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Abstract
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committees, a subset of new members from a given set of candidates. After knowing

the elected candidates, former members may decide either stay or exit the society.

We analyze the voting behavior of members who take into account the e¤ect of

their votes not only on the elected candidates, but also on the �nal composition
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1 Introduction

Societies use voting rules to make decisions. The elections of representatives in

democratic societies, the public positions taken up by political parties on di¤erent

issues, or the admission of new members in a society are some examples of this. For

this last example, Barberà, Sonnenschein, and Zhou (1991) consider the problem

where a �nite set of members who originally make up a society has to decide which

candidates, to be chosen from a given set, will be elected to become new members

of the society. They assume that former members of the society cannot leave it

as a result of its change in composition. But often, the entrance of new members

trigger the exit of former ones. For the static setting where members cannot leave the

society, they characterize voting by committees as the class of strategy-proof and onto

social choice functions whenever members�preferences over subsets of candidates are

either separable or additively representable. However, strategy-proofness becomes

too strong whenever the mentioned evolution of the society is explicitly considered.

The aim of this paper is to study the strategic behavior of members by means of the

analysis of undominated pure strategy Nash equilibria in a complete information

setting where all members�preferences are common knowledge.1

Three lines of research have already focused on the analysis of strategic equilibria

under complete information. A �rst one considers a society that, during a �xed and

commonly known number of periods, may admit in each period a subset of new mem-

bers. Within this dynamic setup, an interesting issue arises: voters, at earlier stages,

vote not only according to whether or not they like a candidate but also according

to their tastes concerning future candidates. Barberà, Maschler, and Shalev (2001)

study the particular case where members have dichotomous preferences (candidates

are either friends or enemies) and the voting rule used by the society is quota one

(it is su¢ cient to receive one vote to be elected). They identify and study (subgame

perfect and trembling-hand perfect) equilibria where members exhibit, due to the

dynamics of the game, complex strategic voting behavior. Granot, Maschler, and

Shalev (2002) study a similar model with expulsion; current members of the society

have to decide each period whether to admit by unanimity new members into the

society and whether to expel current members by others�unanimity. They study

equilibria for di¤erent protocols which depend on whether the expulsion decision has

1A more di¢ cult line of research would consist of considering incomplete information and con-

centrating on the analysis of Bayesian equilibria, for example. But this is outside the scope of this

paper.
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to be taken each period either simultaneously with, before, or after the admission

decision.

In a second line of research, a set of voters and a set of candidates (which may

overlap) must select a representative candidate (or a subset of them). The key issue

this literature addresses is the incentives of candidates, given a particular voting

rule (how voters choose a candidate or a subset of candidates), to enter or exit the

election in order to strategically a¤ect the outcome of the rule. By imposing some

independence conditions and an �internal stability�condition (the losing candidates

must not have an incentive to drop out of the election) they prove that the class of

voting rules immune to this strategic manipulation is only composed of dictatorial

rules.2

In this paper we contribute on a third line of research by considering explicitly

the possibility that, in the Barberà, Sonnenschein, and Zhou�s (1991) setup members

who originally conform a society have the option to leave it voluntarily. In Berga,

Bergantiños, Massó, and Neme (2004) we showed that the unique social choice

function that is still strategy-proof, stable, and satis�es founders�sovereignty on the

set of candidates is the voting by committees that requires unanimity for the entrance

of each candidate.3 The dynamic aspect of this decision is hidden in the general

formulation of the mechanism as a social choice function. In Berga, Bergantiños,

Massó, and Neme (2006) we concentrate on particular mechanisms where the �nal

society, consisting of the subset of elected candidates and the subset of members that

decide to stay in the society, is the outcome of a two-stage game; hence, formulating

explicitly the dynamics of the decision. First, members choose a subset of candidates

by a given voting procedure. Second, and after knowing the set of elected candidates

X, members of the society decide whether to stay or exit the society. This model

is strategically rich because a member, when evaluating the consequences of a vote

for a particular candidate x, has to take into account (not only whether or not he

likes x but also) two simultaneous e¤ects (and their rami�cations) of x being chosen.

