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Abstract

Permutation decoding is a technique which involves finding a subset S, called PD-
set, of the permutation automorphism group PAut(C) of a code C in order to assist
in decoding. A method to obtain s-PD-sets of size s + 1 for partial permutation
decoding for the binary linear Hadamard codes Hm of length 2m, for all m ≥ 4 and
1 < s ≤ b(2m −m− 1)/(1 + m)c, is described. Moreover, a recursive construction
to obtain s-PD-sets of size s+ 1 for Hm+1 of length 2m+1, from a given s-PD-set of
the same size for the Hadamard code of half length Hm is also established.
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1 Introduction

Let Fn2 be the set of all binary vectors of length n. The Hamming weight wt(v)
of a vector v ∈ Fn2 is the number of nonzero coordinates in v. The Hamming
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distance d(u, v) between two vectors u, v ∈ Fn2 is the number of coordinates
in which u and v differ, that is, d(u, v) = wt(u + v). Let 0 and 1 denote the
all-zero and all-one vectors, respectively.

A binary code C of length n is a subset of Fn2 . The vectors of a code C are
called codewords and the minimum (Hamming) distance, denoted by d, is the
smallest distance between any pair of different codewords in C. We said that
a code C is a t-error-correcting code if it corrects all error vectors of weight
at most t and does not correct at least one error vector of weight t + 1, so
t =

⌊
d−1
2

⌋
[7]. A binary code C is linear if it is a k-dimensional subspace of

Fn2 . A generator matrix for a linear code C of length n and dimension k is any
k × n matrix G whose rows forms a basis of C.

Let C be a binary code of length n. For a vector v ∈ Fn2 and a set I ⊆
{1, . . . , n}, we denote by vI the restriction of the vector v to the coordinates
in I and by CI the set {vI | v ∈ C}. For example, if I = {1, . . . , k} and
v = (v1, . . . , vn), then vI = (v1, . . . , vk). Suppose that C has size |C| = 2k.
A set I ⊆ {1, . . . , n} of k coordinate positions is an information set for C if
|CI | = 2k. For each information set I ⊆ {1, . . . n} of k coordinates positions,
the set {1, . . . , n}\I of the remaining n− k coordinate positions is a check set
for C. If C is linear, we can label the ith coordinate position by the ith column
of a generator matrix of C, so we will consider any information set (or check
set) not only as a set of coordinate positions, but also as the set of vectors
representing these positions.

Let Sym(n) be the symmetric group of permutations on the set {1, . . . , n}
acting on Fn2 by permuting the coordinates of each vector. More specifically,
for every vector v = (v1, . . . , vn) ∈ Fn2 and permutation σ ∈ Sym(n), we
define σ(v1, . . . , vn) = (vσ−1(1), . . . , vσ−1(n)). Then, for any binary code C,
we denote by PAut(C) the permutation automorphism group of C, that is,
PAut(C) = {σ ∈ Sym(n) | σ(C) = C}.

Permutation decoding is a technique, introduced in [7] by MacWilliams,
which involves finding a subset S, called PD-set, of the permutation auto-
morphism group PAut(C) of a code C in order to assist in decoding. The
method works as follows: Given a t-error-correcting linear code C ⊆ Fn2 with
fixed information set I, we denote by y = x + e the received vector, where
x ∈ C and e is the error vector. Suppose that at most t errors occur, that is,
wt(e) ≤ t. The aim of permutation decoding is to move all errors in a received
vector out the information positions, that is, move the nonzero coordinates of
e out of I, by using an automorphism of the code.

Let C be a t-error-correcting linear code with information set I. A subset
S ⊆ PAut(C) is a PD-set for the code C if every t-set of coordinate positions



is moved out of the information set I by at least one element of the set S.
Equivalently, a subset S ⊆ PAut(C) is an s-PD-set if every s-set of coordinate
positions is moved out of I by at least one element of S, where 1 ≤ s ≤ t.

