ) is de�ned as in the Kalai-Smorodinsky bargaining solution�
MKS

�
. Then, both solutions coincide when n = 2.

Suppose now that we have de�ned M
 and 
 when there are at most
n� 1 players.
Given S � N , ai(S) = maxft 2 IR j (t;
(S n i; V jSni)) 2 V (S)g where

V jSni denotes the restriction of V to S n i:
The maximum aspiration of player i in the game (N; V ) is de�ned as

M

i (N; V ) = max

S�N; i2S
ai(S):

Berganti~nos et al. (2000) prove that the 
-value exists for all non-level
and superadditive NTU-games. (N; V ) 2 VN is superadditive if for all S; T
� N; S \ T = ; then V (S) � V (T ) � V (S [ T ) : It is easy to check
that the class of non-level and totally essential NTU-games, where the Chi-
compromise value exists, is larger that the class of non-level and superadditive
NTU-games, where the 
-value exists.
We end this section by calculating the Chi-compromise value in three

well-known examples of NTU-games and comparing it with other proposed
values.

Example 2 (Roth (1980)). Let (N; V ) be an NTU-game such that N =
f1; 2; 3g,

V (fig) = fxi 2 IRfig j xi � 0g; for i 2 N;
V (f1; 2g) = f(x1; x2) 2 IRf1;2g j (x1; x2) � (0:5; 0:5)g;
V (f1; 3g) = f(x1; x3) 2 IRf1;3g j (x1; x3) � (0:25; 0:75)g;
V (f2; 3g) = f(x2; x3) 2 IRf2;3g j (x2; x3) � (0:25; 0:75)g;
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and

V (N) = fx 2 IRN j 9y 2 convf(0:5; 0:5; 0) ; (0:25; 0; 0:75) ; (0; 0:25; 0:75)g; x � yg:

For this example the Shapley-NTU value (Aumann (1985)) is (0:333; 0:333; 0:333),
the Harsanyi-NTU value (Harsanyi (1963)) is (0:416; 0:416; 0:166), the Con-
sistent value (Maschler and Owen (1989, 1992)) is (0:25; 0:25; 0:5), the MC-
value coincides with the Shapley-NTU value, the Compromise value is (0:5; 0:5; 0),
and the 
-value is (0:286; 0:286; 0:428) :
Although the game does not satisfy non-levelness we can compute the

Chi-compromise value, which is (0:5; 0:5; 0), the unique Core outcome.

Example 3 (Shafer (1980)). We present the modi�cation of Shafer (1980)'s
example as it was used in Hart and Kurz (1983). Consider the following
exchange economy with three agents and two commodities. The initial com-
modity bundles of agents 1, 2, and 3 are

!1 = (1� �; 0); !2 = (0; 1� �); and !3 = (�; �);

where 0 � � � 1
5
, and their respective utility functions, ui, are given by

u1(y; z) = u2(y; z) = minfy; zg; and u3(y; z) =
y + z

2
:

Following Shapley and Shubik (1969) the corresponding NTU-game (N; V )
is given by:

V (fig) = fxi 2 IRfig j xi � 0g; for i = 1; 2;
V (f3g) = fx3 2 IRf3g j x3 � �g;

V (f1; 2g) =
�
(x1; x2) 2 IRf1;2g j (x1; x2) � (1� �; 1� �); x1 + x2 � 1� �

	
;

V (f1; 3g) = f(x1; x3) 2 IRf1;3g j (x1; x3) � (�;
1 + �

2
); x1 + x3 �

1 + �

2
g;

V (f2; 3g) = f(x2; x3) 2 IRf2;3g j (x2; x3) � (�;
1 + �

2
); x2 + x3 �

1 + �

2
g;

and

V (N) = fx 2 IRN j (x1; x2; x3) � (1; 1; 1); x1 + x2 + x3 � 1g:

In this game the Shapley-NTU value is
�
5�5�
12
; 5�5�
12
; 1+5�

6

�
, the Harsanyi-

NTU value is
�
3�5�
6
; 3�5�

6
; 5�
3

�
, the MC-value coincides with the Shapley-NTU

value, the Compromise value is
�
1��
2
; 1��
2
; �
�
; and the 
-value is

�
2�2"
5
; 2�2"

5
; 1+4"

5

�
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The Chi-compromise value is
�
2�2�
5�5� ;

2�2�
5�5� ;

1��
5�5�

�
.