2See Dutta, Jackson, and Le Breton (2001) for single-valued voting rules, and Ehlers and

Weymark (2003), Eraslan and McLennan (2004), and Rodríguez-Álvarez (2006) for multi-valued

voting rules.
3Stability requires the exit to be voluntary; that is, for any preference pro�le the social choice

function has the property that all members belonging to the �nal society want to stay (internal

stability) and all members who do not belong to the �nal society do not want to belong (external

stability). Founders�sovereignty on the set of candidates requires that candidates that are good

for all members have to be admitted to the society and candidates that are bad for all members

cannot be admitted.
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First, the choice of x might be used by member i to get rid of member j if i does not

like j and j does not like candidate x (similar and even more involved consequences

of x being chosen may arise as well; for instance, i might like j but not j0 who

belongs to the society just because j is a member of it, but j0 would leave it as

soon as j exits it; i.e., i votes for x to get rid of j0 by bringing about the exit of

j). Second, support of candidate x might be used by member i to keep member j00,

who is ready to leave the society whenever candidate y is chosen (the chosen one if

i does not vote for x), because j00�s membership is critical for i�s continued presence

in the society (and further obvious e¤ects). In this setting, we exhibited an example

without any subgame perfect Nash equilibria in pure strategies and another one in

which in all subgame perfect Nash equilibria in pure strategies at least one player

uses a dominated strategy.

For societies whose members perceive the membership of all other members as

being desirable (monotonic preferences) we were able to identify, for each subset of

elected candidates X, a reasonable and meaningful subset of members that leave

the society (EA(X), the exit set after X is chosen). This set has desirable prop-

erties and it is identi�ed by means of a recursive process that mimics the iterative

elimination of dominated strategies.

Here, we add more structure to the problem. First, we assume that the society

uses voting by committees to elect its new members. Second, we suppose that

member�s preferences are not only additive in the sense of Barberà, Sonnenschein,

and Zhou (1991) but also have dichotomous bads. A candidate x is bad for member

i if adding x to any society makes the society worse for i. An additive preference of

member i has dichotomous bads if each bad candidate (if any) is either extremely

bad (his entrance makes the society to be, in any circumstance, undesirable for

member i) or mildly bad (his entrance does not a¤ect his exit decision). Our main

result here is that, under this preference domain, the game induced by a voting by

committees without vetoers has at least an undominated Nash equilibrium in pure

strategies. Note that if the election of candidates was done using voting by quota,

Proposition 4 in Berga, Bergantiños, Massó, and Neme (2006) would assure us the

existence of Nash equilibria in pure strategies.4 Although we consider the more

general framework of voting by committees, for reasons of tractability we restrict

ourselves to the analysis of pure strategy Nash equilibria.

Observe that in general voting by committees have, even without exit, a large

4The unique case where we can not guarantee the existence of Nash equilibria in pure strategies

is when voting by committees is voting by quota 1 and exit is simultaneous.
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set of pure strategy Nash equilibria, many of them without much predictive power.

Take an arbitrary subset of candidates and assume all members vote for, and only

for this subset (this has been known in the literature as �common voting�). As long

as the voting by committees does not have vetoers nor decisive voters this arbitrary

voting strategy is a Nash equilibrium since the outcome is invariant with respect to

any unilateral deviation. However, in this strategy pro�le many voters may be using

a dominated strategy.

In this paper we look for a reasonable undominated pure strategy Nash equilib-

rium and we obtain it by the following recursive construction. At each stage, each

member votes for his best subset of candidates given the set that has already been

admitted in the previous stages and taking into account the exit it will induce. Given

their votes (for the stage) the set of candidates joining the society (at this stage) is

chosen according to the voting by committees. The process ends at the stage where

no additional candidate would be admitted. From the overall set of candidates that

each member has voted for along this process, we construct a strategy pro�le (a

simultaneous vote for each member) that is an undominated Nash equilibrium in

pure strategies of the induced game with exit.

Before �nishing this introduction we want to point out that our model is not

limited to the interpretation given so far; i.e., the choice of the composition of the

�nal society. It can be also used to analyze the problem where a society has to de�ne

its formal and public positions on a set of issues. One can think of political parties

or religious communities deciding on di¤erent issues like abortion, death penalty,

health reform, and so on.

