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Abstract

In a previous work, the authors found new families of linear binary completely

regular codes with the covering radius ρ = 3 and ρ = 4. In this paper, the

automorphism groups of such codes are computed and it is proven that the

codes are not only completely regular, but also completely transitive. From

these completely transitive codes, in the usual way, i.e., as coset graphs,

new presentations of infinite families of distance transitive coset graphs of

diameter three and four, respectively, are constructed.
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1. Introduction

In a recent paper [1] we described completely regular codes which are

halves of a binary Hamming code, obtained by adding one row to the parity

check matrix of a Hamming code. As a result we obtained three new infinite
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families of linear binary completely regular codes with covering radius ρ = 3

and 4.

This paper is an addendum to [1] and the purpose is to prove that all

completely regular codes constructed in [1] are completely transitive. This is

proved in Section 2. In the usual way, i.e., as coset graphs, we will see that

new infinite families of completely transitive codes induce new presentations

of infinite families of distance transitive coset graphs of diameter three and

four. For the basic definitions and notation on completely regular codes and

distance regular graphs we refer to [1].

2. Completely transitive codes and distance transitive graphs

For a binary code C, we denote by Aut(C) the group of coordinate per-

mutations that leaves C invariant.

Definition 2.1. [3, 7] A binary linear code C with covering radius ρ is com-
pletely transitive if Aut(C) has ρ+ 1 orbits when acts on the cosets of C.

Since two cosets in the same orbit should have the same weight distri-

bution, it is clear that any completely transitive code is completely regular

[7].

Definition 2.2. [2] A connected graph Γ of diameter d is distance transitive
if it admits an automorphism group which is transitive on each of the sets
{(γ, δ) | d(γ, δ) = i} for 0 ≤ i ≤ d.

A distance transitive graph is also distance regular [2].

Let Hm denote the parity check matrix of the Hamming code Hm of

length n = 2m − 1, where the column hi of Hm is the binary representation

of αi, i = 0, 1, ..., n − 1, through the polynomial base α0, α1, ..., αn−1, where
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α is a primitive element of the finite field F2m . For a given even m ≥ 4 and

any i1, i2 ∈ {0, 1, 2, 3}, where i1 6= i2, denote by vi1,i2 = (v0, v1, ..., vn−1) the

binary vector whose i-th position vi is a function of the weight of the column

hi:

vi =

 1, if wt(hi) ≡ i1 or i2 (mod 4),

0, otherwise.
(1)

Let F be the binary field. The vector vi1,i2 can be seen as a boolean

function fi1,i2 over Fm\{0}, where:

fi1,i2(x) =

 1, if wt(x) ≡ i1 or i2 (mod 4)

0, otherwise.

It is well known [4] that the automorphism group Aut(Hm) of the Ham-

ming code is isomorphic to the general linear group GL(m, 2) of all the m×m

nonsingular matrices over F. This group Aut(Hm) acts 2-transitively over

the set of coordinate positions (or columns of Hm) and has more powerful

transitivity properties. It is well known, for example, that given any pair of

ordered sets of m positions (corresponding to independent column vectors

in Hm), there exists a permutation in Aut(Hm) moving one set to the other

one.

Theorem 2.1. Assume that i1 − i2 ≡ 1 (mod 2) and let Hm be the parity
check matrix of the Hamming [n, n − m, 3] code Hm of length n = 2m − 1,
where m is even, and let Hm(vi1,i2) be obtained from Hm by adding one more
row vi1,i2 given by (1). Let C = Ci1,i2 be the [n, n −m − 1, 3] code with the
parity check matrix Hm(vi1,i2). Then, the group Aut(C) coincides with the
symplectic group Sp(m, 2).
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Proof: In [6, Th. 2.2] it was proved that for any even m, m ≥ 4, the

function fi1,i2 is quadratic for i1 − i2 ≡ 1 (mod 2). In these cases we have:

f2,3(x) = xQxT ,

f1,2(x) = xQxT + LxT ,

f0,1(x) = xQxT + ε,

f0,3(x) = xQxT + LxT + ε,

(2)

where Q is the all-one upper triangular binary m×m matrix with zeroes in

the diagonal, L is the all-one binary vector of length m, ε = 1 and x ∈ Fm.

Associated to fi1,i2 there is a symplectic form [4, Ch. 15. §2] defined by:

B(u,v) = fi1,i2(u + v) + fi1,i2(u) + fi1,i2(v) + ε, (3)

where u,v ∈ Fm and ε = 1 or ε = 0 when 0 ∈ {i1, i2} or 0 /∈ {i1, i2},

respectively.

From [4] we know that, Aut(C) = Aut(C⊥) and so, a permutation of the

coordinate positions represented by the n×nmatrix P is in Aut(C) if and only

if Hm(vi1,i2)P is again a parity check matrix for code C. Moreover, follow-

ing [5], the above condition happens if and only if Hm(vi1,i2) and Hm(vi1,i2)P

are related by a linear transformation of coordinates, which we denote by K.