Example 4 (Owen (1972)). Let (N; V ) be an NTU-game such that N =
f1; 2; 3g;

V (fig) = fxi 2 IRfig j xi � 0g; for i 2 N;
V (f1; 2g) = f(x1; x2) 2 IRf1;2g j x1 + 4x2 � 100; x1 � 100; x2 � 25g;
V (f1; 3g) = f(x1; x3) 2 IRf1;3g j x1 � 0; x3 � 0g;
V (f2; 3g) = f(x2; x3) 2 IRf2;3g j x2 � 0; x3 � 0g;

and

V (N) = fx 2 IRN j
P
i2N

xi � 100;8i 2 N; xi � 100;8i; j 2 N; xi + xj � 100g:

In this example the Shapley-NTU value is (50; 50; 0), the Harsanyi-NTU
value is (40; 40; 20), the Consistent value is (50; 37:5; 12:5), the MC-value
is (50; 33:33; 16:67), the Compromise value is (36:36; 36:36; 27:27) ; and the

-value is (42:1; 42:1; 15:7) :
The Chi{compromise value is (36:36; 36:36; 27:27).

4 Characterizations of the Chi-compromise

value

In this section we study several properties of the Chi-compromise value.
Moreover two characterizations of the Chi-compromise value are provided.
To do that, let GN �VN be an arbitrary subclass of NTU-games and let '
be a solution on GN .

Pareto Optimality. The solution ' satis�es Pareto Optimality on GN

if '(N; V ) 2 P (V (N)) for all (N; V ) 2GN :

Covariance. The solution ' satis�es Covariance on GN if '(N;W ) =
� � '(N; V ) + � whenever (N; V ); (N;W ) 2GN are such that for all S � N ,
W (S) = �S � V (S) + �S, where �S � V (S) =

�
(�ixi)i2S j xS 2 V (S)

	
; � 2

IRN ; � > 0 and � 2 IRN .
Players i and j have a symmetric position in a game (N; V ) if (1) for

S � N n fi; jg, x 2 V (S [ i) i� y 2 V (S [ j) when yS = xS and yj = xi
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and (2) for S � fi; jg; x 2 S i� y 2 S when ySnfi;jg = xSnfi;jg; yi = xj, and
yj = xi.

Symmetry. The solution ' satis�es Symmetry on GN if 'i(N; V ) =
'j(N; V ) whenever i and j have a symmetric position in the game (N; V ) 2GN .

Strong Symmetry. The solution ' satis�es Strong Symmetry on GN

if 'i(N; V ) = 'j(N; V ) whenever (N; V ) 2GN is such that wi = wj and
M�
i (N; V ) =M

�
j (N; V ).

Restricted Monotonicity. The solution ' satis�esRestricted Monotonic-
ity on GN if '(N; V ) � '(N; V 0) whenever (N; V ); (N; V 0) 2GN are such
that V (N) � V 0(N), w = w0, and M�(N; V ) =M�(N; V 0).

Proposition 3. The Chi-compromise value satis�es Pareto Optimality, Co-
variance, Symmetry, Strong Symmetry, and Restricted Monotonicity on the
class CN of non-level and totally essential games with non-transferable util-
ity.

Proof: It is straightforward to check that the Chi-compromise value satis�es
these �ve properties.

Theorem 2. The Chi-compromise value is the unique solution on CN satis-
fying Pareto Optimality, Covariance, Symmetry, and Restricted Monotonic-
ity.

Proof: We have just established in Proposition 3 that the Chi-compromise
value satis�es the four properties.
We now prove uniqueness. Suppose F is another solution satisfying the

four properties. Assume that w =2 P (V (N)) ; otherwise the result is trivial.
First we prove that if (N; V ) 2 CN and w =2 P (V (N)) then for all

i 2 N , M�
i (N; V ) > wi: As w 2 V (N) n P (V (N)) and (N; V ) satis�es

non-levelness there exists x 2 V (N) ; x > w: Given i 2 N , as V (fig) =�
x 2 IRfig j x � wi

	
we can �nd S � N and y 2 V (S)+ such that i 2 S;

V (S n i)+ = wSni; and y > wS: This means that M
�
i (N; V ) > wi.

