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Abstract It is known that there are exactly b t−1
2 c and b t

2c nonequivalent Z2Z4-linear
Hadamard codes of length 2t , with α = 0 and α 6= 0, respectively, for all t ≥ 3. In
this paper, it is shown that each Z2Z4-linear Hadamard code with α = 0 is equivalent
to a Z2Z4-linear Hadamard code with α 6= 0, so there are only b t

2c nonequivalent
Z2Z4-linear Hadamard codes of length 2t . Moreover, the orders of the permutation
automorphism groups of the Z2Z4-linear Hadamard codes are given.
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1 Introduction

Let Z2 and Z4 be the rings of integers modulo 2 and modulo 4, respectively. Let Zn
2

be the set of all binary vectors of length n and let Zn
4 be the set of all quaternary

vectors of length n. For a vector x = (x1, . . . ,xn) ∈ Zn
2 and a set I ⊆ {1, . . . ,n}, we

denote by x|I the vector x restricted to the coordinates in I.
Any nonempty subset C of Zn

2 is a binary code and a subgroup of Zn
2 is called a

binary linear code. Similarly, any nonempty subset C of Zn
4 is a quaternary code and

a subgroup of Zn
4 is called a quaternary linear code. Let C be a quaternary linear

code. Since C is a subgroup of Zn
4, it is isomorphic to an Abelian group Zγ

2×Zδ
4 , and

we say that C is of type 2γ 4δ as a group. Quaternary codes can be seen as binary
codes under the usual Gray map defined as ϕ(0) = (0,0), ϕ(1) = (0,1), ϕ(2) =
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(1,1), ϕ(3) = (1,0) in each coordinate. If C is a quaternary linear code, then the
binary code C = ϕ(C ) is called a Z4-linear code.

Additive codes were first defined by Delsarte in 1973 as subgroups of the under-
lying Abelian group in a translation association scheme [7, 8]. In the special case of a
binary Hamming scheme, that is, when the underlying Abelian group is of order 2n,
the additive codes coincide with the codes that are subgroups of Zα

2 ×Zβ

4 . In order
to distinguish them from additive codes over finite fields [3], they are called Z2Z4-
additive codes [4]. Since Z2Z4-additive codes are subgroups of Zα

2 ×Z
β

4 , they can be
seen as a generalization of binary (when β = 0) and quaternary (when α = 0) linear
codes. As for quaternary linear codes, Z2Z4-additive codes can also be seen as bi-
nary codes by considering the extension of the usual Gray map: Φ :Zα

2 ×Z
β

4 −→Zn
2,

where n = α +2β , given by

Φ(x,y) = (x,ϕ(y1), . . . ,ϕ(yβ ))

∀x ∈ Zα
2 , ∀y = (y1, . . . ,yβ ) ∈ Zβ

4 .

If C is a Z2Z4-additive code, C = Φ(C ) is called a Z2Z4-linear code. Moreover, a
Z2Z4-additive code C is also isomorphic to an Abelian group Zγ

2×Zδ
4 , and we say

that C (or equivalently the corresponding Z2Z4-linear code C = Φ(C )) is of type
(α,β ;γ,δ ).

Let Sn be the symmetric group of permutations on the set {1, . . . ,n}, and let
id ∈ Sn be the identity permutation. The group operation in Sn is the function com-
position, denoted by ◦. The composition σ1 ◦σ2 maps any element x to σ1(σ2(x)).
A σ ∈ Sn acts linearly on words of Zn

2 or Zn
4 by permuting the coordinates,

σ((c1, . . . ,cn)) = (cσ−1(1), . . . ,cσ−1(n)).
Let C be a Z2Z4-additive code of type (α,β ;γ,δ ). We can assign a permutation

πx ∈ Sn to each codeword x = (x′1, . . . ,x
′
α ,x1, . . . ,x2β ) ∈C = Φ(C ), such that πx =

π12 ◦π34 ◦ · · · ◦π2β−1 2β , where

πi j =

{
id if (xi,x j) = (0,0) or (1,1)
(i, j) otherwise.