This is the key point. This means that finding the automorphism group

Aut(C) is reduced to find all the nonsingular m ×m matrices K preserving

the symplectic form B. So, such that B(Ku, Kv) = B(u,v). Hence, the

automorphism group Aut(C) is isomorphic to the symplectic group Sp(m, 2).

This proves the statement. 2

Now, we are ready to prove that the group Aut(C) acts transitively over

C(i) = {x + C : x ∈ Fn, d(x, C) = i}, for any i ∈ {0, 1, 2, 3}.

4



Corollary 2.1. The code C = Ci1,i2, constructed as in Theorem 2.1 is com-
pletely transitive.

Proof: It is known from [1] that C is a completely regular code with

covering radius 3. Now, we have to prove that under action of Aut(C) all

cosets of C are partitioned into 4 orbits. Since there is only one coset of

weight 3 we have to consider only cosets of weights 1 and 2.

Consider cosets of weight 1. It is clear from the construction of Aut(C)

that there exists an automorphism swapping any two columns in Hm and so,

moving a coset of weight 1 to any other one.

Consider cosets of weight 2, say, D = C + x, where wt(x) = 2. Let

supp(x) = {j1, j2}. Since x is not covered by weight 3 codewords, we conclude

that fi1,i2(hj1 + hj2) 6= fi1,i2(hj1) + fi1,i2(hj2) and so, B(hj1 ,hj2) 6= ε. But, as

Aut(C) is constructed, any pair of columns hj1 ,hj2 such that B(hj1 ,hj2) 6= ε

can be moved to any other pair, with the same property, by some element

in Aut(C). Therefore any coset of weight 2 can be moved by the action of

Aut(C) to any other coset of weight 2. 2

As a consequence, we have the following result, which strengthen the

corresponding result in [1].

Theorem 2.2. Let Hm be the parity check matrix of the Hamming code Hm

of length n = 2m − 1, where m is even, and let Hm(vi1,i2) be obtained from
Hm by adding one more row vi1,i2 given by (1). Let C = Ci1,i2 be the code
with parity check matrix Hm(vi1,i2).

• If {i1, i2} = {0, 1} or {0, 3}, then C is a non antipodal completely tran-
sitive code with covering radius ρ = 3 and intersection array (n, (n −
3)/2, 1; 1, (n− 3)/2, n).

• If {i1, i2} = {1, 2} or {2, 3}, then C is an antipodal completely tran-
sitive code with covering radius ρ = 3 and intersection array (n, (n +
1)/2, 1; 1, (n+ 1)/2, n).
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• If {i1, i2} = {0, 2}, then C is an even part of the Hamming code, i.e., a
completely transitive [n, k − 1, 4] code with covering radius ρ = 3.

• If {i1, i2} = {1, 3}, then C is the Hamming code Hm.

Consider the extended codes from the ones obtained above. We give one

lemma from [1], about dual weights of codes C∗i1,i2 . By H∗m we denote an

extended Hamming code of length 2m and by v∗i1,i2 the extended vector of

vi1,i2 .

Lemma 2.1. [1] Let m be even. The weight distribution of the coset v∗i1,i2 +
(H∗m)⊥ is:

• {2m−1 ± 2
m
2
−1}, when i1 − i2 = 1 (mod 2).

• {0, 2m−1}, when {i1, i2} = {1, 3}.

• {2m−1, 2m}, when {i1, i2} = {0, 2}.

Note that it is not the same to extend the code Ci1,i2 or to add a new row

vi1,i2 to the parity check matrix of the extended code C∗. The next lemma

will show us the difference.

Lemma 2.2. Let i1− i2 ≡ 1 (mod 2). We have that (Ci1,i2)∗ = (C∗)i1+1,i2+1,
where the addition of the indices is modulo 4, if and only if 0 /∈ {i1, i2}.

Proof: Adding the row vi1,i2 given by (1) to matrix Hm we obtain a parity

check matrix for Ci1,i2 . Extending this code we obtain the same code as the

one obtained after adding the row vi1+1,i2+1 to the parity check matrix H∗m

(matrix H∗m is obtained from Hm adding a zero column and, later, the all-one

row). The point is that this row vi1+1,i2+1 is of even weight (Lemma 2.1) and

so, has a zero in the parity check position if and only if 1 /∈ {i1 + 1, i2 + 1}

or the same, if 0 /∈ {i1, i2}. 2
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From [1] we know that the code C∗i1,i2 is completely regular if and only

if 0 /∈ {i1, i2}. In this case, since Lemma 2.2, it is the same to refer to the

extension of Ci1,i2 or to refer to (C∗)i1+1,i2+1. Furthermore, the automorphism

group of the extension depends on this situation.

Theorem 2.3. Let i1 − i2 ≡ 1 (mod 2) and 0 /∈ {i1, i2}. Let C∗ be the
extended code of C = Ci1,i2. Then:

Aut(C∗) = Aut(C) n Fm = Sp(m, 2) n Fm.