By Covariance it su�ces to prove that �(N; V ) = F (N; V ) when, for all
i 2 N , wi = 0 and M�

i (N; V ) = 1:
Clearly, for all i 2 N , the vector ci 2 IRN de�ned by cij = �j(N; V ) + �

if i = j and cij = 0 if j 6= i belongs to V (N) for � su�ciently small. The
non-levelness ensures that � is strictly positive. Note that for all i 2 N ,
�i(N; V ) � 1.
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Let (N;W ) be such that for all i 2 N

W (fig) =
�
x 2 IRfig j x � 0

	
;

for all S � N such that 2 � s � n� 1

W (S) = compfxS 2 IRS j 8i 2 S; 0 � xi � 1; and
P
i2S
xi � 1g;

and

W (N) = comp
�
conv

�
fci 2 IRN j i 2 Ng [ �(N; V )

��
\ V (N):

Then (N;W ) 2CN , M
�
i (N;W ) = 1 for all i 2 N , and �(N; V ) = �(N;W ).

By symmetry for all i; j 2 N , Fi(N;W ) = Fj(N;W ). Note that even
though W (N) is not necessarily a symmetric set, (N;W ) is a symmetric
game. Therefore by Pareto Optimality, F (N;W ) = �(N;W ). By Restricted
Monotonicity F (N;W ) � F (N; V ), which implies �(N; V ) � F (N; V ). But
since � satis�es Pareto Optimality we can conclude that �(N; V ) = F (N; V ).

Theorem 3. The Chi-compromise value is the unique solution on CN sat-
isfying Pareto Optimality, Covariance, and Strong Symmetry.

Proof: Proposition 3 establishes that the Chi-compromise value satis�es
these properties.
We now prove uniqueness. Suppose F is another solution satisfying these

properties. Using similar arguments to those already used in the proof of
Theorem 2 we can assume that for all i 2 N , M�

i (N; V ) > wi: By Covariance
it su�ces to prove that �(N; V ) = F (N; V ) when, for all i 2 N , wi = 0 and
M�
i (N; V ) = 1.
By Strong Symmetry, for all i; j 2 N; Fi(N; V ) = Fj(N; V ) and �i(N; V ) =

�j(N; V ). By Pareto Optimality, F (N; V ) = �(N; V ).

Note that all axioms used in both characterizations are independent.
The egalitarian solution de�ned by Kalai and Samet (1985) satis�es all �ve
properties except Covariance. The solution f 1 de�ned as f 1 (N; V ) = w
for all (N; V ) 2CN satis�es all properties except Pareto Optimality. The
solution f 2 de�ned as the Shapley value when (N; V ) is a totally essen-
tial TU-game and the Chi-compromise value in the rest of the class CN

satis�es all properties except Strong Symmetry and Restricted Monotonic-
ity. The solution f 3 de�ned as f 3i (N; V ) = wi for i 6= 1 and f 31 (N; V ) =
max

�
t 2 IR j (t; wNn1) 2 V (N)

	
, satis�es all properties except Symmetry.
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These axiomatic characterizations can be extended in the following way.
Theorem 2 is also true for the class of NTU-games for which the Chi-
compromise value exists and the condition of non-levelness is satis�ed only
for the set V (N)+. Theorem 3 is also true for the class of NTU-games where
the Chi-compromise value exists.
Moreover, notice that in both characterizations the sets V (S) need not

be convex. While this is also possible in the characterization of the MC-value
it is not the case in the characterization of the Compromise value where the
set V (N) has to be convex.

5 Implementation of the �-value

Following the Nash program, there is a long tradition of justifying axiomatic
bargaining solutions by means of equilibria of a non-cooperative game associ-
ated to the original bargaining problem. Moulin (1984) exhibits an extensive-
form game whose subgame perfect equilibria induce the Kalai-Smorodinsky
solution. Here, and following the procedure used by Hart and Mas-Colell
(1996) to obtain the Consistent value by extending the non-cooperative im-
plementation of the Nash bargaining solution to NTU-games (which also
coincides with the Shapley value for TU-games), we extend Moulin's im-
plementation of the Kalai-Smorodinsky solution for bargaining problems to
NTU-games (which also coincides with the Chi value for TU-games).
Given a NTU-game (N; V ), we de�ne the non-cooperative n-person game

�(N; V ) as follows:

� Round 0. Each player i makes a bid pi, where 0 < pi � 1, and they
are renumbered in decreasing order of their bids, p1 � p2 � ::: � pn
(players with tied bids are ordered randomly among themselves).

� Round 1. Player 1 proposes a payo� vector x = (x1; :::; xn) 2 V (N) to
the approval of player n, who can either accept or reject it. If player n
accepts x the game proceeds to round 2.