Given two codewords of C, x = (x′,x1, . . . ,x2β ) and y = (y′,y1, . . . ,y2β ), define
x ? y = x+πx(y). Then, we have that (C,?) is an Abelian group [22], which is iso-
morphic to (C ,+) since

x? y = (x′+ y′, ϕ(ϕ−1(x1,x2)+ϕ
−1(y1,y2)),

. . . , ϕ(ϕ−1(x2β−1,x2β )+ϕ
−1(y2β−1,y2β )))

= Φ(Φ−1(x)+Φ
−1(y)).

There are Z2Z4-linear codes in several important classes of binary codes. For
example, Z2Z4-linear perfect single error-correcting codes (or 1-perfect codes) are
found in [22] and fully characterized in [6]. Also, in subsequent papers [13, 5, 14,
19, 20], Z2Z4-linear extended perfect and Hadamard codes are studied and classified
independently for α = 0 and α 6= 0. Finally, in [21, 23, 17], Z2Z4-linear Reed-
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Muller codes are also studied. Note that Z2Z4-linear codes have allowed to classify
more binary nonlinear codes, giving them a structure as Z2Z4-additive codes.

A (binary) Hadamard code of length n is a binary code with 2n codewords
and minimum distance n/2 [16]. The Z2Z4-additive codes such that, under the
Gray map, give a Hadamard code are called Z2Z4-additive Hadamard codes and
the corresponding Z2Z4-linear codes are called Z2Z4-linear Hadamard codes, or
just Z4-linear Hadamard codes when α = 0. The classification of Z2Z4-linear
Hadamard codes is given by the following results. For any integer t ≥ 3 and each
δ ∈ {1, . . . ,b(t +1)/2c}, there is a unique (up to equivalence) Z4-linear Hadamard
code of type (0,2t−1; t +1−2δ ,δ ), and all these codes are pairwise nonequivalent,
except for δ = 1 and δ = 2, where the codes are equivalent to the linear Hadamard
code, that is, the dual of the extended Hamming code [14]. Therefore, the number
of nonequivalent Z4-linear Hadamard codes of length 2t is b t−1

2 c for all t ≥ 3. On
the other hand, for any integer t ≥ 3 and each δ ∈ {0, . . . ,bt/2c}, there is a unique
(up to equivalence) Z2Z4-linear Hadamard code of type (2t−δ ,2t−1− 2t−δ−1; t +
1−2δ ,δ ). All these codes are pairwise nonequivalent, except for δ = 0 and δ = 1,
where the codes are equivalent to the linear Hadamard code [5]. Therefore, the num-
ber of nonequivalent Z2Z4-linear Hadamard codes of length 2t with α 6= 0 is bt/2c
for all t ≥ 3.

Two structural properties of binary codes are the rank and the dimension of the
kernel. The rank of a code C, denoted by r, is simply the dimension of the linear
span, 〈C〉, of C. The kernel of a code C is defined as Ker(C) = {x ∈ Zn

2 : x+C =C}
[2]. If the all-zero vector belongs to C, Ker(C) is a linear subcode of C. We denote
by k the dimension of Ker(C). In general, C can be written as the union of cosets of
Ker(C), and Ker(C) is the largest linear code for which this is true [2]. The Z2Z4-
linear Hadamard codes can also be classified using either the rank or the dimension
of the kernel, as it is proven in [14, 20], where these parameters are computed.

Two Z2Z4-additive codes C1 and C2 both of type (α,β ;γ,δ ) are said to be
monomially equivalent, if one can be obtained from the other by permuting the
coordinates and (if necessary) changing the signs of certain Z4 coordinates. Two
Z2Z4-additive or Z2Z4-linear codes are said to be permutation equivalent if they
differ only by a permutation of coordinates. The monomial automorphism group of
a Z2Z4-additive code C , denoted by MAut(C ), is the group generated by all permu-
tations and sign-changes of the Z4 coordinates that preserves the set of codewords
of C , while the permutation automorphism group of C or C = Φ(C ), denoted by
PAut(C ) or PAut(C), respectively, is the group generated by all permutations that
preserves the set of codewords [12].

