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ABSTRACT. A nonlinear code can be represented as the union of cosets of a linear subcode. Proper-
ties and constructions of new codes from given ones in terms of this representation can be described.
Algorithms to compute the minimum distance of nonlinear codes, based on known algorithms for
linear codes, are also established. Moreover, the performance of these algorithms is studied and an
estimation of the number of enumerated codewords needed in the computations is given.

INTRODUCTION

Let Fq be a finite field with q elements and let Fnq be the set of all vectors of length n over Fq.
The Hamming distance d(u, v) between u, v ∈ Fnq is the number of coordinates in which u and v
differ. The Hamming weight wt(u) of u ∈ Fnq is wt(u) = d(u,0), where 0 is the all-zero vector of
length n. An (n,M, d) q-ary code C is a subset of Fnq with M codewords and minimum distance
d. The vectors of a code are called codewords and the minimum distance, denoted by d(C), is the
minimum value of d(u, v) for all u, v ∈ C and u 6= v.

Two q-ary codes C1 and C2 of length n are said to be equivalent if there is a vector a ∈ Fnq , a
monomial matrixM and an automorphism Γ of the field Fq such thatC2 = {MΓ(c)+a : c ∈ C1}.
Note that two equivalent codes have the same minimum distance. If C is linear, then 0 ∈ C; but
if C is nonlinear, then 0 does not need to belong to C. In this case, we can always consider a new
code C ′ = C − c for any c ∈ C, which is equivalent to C, such that 0 ∈ C ′. Therefore, from now
on, we assume that 0 ∈ C.

Given a q-ary code C, the problem of storing C in memory is a well known problem. If C is
linear, that is, it is a subgroup of Fnq , then it can be compactly represented using a generator matrix.
On the other hand, if C is nonlinear, it can be seen as the union of cosets of a linear subcode of C
[7]. This allows us to represent a code as a set of representative codewords instead of as a set with
all codewords.

Computing the minimum distance of a q-ary code C is necessary in order to establish its error-
correcting capability. However, this problem is computationally difficult, and has been proven to
be NP-hard [4]. If C is linear, d(C) coincides with the minimum weight, denoted by wt(C), and
the Brouwer-Zimmermann minimum weight algorithm for linear codes over finite fields [1, 6] can
be used. This algorithm can be found implemented in the computational algebra system MAGMA
[2, 3, 5]. On the other hand, if C is nonlinear, wt(C) and d(C) do not always coincide, and as
far as we know there is not any algorithm to compute them comparable to Brouwer-Zimmermann
algorithm for linear codes.
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1. REPRESENTATION AND CONSTRUCTION OF NONLINEAR CODES

The kernel of a q-ary code C is defined as KC = {x ∈ Fnq : λx + C = C ∀λ ∈ Fq} [7]. Since
0 ∈ C, KC is a linear subcode of C. We denote by κ the dimension of KC . In general, C can be
written as the union of cosets of KC , and KC is the largest such linear code for which this is true
[7]. Therefore, C =

⋃t
i=0(KC+vi),where v0 = 0, t+1 = M/qκ,M = |C| and L = {v1, . . . , vt}

is the set of coset leaders. Note that for binary codes, t 6= 1, because if t = 1, C = KC∪(KC +v1),
but then C would be linear, so C = KC . It is also important to emphasize that the coset leaders in
this paper are not necessarily the ones having minimum weight in each coset. Since KC is linear, it
can be compactly represented by its generator matrix G of size κ× n. Then, since the kernel takes
up a memory space of order O(nκ), the kernel plus the t coset leaders take up a memory space of
order O(n(κ+ t)).

Using this representation, we can manipulate and construct new nonlinear codes from old ones in
a more efficient way. Specifically, it is possible to show how to establish the equality and inclusion
of two given nonlinear codes from their kernels and coset leaders, and how to compute the ker-
nel and coset leaders of new codes (union, intersection, extended, punctured, shorten, direct sum,
Plotkin sum) from given ones, which are already represented in this way. All these results can be
written to be implemented easily as algorithms. We can obtain the kernel and coset leaders of an
extended code directly from the kernel and coset leaders of the code. The same happens for the
direct sum and Plotkin sum constructions. For all other constructions, we obtain a partial kernel and
the corresponding coset leaders. Although we can not assure which are the final kernel and coset
leaders in these cases, we can speed up the kernel computation by starting from a partial kernel.

2. MINIMUM DISTANCE COMPUTATION

The best known enumerative algorithm for linear codes to compute the minimum weight is the
Brouwer-Zimmermann algorithm, which is based on the next result [5]. LetG be a generator matrix
of a linear code K of dimension κ over Fq. Any set of κ coordinates such that the corresponding
columns of G are linear independent is called an information set for K. Let G1, . . . , Gh be h
systematic generator matrices of K such that they have pairwise disjoint information sets. For any
r < κ, if Si = {mGi : m ∈ Fkq , wt(m) ≤ r} for each matrix Gi, then all c ∈ C\⋃h

i=1 Si satisfy
wt(c) ≥ h(r + 1). After the rth step, we obtain a lower bound h(r + 1) and an upper bound of
the minimum weight, which is the minimum weight of the enumerated codewords. When the two
bounds meet, we obtain wt(K) without enumerating necessarily all codewords. An adaption of
this algorithm enables the use of more generator matrices with overlapping information sets, which
means that the lower bound can grow faster during the enumeration process.