If player n rejects x then he must choose a pair (Sn; xn), where Sn � N;
n 2 Sn; and xn 2 V (Sn). Player n proposes to the other players of Sn
to cooperate with him to obtain a payo� of xn. Players in Sn may
accept or reject xn but they are forced to accept it if there is no a
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payo� vector y 2 V (Snnn) such that y > xnSnnn. There are two cases
to be considered:

1. If all players in Snnn accept xn then a lottery is held in which,
with probability p1 the agreement achieved by the players of S

n

is implemented (that is, every player j 2 Sn obtains xnj , except
player 1, if 1 2 Sn, who receives w1). The exceptional treat-
ment to player 1 (the proposer) is to dissuade him from putting
forward unreasonable proposals that make unanimous agreement
impossible. Players of N n Sn return to round 0 and continue to
bargain among themselves. With probability 1�p1 the bargaining
procedure �nishes and every player i 2 N obtains wi.

2. If any player of Sn rejects xn then player n is removed from the
bargaining procedure; i.e., player n obtains wn. Let R(n) be the
set of players who rejected (Sn; xn) and in the player of this set
with the largest index. Player in must propose a payo� vector
z 2 V (Snnn) such that z > xnSnnn, which exists because in re-
jected xn. With probability p1 the payo� vector z is implemented
(that is, every player j 2 Snnn obtains zj) and the players of
NnSn return to round 0 and continue to bargain among them-
selves. With probability 1� p1 the bargaining procedure �nishes
and every player i 2 N obtains wi.

� Round 2. Player 1 proposes the payo� vector x = (x1; :::; xn) to the
approval of player n � 1, who can either accept it or reject it. If he
accepts it the game proceeds to round 3.

If he rejects he must make a countero�er (Sn�1; xn�1), where n � 1 2
Sn�1 and xn�1 2 V (Sn�1), and the game proceeds as in the previous
round replacing the role of player n by player n� 1.

� Rounds 3; :::; n � 1 are similar to rounds 1 and 2 but now considering
players n� 2; :::; 2 instead of players n and n� 1.

Remark 4. Since the number of players is �nite, the game �(N; V ) termi-
nates in a �nite number of steps.
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Remark 5. Round 0 is the same than Round 0 in Moulin (1984). Rounds
1,2,...,n � 1 are similar to rounds 1,2,...,n � 1 of Moulin (1984). The di�er-
ence is that in Moulin (1984), if some player rejects the initial o�er he must
make a countero�er to the rest of the players, who can reject or accept it.
If somebody rejects it the disagreement point is enforced. However, in our
game the player who rejected the initial o�er can make a proposal to some
smaller coalition. This modi�cation is necessary because in NTU-games par-
tial agreements are also possible. Moreover, when we restrict our procedure
to a non-cooperative game induced by a bargaining game it coincides, basi-
cally, with Moulin (1984). The only di�erence is that in Moulin (1984) when
a player makes a counterproposal the rest of the players always can reject it
(in such a case, all receive the disagreement point). However, in our game
players can not reject an o�er which gives them at least the disagreement
point.

Remark 6. Berganti~nos et al. (2000) also gives an implementation of the

-value using a non-cooperative game which generalizes Moulin (1984). We
now compare the non-cooperative game de�ned in this paper and the one
described in Berganti~nos et al. (2000). Round 0 is the same in both non-
cooperative games. Round 1 is di�erent in two aspects. First, in our case
players in Sn are forced to accept xn if there is no a payo� vector y 2 V (Snnn)
such that y > xnSnnn; in Berganti~nos et al. (2000) players in S

n can reject any
o�er. Second, if xn is rejected, in our non-cooperative game player in must
propose a payo� vector z 2 V (Snnn) such that z > xnSnnn, with probability
p1 the payo� vector z is implemented and with probability 1�p1 every player
i 2 Sn obtains wi; in Berganti~nos et al. (2000) if xn is rejected then with
probability p1 players in S

n n n return to Round 0 and continue to bargain
among themselves and with probability 1 � p1 every player i 2 Sn obtains
wi: The same two di�erences (adjusted in the natural way) also apply to the
remaining rounds 2,...,n� 1.
We now present the main result of this section which says that the non-

cooperative game described above implements in subgame perfect Nash equi-
librium strategies the Chi-compromise value.