Let Sm be the binary simplex code of length 2m − 1, dimension m and
minimum distance 2m−1 with generator matrix GSm containing as column
vectors the 2m − 1 nonzero vectors from Fm2 , with the basis elements eTi , i ∈
{1, . . . ,m}, in the first m positions. We take the set of standard basis elements
of Fm2 to be the information set Im of this code, that is, Im = {e1, . . . , em}. Let
Hm be the binary linear Hadamard code of length 2m, that is, the extended
code of the simplex code Sm with generator matrix GHm constructed from
GSm by adding an all-one row vector and an all-zero column vector as follows:

GHm =

 1 1

0 GSm

 . (1)

Now we consider as information set for Hm the set Im = {w1, . . . , wm+1} =
{(1, 0, . . . , 0), (1, 1, . . . , 0), . . . , (1, 0, . . . , 1)} consisting of the first m+1 column
vectors from the matrix GHm considered as row vectors. The check set Cm for
Hm is the set containing the remaining column vectors from the matrix GHm

considered as row vectors and denoted by Cm = {wm+2, . . . , w2m}.
It is a well-know fact that PAut(Sm) = GL(m, 2), where GL(m, 2) is the

general linear group of degree m over F2. It is also known that PAut(Hm) =
AGL(m, 2) [8]. Recall that the affine group AGL(m, 2) consists of all map-
pings α : Fm2 → Fm2 of the form α(xT ) = AxT + bT for x ∈ Fm2 , where
A ∈ GL(m, 2) and b ∈ Fm2 , together with the function composition as the
group operation. The monomorphism ϕ : AGL(m, 2)→ GL(m+ 1, 2),

ϕ(b, A) =

 1 b

0 A

 ,

defines an isomorphism between AGL(m, 2) and the subgroup of GL(m+1, 2)
consisting of all nonsingular matrices whose first column is (1, 0, . . . , 0). From
now on, we identify the AGL(m, 2) with this subgroup.

Now, we describe how to identify a permutation σ ∈ PAut(Hm) ⊆ Sym(2m)
with a matrix B ∈ AGL(m, 2). Recall that each coordinate position can be
labelled by the corresponding column of the generator matrix GHm given in
(1). The first m + 1 coordinate positions are labelled by the vectors of the
information set Im and the remaining coordinate positions are represented by
the vectors of the check set Cm. The vector wi represents the ith position, for



all i ∈ {1, . . . , 2m}. Note that an index i ∈ {1, . . . ,m+1} represents a position
in Im and an index i ∈ {m+2, . . . , 2m} a position in Cm. Thus, wiB = wj will
denote that the ith position of a codeword moves to the jth position of that
codeword. Therefore, any matrix B ∈ AGL(m, 2) can be seen as an element
of PAut(Hm) ⊆ Sym(2m). Along the paper, we will represent PD-sets for Hm

as subsets of matrices of the affine group AGL(m, 2).

In [3], it is shown how to find s-PD-sets of size s + 1 that satisfy the
Gordon-Schönheim bound for partial permutation decoding for the binary
simplex code Sm, for all m ≥ 4 and 1 < s ≤

⌊
2m−m−1

m

⌋
. In this paper, we

establish similar results for the binary linear Hadamard code Hm, for all m ≥ 4
and 1 < s ≤

⌊
2m−m−1

1+m

⌋
, following the same techniques as the ones described in

[3]. In [9], a 2-PD-set of size 5 and 4-PD-sets of size
(
m+1
2

)
+ 2 are found for

binary linear Hadamard codes Hm, for all m > 4. As a consequence, 3-PD-sets
of size

(
m+1
2

)
+ 2 are also found for these codes. Small PD-sets that satisfy

the Gordon-Schönheim bound have been found for binary Golay codes [4,10]
and for the binary simplex code S4 [5,6].

This work is organized as follows. In Section 2, we adapt the so-called
Gordon-Schönheim bound for Hm and we define a bound that allow us to
obtain s-PD-sets of size s+ 1 for Hm. In Section 3, we provide a criterion on
subsets of matrices of AGL(m, 2) to be an s-PD-set of size s+1. In Section 4,
we define a recursive construction to obtain s-PD-sets of size s + 1 for Hm+1

from a given s-PD-set of the same size for Hm. Finally, in Section 5, we show
the conclusions and a further research on this topic.

2 Bound on the minimum size of s-PD-sets for Hm

There is a well-known bound on the minimum size of PD-sets for linear codes
based on the length, the dimension and the minimum distance of such codes.

Proposition 2.1 [4] Let C be a t-error correcting linear code of length n,
dimension k and minimum distance d. Let r = n− k be the redundancy of C.
If S is a PD-set for C, then

|S| ≥
⌈
n

r

⌈
n− 1

r − 1

⌈
. . .

⌈
n− t+ 1

r − t+ 1

⌉
. . .

⌉⌉⌉
.