Proof: Let h1, . . . ,hn ∈ Fm be the columns of Hm, where n = 2m − 1,

and let h0 be the zero vector in Fm. Vector hi represent the ith coordinate

positions of the codewords in C and also in C∗ (assuming that the parity check

position corresponds to vector h0). For any v ∈ Fm, let Tv : Fm −→ Fm be

the translation on Fm defined by Tv(x) = x + v, for any x ∈ Fm. We

can also think of Tv as acting on C∗ by permuting the coordinates of the

codewords in C∗. More precisely, we can define Pv : Fn+1 −→ Fn+1 such

that for any z = (z0, . . . , zn) ∈ Fn+1, Pv(z) = (y0, . . . , yn), where yj = zi if

Tv(hi) = v + hi = hj, for i = 0, . . . , n. As all the codewords in C∗ have even

weight it is clear that Pv is in Aut(C∗). Indeed, let a = (a0, . . . , an) ∈ C∗.

This means that
∑n

i=0 aihi = 0. Now,
∑n

i=0 ai(hi + v) =
∑n

i=0 aiv = 0 and

Pv(a) ∈ C∗.

Furthermore, Pm = {Pv : v ∈ Fm} is a normal subgroup in Aut(C∗).

Indeed, for any φ ∈ Aut(C∗) we have that φPvφ
−1 is again a permutation

Pw, where w = φ(v). For any element α ∈ Aut(C∗), it is clear that we can

find α′ ∈ Aut(C∗) fixing the extended coordinate and a vector u ∈ Fm, such

that α = α′Pu. Therefore, we have Aut(C∗)/Pm
∼= Aut(C) and so Aut(C∗)
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is the semidirect product of Fm and Aut(C) (obviously, we can identify Pm

with Fm). This proves the statement. 2

Theorem 2.4. The code C∗i1,i2 is completely transitive with ρ = 4 and inter-
section array (n+ 1, n, n+1

2
, 1; 1, n+1

2
, n, n+ 1) if and only if 0 /∈ {i1, i2}.

Proof: From [1] we know that the code C∗i1,i2 is completely regular if

and only if 0 /∈ {i1, i2} and also we know the intersection array for these

cases. Therefore, if this condition is not satisfied, the code is not completely

regular and neither completely transitive. Hence, we have to prove that the

completely regular code C∗ = C∗i1,i2 is completely transitive. To do so, we

prove that all the cosets with the same minimum weight are in the same

orbit by the action of Aut(C∗).

The number of cosets of C∗ are twice the cosets of C. Let 0 be the parity

check position. If v + C is a coset of C, where v is a representative vector

of minimum weight then (0|v) + C∗ and (1|v) + C∗ are cosets of C∗. There

is only one coset of C∗ of weight 4, namely (1|v) + C∗, where v + C is the

only coset of weight three in C. Clearly this coset is fixed under the action

of Aut(C∗).

Now consider the cosets of C∗ of weight r ∈ {1, 2, 3}. They are of the

form (0|v) + C∗, where v + C is a coset of weight r of C and of the form

(1|v) + C∗, where v + C is a coset of weight r − 1 of C. Cosets of the

same minimum weight in C can be moved among them by Aut(C) and so, as

Aut(C) ⊂ Aut(C∗) we need only to show that there exist an automorphism

in Aut(C∗) moving (0|v) + C∗ to (1|v′) + C∗, where v,v′ are at distance r

and r − 1 from C, respectively. We further assume that supp(v′) ⊂ supp(v)

and so, supp(v) = supp(v′) ∪ {i}, for some coordinate position i 6= 0. The
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existence of the wanted automorphism is straightforward from Theorem 2.3.

The automorphism Thi
(see the proof of Theorem 2.3) moves (0|v) + C∗ to

(1|v′′) + C∗, where supp(v′′) = {j + i : j ∈ supp(v′)} and, finally, by using

an automorphism from Aut(C) we can move from v′′ + C to v′ + C. 2

Given a linear code C, the coset graph of C is the graph whose vertices

are the cosets C + x of C and such that two vertices are adjacent if the

corresponding cosets contain neighbor vectors. Denote by Γi1,i2 (respectively,

Γ∗i1,i2) the coset graph, obtained from the code Ci1,i2 (respectively C∗i1,i2). From

Theorems 2.2 and 2.4 we obtain the following result, which gives a new

description, as coset graphs, of some known graphs.

The next theorem was stated in [1] without explaining the property of

transitivity of such graphs that we include here.

Theorem 2.5. For any even m, m ≥ 4 there exist imprimitive and antipo-
dal distance transitive coset graphs Γ0,1, Γ1,2 with v = 2m+1 vertices and Γ∗1,2
with v = 2m+2 vertices. Specifically:

• Γ0,1 has the intersection array (n, n−3
2
, 1; 1, n−3

2
, n).

• Γ1,2 has the intersection array (n, n+1
2
, 1; 1, n+1

2
, n).

• Γ∗1,2 has the intersection array (n+ 1, n, n+1
2
, 1; 1, n+1

2
, n, n+ 1).

• The graphs Γ0,1 and Γ1,2 are Q-polynomial.

All the graphs Γ0,1, Γ1,2 and Γ∗1,2 are known as can be seen in [1].
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