Theorem 4. Let (N; V ) be a non-level and totally essential NTU-game.
Then, the non-cooperative game �(N; V ) has subgame perfect Nash equilib-
ria (SPNE). Moreover, the payo� received by the players in all of them is
�(N; V ).
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Proof: Let (N; V ) be a non-level and totally essential NTU-game. The proof
is by induction on the number of players.

Case n = 2: It is easy to check that the set of SPNE of �(f1; 2g; V ) coin-
cides with the set of SPNE of the game of auctioning fractions of dictator-
ship, Moulin (1984), applied to the bargaining problem ((w1; w2); V (f1; 2g)).
Then, by Moulin (1984), this set is non-empty and the payo� received by the
two players in all of these equilibria is the payo� vectorKS((w1; w2); V (f1; 2g)),
which is equal to �(f1; 2g; V ). Hence, the statement of Theorem 4 holds
whenever n = 2.

Induction hypothesis: Assume that the statement of Theorem 4 holds
when there are strictly less than n players.

Now, the proof that the statement of Theorem 4 is also true when there
are n players is based on Lemmas 1 and 2 below.

Lemma 1. The set of SPNE of �(N; V ) is non-empty.

Proof of Lemma 1: Let p 2 (0; 1] be such that � (N; V ) = pM� (N; V ) +
(1�p)m� (N; V ). The proof will consist of exhibiting a SPNE strategy pro�le
�.

De�nition of �: In round 0 each player i submits a bid pi equal to p. The pro-
poser, now player 1, proposes the vector x = p1M

� (N; V )+(1�p1)m� (N; V ).
Every player i 6= 1 accepts the proposal x of player 1 if and only if xj �
p1M

�
j (N; V )+(1�p1)m

�
j (N; V ) for all j 6= 1. After rejecting x, player i would

propose (Si; xi), where Si is the coalition that maximizes the reminder in the
de�nition of M�

i (N; V ); i.e., x
i
Sini 2 P (V (Sini)) and xii = M

�
i (N; V ). Play-

ers in Sini will accept any o�er y 2 V (Si) if and only if ySini 2 P (V (Sini)).
If the procedure goes back to Round 0 then, there is, at most, n� 1 players.
Hence, de�ne � in these subgames as the behavior prescribed by an arbitrary
SPNE strategy of the game with at most n � 1 players, whose existence is
guaranteed by the induction hypothesis.

Notice that the play prescribed by � is that the selected player (all of them
with equal probability) proposes �(N; V ) and the rest accept it. Hence, the
expected payo� induced by � in �(N; V ) is the Chi-compromise value of
(N; V ).
To prove that � is an SPNE we have to show that no player, in any of its

information sets, has incentives to deviate from �.
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First, if the game goes back to Round 0, by the de�nition of �, no player
has a pro�table deviation.
Second, assume player i rejected the initial o�er of player 1 and proposed,

according with �, (Si; xi). Then, all players in Sini are forced to accept it
since there is no z 2 V (Sini) such that zj > xij for all j 2 Sini because
xiSini 2 P (V (Sini)) :
Third, player i has no pro�table deviation from proposing (Si; xi), which

is what speci�es � after he rejects an initial o�er. To see it, suppose that
player i proposes any (Ŝi; x̂i) with the property that x̂i

Ŝini 2 V (Ŝ
ini)nP (V (Ŝini)).

Then, at least one player in Ŝini will reject it and player i will get wi. There-
fore, if player i wants to obtain more than wi he must o�er an acceptable
proposal; that is, a pair ( �Si; �xi) with the property that �xi�Sini 2 P (V ( �S

ini)),
otherwise, at least one player will reject it. Among all of these pairs, to o�er
the pair (Si; xi) speci�ed by � is the best, which gives to player i the payo�
ofM�

i (N; V ) with probability p and wi with probability 1�p; i.e., �i(N; V ).
As a consequence of the last two arguments (second and third) we can

conclude that no player has incentives to reject the initial proposal � (N; V ).
Fourth, we show that player 1 does not get a strictly higher payo� by

proposing x 6= � (N; V ). Suppose that xNn1 � �Nn1 (N; V ), then the rest
of the players will accept x; hence, player 1 gets x1 � �1(N; V ) because
x 2 V (N) and �(N; V ) 2 P (V (N)). Suppose now that there exists i 6= 1
with xi < �i(N; V ). Then, x will be rejected by player n, who will propose,
according to �, the pair (Sn; xn), which will be accepted by the members of
Sn since there is no y 2 V (Snnn) such that y > xnSnnn. Now we distinguish
two cases:

� If 1 2 Sn player 1 gets w1, which is not larger than �1(N; V ).