The paper is organized as follows. In Section 2 we introduce our basic framework.

In Section 3 we de�ne the game induced by a voting by committees and the exit

set after a subset of candidates has been elected. In Section 4 we describe the

domain of preferences with dichotomous bads and we obtain some properties of the

exit set under this preference domain. In Section 5 we construct an undominated

Nash equilibrium in pure strategies and state our main result (Theorem 1). Four

Appendices at the end of the paper contain the proofs of three propositions and the

theorem omitted in the text.
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2 Preliminaries

Let N = f1; :::; ng be the set of members of a society who must �rst choose a subset
of new members among the �nite set of candidates K. Then, knowing the elected

candidates, each member decides to stay or to leave the society. Members in N

have preferences over 2K � 2N , the set of all possible �nal societies. Namely, a �nal
society is a pair [X;S] 2 2K � 2N where X is the set of elected candidates and S

is the set of members who stay in the society given that X has been elected.5 To

simplify notation we will often denote a �nal society [X;S] by X [ S.
The preferences of member i 2 N over 2K � 2N , denoted by Ri, is a complete,

re�exive, and transitive binary relation. As usual, let Pi and Ii denote the strict

and indi¤erence preference relations induced by Ri, respectively. We suppose that

each member�s preferences Ri satis�es the following �ve conditions:6

(C1) Strictness: For all X;X 0 � K and S; S 0 � N such that [X;S] 6= [X 0; S 0]

and i 2 S \ S 0, either [X;S]Pi [X 0; S 0] or [X 0; S 0]Pi [X;S].

(C2) Indifference: For allX � K and S ( N , i =2 S if and only if [X;S] Ii [X; ;].
Moreover, for all X, X 0 2 2K , [X; ;] Ii [X 0; ;].
(C3) Loneliness: [;; fig]Pi [;; ;].
(C4) Monotonicity: For all X � K and all S ( S 0 � N such that i 2 S,
[X;S 0]Pi [X;S].

(C5) Additivity: There exists ui : N [K [ ; ! R such that ui (;) = 0 and for
all S; S 0 � N and X;X 0 � K

[X;S]Pi [X
0; S 0] if and only if

8><>:
P

j2X[S
ui (j) >

P
j2X0[S0

ui (j) when i 2 S \ S 0, andP
j2X[S

ui (j) > 0 when i 2 S and i =2 S 0.

Strictness means that member i�s preference relation over �nal societies con-

taining himself is strict. Indifference says that if member i is not in the society

he is indi¤erent about who belongs to it. Loneliness says that member i �nds

speci�c bene�ts to being the only member of the society. Monotonicity means

5When considering K as the set of issues that the society has to decide upon, the interpretation

of a �nal society is the subset of approved issues and the subset of members that remain in the

society.
6Concerning notation of sets�inclusion, we will use the symbol ���to denote the weak inclusion,

that is, allowing for sets being equal. While we will use the symbol �(� to denote the strict
inclusion, that is, to rule out the case where the sets are equal.

5



that members consider the exit of other members undesirable, independently of

the elected candidates. Notice that monotonicity does not impose any condition

when comparing two �nal societies with di¤erent elected candidates. In particular,

monotonicity admits the possibility that member i prefers to belong to a smaller

society. Additivity means that members�preferences are additively representable

by utility functions. We denote by Ri the set of member i�s preferences satisfying

conditions (C1)-(C5) and by R the Cartesian product R1 � � � � � Rn.