The above inequality is often called the Gordon-Schönheim bound. Recall
that a linear code with minimum distance d can correct up to

⌊
d−1
2

⌋
errors,

so for the binary linear Hadamard code Hm, we have that its error-correcting



capability, denoted by tm, is tm = 2m−2 − 1. We do not take into account the
case m = 3 in our results since t3 = 1. The Gordon-Schönheim bound can
be adapted to s-PD-sets for all s up to the error correcting capability of the
code. We compute the function gm(s) defined by the right side of this bound
given in Proposition 2.1 in the particular case of the binary linear Hadamard
code Hm, for all 1 ≤ s ≤ tm. The minimum value of gm(s) is also computed.

Lemma 2.2 Let m be an integer, m ≥ 4. Let Hm be the binary linear
Hadamard code. For 1 ≤ s ≤ tm,

gm(s) =

⌈
2m

2m −m− 1

⌈
2m − 1

2m −m− 2

⌈
. . .

⌈
2m − s+ 1

2m −m− s

⌉⌉
. . .

⌉⌉
≥ s+ 1,

where tm = 2m−2 − 1 is the error-correcting capability of Hm.

The smaller the size of the PD-set is, the more efficient permutation de-
coding becomes. Because of this, we will focus on the case when we have that
gm(s) = s + 1. Let m be an integer, m ≥ 4. For the binary linear Hadamard
code Hm, we define fHm = max{s | 2 ≤ s, gm(s) = s + 1}. For each Hm, the
integer fHm represents the greater s in which we can find s-PD-sets of size
s+ 1. The following result characterize this parameter from the value of m.

Lemma 2.3 For m ≥ 4, fHm =
⌊
2m−m−1

1+m

⌋
.

3 Finding s-PD-sets of size s+ 1 for Hm

Let M be a matrix of GL(m, 2). We can regard the rows of M as row vectors
and consider the set V = {v1, . . . , vm} consisting of such row vectors. We
define M∗ as the matrix with rows given by V ∗ = {v1, v1 + v2, . . . , v1 + vm}.
We denote by Idm the m×m identity matrix.

An s-PD-set of size s+1 meets the Gordon-Schönheim bound for correction
of s errors if s ≤ fHm . The following proposition provides us a condition on
sets of matrices of AGL(m, 2) in order to be s-PD-sets of size s+ 1.

Proposition 3.1 Let Hm be the binary linear Hadamard code of length n =
2m, with m ≥ 4. Let Ps = {Mi | 0 ≤ i ≤ s} be a set of s + 1 matrices in
AGL(m, 2). Then, Ps is an s-PD-set of size s + 1 for Hm if and only if no
two matrices (M−1

i )∗ and (M−1
j )∗ for i 6= j have a row in common. Moreover,

any subset Pk ⊆ Ps of size k + 1 is a k-PD-set for k ∈ {1, . . . , s}.



Example 3.2 The set of matrices P2 = {Id5,M1,M2}, where

M1 =



1 1 1 1 1

0 0 0 0 1

0 0 1 0 0

0 1 0 0 1

0 0 1 1 0


and M2 =



1 1 1 1 1

0 1 0 0 1

0 0 1 1 0

0 0 1 0 0

0 0 0 0 1


,

is a 2-PD-set for the binary linear Hadamard code H4 of length 16. Note that
P2 ⊂ AGL(4, 2) ⊂ GL(5, 2). It is straightforward to check that Id∗5,

(M−1
1 )∗ =



1 0 0 1 1

1 1 0 0 1

1 0 1 1 1

1 0 1 1 0

1 1 0 1 1


and (M−1

2 )∗ =



1 1 1 0 0

1 0 1 0 1

1 1 1 1 0

1 1 0 1 0

1 1 1 0 1


have no rows in common. In addition, note that fH4 = 2, so no s-PD-set
of size s + 1 can be found for s ≥ 3. We can also observe that fH4 = 2 <
3 = t4, where t4 is the error-correcting capability of H4. In fact, the value
of the bound fHm is always smaller than tm, for all m ≥ 4. Finally, P2

can be regarded as a subset of Sym(16). In this case, we obtain the 2-PD-
set {id, σ1, σ2} where σ1 = (1, 14, 11, 9, 6, 10, 13, 3, 15, 5, 16, 2, 12, 8)(4, 7) and
σ2 = (1, 14, 11, 2, 7, 9, 5, 12, 3, 16, 13, 6)(4, 15, 8, 10).