� If 1 2 NnSn player 1 gets, by the induction hypothesis, �1(NnSn; V jNnSn)
with probability p and w1 with probability 1� p. Taking into account
that �1(NnSn; V jNnSn) � M�

1 (NnSn; V jNnSn) � M�
1 (N; V ) we con-

clude that (also in this case) player 1 cannot get a strictly larger payo�
than �1(N; V ).

Finally, we show that, at stage 0, to make a bid di�erent from p is not a
pro�table deviation. Suppose that player i bids pi < p, which implies that i
is not the initial proposer. If he rejects �(N; V ) then, as we saw before, he
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obtains at most �i(N; V ). Suppose now that player i bids pi > p. Then, he
becomes player 1 and must make an o�er x 2 V (N). If there exists a player
j 6= 1 such that xj < p1M�

j (N; V ) + (1� p1)wj, x will be rejected and using
similar arguments to those used before we can conclude that player 1 gets at
most �1(N; V ). If xNn1 � �Nn1(N; V ), x will be accepted but since x 2 V (N)
and �(N; V ) 2 P (V (N)) we conclude that x1 < �1(N; V ). Therefore, � is
an SPNE of �(N; V ).

Lemma 2. In any SPNE of �(N; V ) any player i has an expected payo� of
at least �i(N; V ).

Proof of Lemma 2: First we prove that if player i 6= 1 rejects the o�er
of player 1 and the players of N n i are playing according to an SPNE then
player i gets p1M

�
i (N; V )+(1�p1)wi. Suppose that player i proposes (Si; xi).

Using similar arguments to those already used in the proof of Lemma 1 we
can conclude that player i has to propose (Si; xi) as in � and players in Si

will accept it, which means that player i gets M�
i (N; V ) with probability p1

and wi with probability (1 � p1). We can also show that player i can not
obtain strictly more.
We now prove that in any SPNE any player i 6= 1 receives at least

p1M
�
i (N; V )+(1�p1)wi. We prove it by �nding a deviation of player i which

gives him p1M
�
i (N; V ) + (1 � p1)wi. Assume that player i 6= 1 makes a bid

p0i < pn instead of pi: Then player i (although he becomes player n we will still
refer to him as player i) is the �rst who answers the o�er of player 1. If player
i rejects it we proved before that he will receive p1M

�
i (N; V ) + (1� p1)wi.

Now, to get a contradiction, suppose that there exists an SPNE where a
player, i, receives a payo� yi < �i(N; V ). We study several cases:

1. p1 > p. Then, player i cannot be a responder; otherwise, we have just
proved that his payo� would be at least p1M

�
i + (1 � p1)wi, which is

strictly larger than pM�
i + (1 � p)wi = �i(N; V ). Therefore, i is the

proposer, and hence, i = 1. Now we distinguish two cases:

� p2 � p. Suppose that player 1 makes a bid p01 < pn. Then, if he
rejects the o�er of player 2 he obtains p2M

�
1 (N; V )+ (1�p2)w1 �

�1(N; V ), as we saw at the beginning of the proof. But this is a
contradiction because we found a deviation of player 1 (p01 < p1)
which strictly improves his payo�.
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� p2 < p. Suppose player 1 makes a bid p and o�ers x 2 P (V (N))
such that x1 > y1 and for all i 6= 1, xi = �i(N; V ) + � where � > 0
is chosen in an appropriate and obvious way. The players of N n 1
will accept x (if player i rejects x we already proved that he would
obtain pM�

i (N; V ) + (1 � p)wi = �i(N; V )). Then, player 1 can
strictly improve his payo� by bidding p instead of p1, which is a
contradiction.

2. p1 < p. Suppose player i makes a bid p. Then, he becomes the winner
of the auction because p1 was the largest bid (again, we will still refer
to him as player i). Moreover, assume that i o�ers any x 2 P (V (N))
with the property that xi > yi and for all j 6= i, xj = �j(N; V ) + �
where � > 0 is chosen in an appropriate way. Players in N n i will
accept x (we have already proved that if player j rejects x he would
obtain pM�

j (N; V )+ (1�p)wj = �j(N; V )). Then, player i can strictly
improve his payo� by bidding p instead of pi, which is a contradiction.