The permutation automorphism group of a code is also an invariant, so it can help
in the classification of some families of codes. Moreover, the automorphism group
can also be used in decoding algorithms and to describe some other properties like
the weight distribution. The permutation automorphism group of Z2Z4-linear (ex-
tended) 1-perfect codes has been studied in [19, 15]. The permutation automorphism
group of (nonlinear) binary 1-perfect codes has also been studied before, obtaining
some partial results [11, 10, 1, 9]. Finally, the permutation automorphism group of
Z2Z4-additive Hadamard codes has been studied in [18].
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2 Classification of Z2Z4-linear Hadamard codes

In [14] and [5], Z2Z4-linear Hadamard codes are classified independently for α = 0
and α 6= 0. In this section, we show that each Z2Z4-linear Hadamard code with
α = 0 is equivalent to a Z2Z4-linear Hadamard code with α 6= 0, so there are only
b t

2c nonequivalent Z2Z4-linear Hadamard codes of length 2t .

We say that a function f from Zi
2 ×Z j

4 to Zs
2 ×Zt

4 is affine if f (0)− f (x)−
f (y)+ f (x+ y) = 0 for every x and y from Zi

2×Z j
4 (here and in what follows, 0

denotes the all-zero vector). Equivalently, f (·)− f (0) is a linear function, i.e., a
group homomorphism. Let B be the set of all affine functions from Zγ

2×Zδ̈
4 to Z4.

These Z4-valued functions on Zγ

2×Zδ̈
4 can be considered as words of length 2γ+2δ̈

over Z4. Denote D
γ,δ̈ = {x : Zγ

2×Zδ̈
4 → Z2

2 : x(·) = ϕ(g(·)) for some g ∈B}.

Lemma 1. D
γ,δ̈ is a Z4-linear Hadamard code of length n = 2γ+2δ̈+1 and type

(0,n/2;γ,δ ), where δ = δ̈ +1.

Proof. There are 4 ·2γ ·4δ̈ = 2n affine functions in B. The set B is closed under the
addition over Z4; so after applying the Gray map, D

γ,δ̈ is a Z4-linear code of length

2γ ·4δ̈ ·2 = n. Clearly, the minimum Hamming distance is n/2.

Define the function ϕ+ : Z4→{0,1} by ϕ+(0) = ϕ+(3) = 0, ϕ+(1) = ϕ+(2) =
1. Again, the Z2-valued or Z4-valued functions on Zγ̈

2×Zδ
4 can be considered as

words of length 2γ̈+2δ over Z2 or Z4, respectively. Let A be the set of all affine
functions f from Zγ̈

2×Zδ
4 to Z4 that map the all-zero vector to 0 or 2: f (0) ∈ {0,2}.

Denote Cγ̈,δ = {h : Zγ̈

2×Zδ
4 → Z2 : h(·) = ϕ+( f (·)) for some f ∈A }.

Lemma 2. Cγ̈,δ is a Z2Z4-linear Hadamard code of length n = 2γ̈+2δ and type
(α,β ;γ,δ ), where γ = γ̈ + 1, α = 2γ̈+δ corresponding to the elements of order at
most 2 of Zγ̈

2×Zδ
4 , and β = 2γ̈+δ−1(2δ −1) corresponding to the pairs of opposite

elements of order 4.

Proof. There are 2 · 2γ̈ · 4δ = 2n affine functions in A . The set A is closed under
the addition over Z4; so the Gray map image A = Φ(A ) can also be considered
as a Z2Z4-linear code with 2γ̈+δ+1 coordinates over Z2, which correspond to the
elements of order at most 2 of Zγ̈

2×Zδ
4 .

Now, we will see that the code A can be obtained from Cγ̈,δ by repeating twice
every coordinate. That is, strictly speaking, A is permutation equivalent to {(h,h) :
h ∈ Cγ̈,δ}. Indeed, given v ∈ Zγ̈

2 ×Zδ
4 of order 4 and an affine function f ∈ A ,

the values ϕ+( f (v)) and ϕ+( f (−v)) of the corresponding codeword of Cγ̈,δ each
occurs both in ϕ( f (v)) and ϕ( f (−v)). If the order of v ∈ Zγ̈

2×Zδ
4 is 2 or less, then

ϕ+( f (v)) is duplicated in ϕ( f (v)).
Finally, it is easy to check that the minimum Lee distance for the set of affine

functions A is n = 2γ̈+2δ ; so the minimum Hamming distance of Cγ̈,δ is the half of
this value, that is, n/2.
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Lemma 3. Let f : Zγ̈

2×Zδ
4 → Z4 be an affine function. Then h(·) = ϕ+( f (·)) be-

longs to Cγ̈,δ .