Let S be an s-PD-set of size s + 1. The set S is a nested s-PD-set if
there is an ordering of the elements of S, S = {σ0, . . . , σs}, such that Si =
{σ0, . . . , σi} ⊆ S is an i-PD-set of size i + 1, for all i ∈ {0, . . . , s}. Note
that Si ⊂ Sj if 0 ≤ i < j ≤ s and Ss = S. From Proposition 3.1, we have
two important consequences. The first one is related to how to obtain nested
s-PD-sets and the second one provides another proof of Lemma 2.3.

Corollary 3.3 Let m be an integer, m ≥ 4. If Ps is an s-PD-set of size s+ 1
for the binary linear Hadamard code Hm, then any ordering of the elements
of Ps gives nested k-PD-sets for k ∈ {1, . . . , s}.



Corollary 3.4 Let m be an integer, m ≥ 4. Let Ps be an s-PD-set of size
s+ 1 for the binary linear Hadamard code Hm. Then, s ≤

⌊
2m−m−1

1+m

⌋
.

4 Recursive construction of s-PD-sets of size s+ 1

Given an s-PD-set of size s + 1 for the binary linear Hadamard code Hm of
length 2m, where 0 ≤ s ≤ fHm , we can construct recursively an s-PD-set of
the same size for Hm′ of length 2m

′
, for all m′ > m.

Let M ∈ AGL(m, 2) and v = (0, v2 . . . , vm+1) be the last row of the matrix
M . We define the matrix M(v) ∈ AGL(m+ 1, 2) as

M(v) =


1

0 M
...

0 1 v2 . . . vm+1

 . (2)

Since the first column of M(v) is e1 = (1, 0, . . . , 0), we can guarantee that the
first column of M(v)−1 is e1 as well. Thus, M(v), M(v)−1 ∈ AGL(m + 1, 2).
Also note that v ∈ Fm+1

2 depends on each M ∈ AGL(m, 2).

Proposition 4.1 Let m be an integer, m ≥ 4, and Ps = {Idm+1,M1, . . . ,Ms}
be an s-PD-set of size s+1 for the binary linear Hadamard code Hm. Let Ni =
M−1

i , for all i ∈ {1, . . . , s}. Then, Qs = {Idm+2, (N1(v))−1, . . . , (Ns(v))−1} is
an s-PD-set of size s+ 1 for the binary linear Hadamard code Hm+1.

Example 4.2 Considering the matrices from the 2-PD-set P2 = {Id5,M1,M2}
for H4 of length 16, given in Example 3.2, matrices N1(v) = (M−1

1 )(v) and
N2(v) = (M−1

2 )(v) are

N1(v) =



1 1 0 0 1 1

0 0 1 0 1 0

0 0 0 1 0 0

0 0 0 1 0 1

0 0 1 0 0 0

0 1 1 0 0 0


and N2(v) =



1 1 1 1 0 0

0 0 1 0 0 1

0 0 0 0 1 0

0 0 0 1 1 0

0 0 0 0 0 1

0 1 0 0 0 1


.



Note that the last row of N1 is v = (0, 1, 0, 0, 0), and the last row of N2 is
v = (0, 0, 0, 0, 1). Since matrices Id∗6, (N1(v))∗ and (N1(v))∗ have no rows in
common, the set {Idm+2, (N1(v))−1, (N2(v))−1} is a 2-PD-set for H5.

Note 1 Proposition 4.1 is also true if we define the matrix M(v) taking as
vector v any of the last m rows of M instead of the last one as in (2).

Note 2 The bound fHm+1 for Hm+1 cannot be achieve recursively from an s-
PD-set for Hm. The recursive construction only works when fixing the number
s of errors we want to correct and increasing the length of the Hadamard code.

5 Conclusions and further research

In this work, we studied how to find s-PD-sets for partial permutation decod-
ing for binary linear Hadamard codes. An alternative permutation decoding
algorithm for Z2Z4-linear codes [2] is described in [1]. In particular, it can be
applied to Hadamard Z2Z4-linear codes. Nevertheless, this method assumes
that we know an appropriate PD-set for such codes. Further work will be
study how to find s-PD-sets for Hadamard Z2Z4-linear codes (not necessarily
binary linear Hadamard codes) and establish the size of these s-PD-sets.

References

[1] Bernal, J. J., J. Borges, C. Fernández-Córboda, and M. Villanueva,
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