Given a q-ary linear code K of dimension κ and a vector v ∈ Fnq \K, the linear span Kv =
〈K, v〉 =

⋃
λ∈Fq(K + λv) of dimension κ+ 1 is called an extend coset.

Proposition 2.1. Let C =
⋃t
i=0

(
KC + vi

)
. The minimum distance d(C) can be computed as

min({wt(Kvj−vi) : i ∈ {0, 1, . . . , t− 1}, j ∈ {i+ 1, . . . , t}}),where v0 = 0.

Using the representation of nonlinear codes given in Section 1, Proposition 2.1 and the Brouwer-
Zimmermann algorithm, we can design a new algorithm (MinD) to compute the minimum distance
of a nonlinear code C, based on computing wt(Kvj−vi) using the known Brouwer-Zimmermann
algorithm. Note that the complexity of this algorithm depends strongly on the number of coset
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FIGURE 1. Work factors and upper bounds for computing d(C) of ternary nonlin-
ear codes C of length n = 100 and size M = 311 · 6.

leaders t and the complexity of the Brouwer-Zimmermann algorithm, since we need to compute(
t+1

2

)
times the minimum weight of a linear code.

This Algorithm MinD is based on the enumeration of codewords, adding together codewords and
determining their minimum weight. The nature of these computations gives rise to a natural perfor-
mance measure, which is referred to as work [5]. One unit of work represents both an addition and
the weight computation of a single coordinate position. An estimate of the total work an algorithm
performs is referred to as work factor. Therefore, work factors provide us with a tool for comparing
the performance of algorithms based on enumeration. For example, note that the work factor for
computing the minimum distance using a brute force algorithm is log2(q)n

(
qκ(t+1)

2

)
.

Proposition 2.2. LetC be a nonlinear code of length n with kernel of dimension κ and coset leaders
{v1, . . . , vt}. The work factor for computing d(C) using Algorithm MinD is

(1)
t−1∑

i=0

( t∑

j=i+1

(
log2(q)(n− κ− 1)dn/(κ+ 1)e

r̄i,j∑

r=1

(
κ+ 1

r

)
(q − 1)r−1

))

where r̄i,j is the smallest integer such that bn/(κ+ 1)c(r̄i,j + 1) + max(0, r̄i,j + 1 − (κ + 1 − n
mod (κ+ 1))) ≥ wt(Kvj−vi).

Note that the work factor for computing d(C) relies on the parameters r̄i,j , which depend on
wt(Kvj−vi), and they may be different for any i, j. Therefore, it is impossible to estimate the work
factor if only the values n, κ and t are given. However, we can consider an upper bound of the
work factor, and from that be able to estimate easily the work factor for computing d(C). Since for
any extend coset Kv we have that wt(Kv) ≤ wt(KC), we can obtain an upper bound by replacing
wt(Kv) with wt(KC).

Proposition 2.3. Let C be a nonlinear code of length n with kernel KC of dimension κ and t coset
leaders. An upper bound for the work factor of computing d(C) using Algorithm MinD is given by

(2)
(
t+ 1

2

)
log2(q)(n− κ− 1)dn/(κ+ 1)e

r̄∑

r=1

(
κ+ 1

r

)
(q − 1)r−1
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where r̄ is the smallest integer such that bn/(κ+ 1)c(r̄+1)+max(0, r̄+1−(κ+1−n mod (κ+
1))) ≥ wt(KC).

From Algorithm MinD, it is easy to see that the weight of some codewords in the kernel KC is
computed several times, specifically, once for each Kvj−vi , where i, j ∈ {0, 1, . . . , t} and i < j.
Moreover, we need to compute the weight of extra vectors which belong to KC + λ(vj − vi),
where λ ∈ Fq\{0, 1}. However, we can make a little adjustment to the algorithm, in order to avoid
this extra computation. In Brouwer-Zimmermann algorithm, the enumerating process is divided
into several steps. In the rth step, it enumerates all linear combinations of r rows of the generator
matrix of Kvj−vi of dimension κ + 1, examines the minimum weight of each combination and
compares it with the lower bound. We can simplify this and enumerate only the codewords in each
coset KC + vj − vi. Then, in the rth step, we enumerate all linear combinations of r rows of the
generator matrix of KC of dimension κ and compute the weight of each combination adding the
vector vj − vi. After this adjustment, the work factor using the improved Algorithm MinD, which
is referred as Algorithm IMinD, can be reduced. Moreover, as before, we can also establish an
upper bound for the work factor by using the same argument as in Proposition 2.3. Using this upper
bound, again it is possible to estimate the work factor for computing d(C) from the parameters n,
κ, t and wt(KC) of a q-ary nonlinear code C. Note that the results on these upper bounds for the
work factors allow to establish from which parameters of the given code, it is better to use the new
presented algorithms instead of the brute force method.

Figure 1 shows the work factors (and the work factors upper bounds) for computing d(C) using
Algorithms MinD, IMinD and brute force, respectively. Note that when κ is large, Algorithms
MinD and IMinD save a lot of time. Moreover, we can see the improvement on Algorithm MinD.
In both tables, the work factors are expressed in logarithmic scale.
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