3. p1 = p. We study several cases:

� i 6= 1. If player i makes a bid p0i < pn with similar arguments to
the case p1 > p and p2 � p we obtain that player i can strictly
improve his payo�.

� i = 1 and p2 = p. If player 1 makes a bid p01 < pn with similar
arguments to the case p1 > p and p2 � p we obtain that player 1
can strictly improve his payo�.

� i = 1 and p2 < p. Again, with similar arguments to those used
in the case p1 > p and p2 < p we can conclude that player 1 can
strictly improve his payo�.

The proof of Theorem 4 �nishes by noticing that by the de�nition of
� (N; V ) and Lemma 2 in any SPNE each player i has an expected payo� of
�i(N; V ) because �(N; V ) 2 P (V (N)).

6 The Lambda-transfer Chi-value

Shapley (1969) de�ned the family of �-transfer TU-games corresponding to
an NTU-game. Using this family of games, and their corresponding Shapley
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values, he de�ned the NTU-Shapley value. We proceed in the same way
using our Chi value for TU-games instead of the Shapley value.
De�ne �N =

�
� 2 IRN j

P
i2N �i = 1 and �i � 0 for all i

	
as the n-dimensional

unit simplex. Given an NTU-game (N; V ) we say that the vector � 2 �N

is feasible if sup

�P
i2S
�ixi j x 2 V (S)

�
< 1 for all S � N . For each feasi-

ble vector � 2 �N we de�ne the TU-game
�
N; v�

�
by associating with each

coalition S � N the number v� (S) = sup

�P
i2S
�ixi j x 2 V (S)

�
:

De�nition 4. The Lambda-transfer Chi-value on VN , denoted by �
�,

associates to each (N; V ) 2VN the set

�� (N; V ) =
�
x 2 V (N) j � � x � �

�
N; v�

�
for some � 2 �N feasible

	
:

Before stating a result establishing su�cient conditions under which the
Lambda-transfer Chi-value set is non-empty we need to de�ne two standard
properties of NTU-games.

De�nition 5. An NTU-game (N; V ) is compactly generated if for all
S � N there exists a compact set KS � IRS with the property that V (S) =�
x 2 IRS j x � yfor some y 2 KS

	
. An NTU-game (N; V ) is convex if for

all S � N the set V (S) is convex.

Theorem 5. Let (N; V ) be a totally essential, compactly generated, and
convex NTU-game. Then, �� (N; V ) 6= ;.
Proof: First, we will show that if the NTU-game (N; V ) is totally essential
then for any feasible � 2 �N the TU-game

�
N; v�

�
is essential. Consider any

i 2 N . By de�nition v� (i) = �iwi. Moreover, as (N; V ) is totally essential,

v� (N) = supf
P
i2N

�ixi j x 2 V (N)g

�
P
i2N

�iwi

=
P
i2N

v� (fig) ,

which means that the TU-game
�
N; v�

�
is essential.

The non-emptiness of the set �� (N; V ) follows using a �xed-point argu-
ment similar to that of Shapley (1969).
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The game of Example 2 illustrates the fact that, in general, the Chi-
compromise value and the Lambda-transfer Chi-value may be di�erent. After
a simple, but very tedious computation, it is possible to see that �� (N; V ) =
(0:33; 0:33; 0:33) while � (N; V ) = (0:5; 0:5; 0) :

7 Concluding remarks

Before �nishing this paper we would like to brie
y compare our proposal
with other NTU-values. As with all compromise values it is easier to com-
pute than the Shapley, Harsanyi, and the Consistent values. However, the
Shapley and Harsanyi values have nice characterizations, while those of all
compromise values including ours are ad hoc (in the sense that the vectors
of maximum and minimum aspirations are used in the de�nitions of some of
the key axioms); on the contrast, to our knowledge the Consistent value has
yet to be fully characterized (Maschler and Owen (1989) characterize it for
the class of hyperplane games). Except for the Compromise value and the

-value, whose existence is guaranteed only for games with non-empty cores
(a proper subclass of compromise admissible NTU-games) and superadditive
games respectively, the existence of all other NTU-values is guaranteed for
classes of games which are relatively larger than these and unrelated to each
other. Finally, to our knowledge, only the Consistent value (Hart and Mas-
Colell (1996)), the 
-value, and our Chi-compromise value have been shown
to be implementable by extensive-form games.
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