Before �nishing this section, few comments about some of these assumptions are

in order. While in some particular cases loneliness may be a strong requirement,

there are many interesting problems for which it is very natural. For example, if the

society is a provider of an excludable public good to its members, and the cost of

producing it is small, loneliness requires that each agent is willing to produce (and

consume) the public good by himself, even if he has to pay for the full cost. Observe

that this is consistent with monotonicity if, for example, the cost of the public good

is equally shared among all of its users. Societies sharing a collective TV antenna, or

an elevator, or a gardener, or a swimming-pool may be instances where loneliness is a

reasonable assumption. Note that under monotonicity, loneliness implies non-initial

exit ; that is, [;; N ]Pi [;; ;]. However, the converse is not true. Notice also that under
additivity, the strictness condition implies that ui (x) 6= 0 for all x 2 K [ Nnfig.
Then, by loneliness, ui(i) > 0 for all i 2 N and by monotonicity, ui (j) > 0 for

all j 2 Nnfig. Moreover, under additivity the set of candidates can be partitioned
into two disjoint sets. We say that candidate x is good for member i according to

Ri whenever ui (x) > 0; otherwise, we say that candidate x is bad for member i

according to Ri. Denote by G(Ri) and B(Ri) the set of good and bad candidates

for i according to Ri, respectively.

3 Voting by Committees with Exit

In this paper we depart from Berga, Bergantiños, Massó, and Neme (2006) and

we de�ne the following two-stage game. First, members choose a subset of candi-

dates with a given voting by committees. Second, and after knowing the elected

candidates, members decide whether to stay or exit the society. In this setting we

are interested in identifying a meaningful undominated Nash equilibrium in pure

strategies of this two-stage game.
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3.1 Voting by Committees

Following Barberà, Sonnenschein, and Zhou (1991), a voting by committees is de-

�ned by a collection of families of winning coalitions (committees), one for each

candidate, W = (Wx)x2K . Members vote for a subset of candidates. To be elected,

a candidate must get the vote of all members of some coalition among those that are

winning for that candidate. Formally, a committee for x 2 K, denoted by Wx, is

a non-empty family of non-empty coalitions of N satisfying coalition monotonicity

(S 2 Wx and S � T imply T 2 Wx). Given a committee Wx its set of minimal

winning coalitions is Wm
x � fS 2 Wx j T =2 Wx for all T ( Sg. Then, a mapping

v :
�
2K
�N ! 2K is voting by committees if there exists W = (Wx)x2K such that for

all V = (V1; :::; Vn) 2
�
2K
�N
and all x 2 K,

x 2 v(V )() fi 2 N j x 2 Vig 2 Wx:

We say that v has no vetoers if the corresponding committees W = (Wx)x2K have

the property that for all x 2 K and all i 2 N there exists S 2 Wm
x such that i =2 S.

We say that member i is a dummy for candidate x according to v if there does not

exist S 2 Wm
x such that i 2 S. Given an integer 1 � q � n, a voting by committees

v is voting by quota q if for all V = (V1; :::; Vn) 2
�
2K
�N
and x 2 K,

x 2 v (V ) if and only if # fi 2 N j x 2 Vig � q,

where # stands for the cardinality of a set.

Barberà, Sonnenschein, and Zhou (1991) show that without exit, voting by com-

mittees constitute the full class of strategy-proof and onto social choice functions on

the domain of both additive and separable preferences over all subsets of candidates.

Berga, Bergantiños, Massó, and Neme (2004) show that social choice functions that

are strategy-proof, stable, and satisfy founders� sovereignty on the set of candi-

dates must be voting by committees and must satisfy the extreme condition that

each member is a vetoer of all candidates. Hence, voting by quota n is the unique

strategy-proof and stable social choice function that satis�es founders�sovereignty

on the set of candidates.

3.2 Exit

Assume that the set of candidates X 2 2K has already been elected and all members
know that. Now, each member has to decide whether or not to continue in the

7



society. But often, societies do not clearly specify the rules under which this exit

takes place. Therefore, and to avoid to go into the speci�c details of these exit

decisions (the order in which members have to decide as well as their information

about the others�decisions), we recursively de�ne (following Berga, Bergantiños,

Massó, and Neme, 2005) the set of members leaving the society after X is chosen.