Proof. In the case that f (0) ∈ {0,2}, Cγ̈,δ contains h by definition. On the other
hand, if f (0) ∈ {1,3}, we will use that ϕ+(l) = ϕ+(3− l) for l ∈ Z4. Then, h(·) =
ϕ+( f (·)) = ϕ+(3− f (·)). Since 3− f (·) is an affine function and 3− f (0) ∈ {0,2},
we obtain that h ∈Cγ̈,δ .

Theorem 1. The Z4-linear Hadamard code D
γ,δ̈ of length n and type (0,n/2;γ,δ ) is

permutation equivalent to the Z2Z4-linear Hadamard code C
γ+1,δ̈ of type (α,β ;γ +

2,δ −1) with α 6= 0.

Proof. Consider a function f in B and the related function g(v,e) = f (v)+2e f (0),
where v ∈ Zγ

2×Zδ̈
4 and e ∈ Z2. We can see that

ϕ( f (v)) =
(
ϕ
+(g(−v,1)),ϕ+(g(v,0))

)
,

ϕ( f (−v)) =
(
ϕ
+(g(v,1)),ϕ+(g(−v,0))

)
.

In order to check these equalities, it is convenient to represent f (v) as f0(v)+ f (0),
where f0 : Zγ

2 × Zδ̈
4 → Z4 is a group homomorphism (in particular, f0(−v) =

− f0(v)).
Since g is an affine function from v ∈ Zγ+1

2 ×Zδ̈
4 to Z4, we can deduce from

Lemma 3 that there is a fixed coordinate permutation that sends every codeword of
D

γ,δ̈ to a codeword of C
γ+1,δ̈ .

Corollary 1. There are exactly b t
2c nonequivalent Z2Z4-linear Hadamard codes of

length 2t .

3 The permutation automorphism group

Considering the representation of a code as the union of cosets of its kernel, it is
possible to prove the following fact.

Proposition 1. If δ ≥ 2, then the order of the automorphism group of C satisfies

|Aut(C)| ≤ p ·2
1
2 γ̈(γ̈+1)+2γ̈δ+ 3

2 δ (δ+1)
γ̈

∏
i=1

(2i−1)
δ

∏
j=1

(2 j−1),

where p = 6 if δ = 2 and p = 1 if δ ≥ 3.

By Lemma 3, any nonsingular affine transformation of Zγ̈

2 × Zδ
4 belongs to

Aut(C). Therefore, since for δ ≥ 3, the number of nonsingular affine transforma-
tions coincides with the upper bound given in Proposition 1, we obtain the following
result:
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Theorem 2. The automorphism group of the Z2Z4-linear Hadamard code C of type
(α,β ; γ̈ + 1,δ ), with δ ≥ 3, is the group of nonsingular affine transformations of
Zγ̈

2×Zδ
4 . Therefore, its order is

|Aut(C)|= 2
1
2 γ̈(γ̈+1)+2γ̈δ+ 3

2 δ (δ+1)
γ̈

∏
i=1

(2i−1)
δ

∏
j=1

(2 j−1).

In the case δ = 2, there are non-affine permutations in the automorphism group,
and the resulting formula again coincides with the upper bound of Proposition 1.

Theorem 3. The automorphism group of the Z2Z4-linear Hadamard code C of type
(α,β ; γ̈ +1,2) consists of all permutations expressed as ψα , where α is a nonsin-
gular affine transformations of Zγ̈

2×Z2
4 and ψ is the identity permutation or one of

five non-affine permutations. The order of the automorphism group is

|Aut(C)|= 6 ·2
1
2 γ̈(γ̈+1)+4γ̈+9 ·3

γ̈

∏
i=1

(2i−1).
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