De�ne �rst the set EA1(X) as the subset of members that unambiguously want

to leave the society as the consequence of X being chosen; that is, EA1 (X) =

fi 2 N j [X;Nn fig]Pi [X;N ]g, or equivalently, fi 2 N j [X; ;]Pi [X;N ]g. Let t � 1
and assume EAt

0
(X) has been de�ned for all t0 such that 1 � t0 � t. Then,

EAt+1 (X) =

�
i 2 Nn

�
tS

t0=1

EAt
0
(X)

�
j [X; ;]Pi

�
X;Nn

�
tS

t0=1

EAt
0
(X)

���
:

Let tX be either equal to 1 if EA1 (X) = ; or else be the smallest positive integer
satisfying the property that EAtX (X) 6= ; but EAtX+1 (X) = ;: Then, de�ne

the exit set after X is chosen as EA (X) =
tXS
t=1

EAt (X) and the exit function as

EA : 2K ! 2N .

Observe that this set only depends on the preference pro�le R. Motivation and

some of its properties can be found in Berga, Bergantiños, Massó, and Neme (2006).

In particular, EA(X) is the set of members leaving the society after X is chosen if

exit is sequential (and members play according to the unique subgame perfect Nash

equilibrium in pure strategies of the subgame starting at X); moreover, this set is

independent of the ordering in which members decide (sequentially) whether to stay

or to exit. The set EA(X) also coincides with the set of members leaving the society

if exit is simultaneous and members eliminate iteratively dominated strategies.

3.3 The Game

Fix a preference pro�le R 2 R: Given any voting by committees v and the exit
function EA : 2K ! 2N , we can model our two-stage game as the normal form

game
�
N;
�
2K
�N
; v; R

�
. Given a strategy pro�le V = (V1; :::; Vn) 2

�
2K
�N
the �nal

society is v(V ) [ [NnEA (v(V ))]. Since N and K are �xed we denote this game,

given v and R, by �(v;R). To simplify notation, given a subset of candidatesX � K
we use the notation f (X) to express the �nal society when the set of candidates X

enter the society and the exit is given by EA (X); i.e., f(X) = X [ (N n EA (X)).
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In addition and abusing notation,7 de�ne for each V 2
�
2K
�N
,

ui (V ) =

8<:
P

j2f(v(V ))
ui (j) if i =2 EA (v (V ))

0 if i 2 EA (v (V )).

In the current paper, as in Berga, Bergantiños, Massó, and Neme (2006), we are

interested in equilibria in pure strategies. Observe that a Nash equilibrium V � of

�(v;R) implicitly assumes that members, through (EA(X))X22K , have a minimal ra-

tional behavior in all subgames starting at any X (subgame perfection, for instance,

if exit is sequential).

In Example 7 in Berga, Bergantiños, Massó, and Neme (2006), the authors show

that the set of undominated Nash equilibria in pure strategies of �(v;R) might be

empty. We reproduce here their Example, for sake of completeness and to point out

some clues for solving the existence problem.

Example 1 Consider a society N = f1; 2; 3; 4g, whose members have to decide
whether or not to admit as new members candidates x and y; that is, K = fx; yg.
Assume that v is voting by quota 1. Consider the additive preference pro�le R 2 R
represented by the utility functions ui : N [K [; ! R given by the following table:

u1 u2 u3 u4

1 100 5 1 1

2 5 100 2 2:1

3 1:1 100 1 3

4 100 1:1 4 3

x 2 �1 �10 �5
y �1 2 �20 �5:2

:

It is straightforward to check that EA (;) = ;; EA (fxg) = f3g ; EA (fyg) = f3g ;
and EA (fx; yg) = f3; 4g. Then, for member 1, fyg is dominated by ; and fx; yg is
dominated by fxg : For member 2; fxg is dominated by ; and fx; yg is dominated
by fyg : For members 3 and 4; fxg ; fyg ; and fx; yg are dominated by ;: Therefore,
the undominated strategies are fxg and ; for member 1; fyg and ; for member 2; ;
for member 3; and ; for member 4: The next table lists all possible strategy pro�les

7We use the same notation ui for the utility function of member i in the game �(v;R) and the

function representing the additive preference of member i. The reader will not be confused because

from the context it will be clear which one of the two usages we are referring to.
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with undominated strategies, and their corresponding �nal societies.

Voting Final society

(;; ;; ;; ;) [;; N ]
(;; fyg ; ;; ;) [fyg ; f1; 2; 4g]
(fxg ; ;; ;; ;) [fxg ; f1; 2; 4g]
(fxg ; fyg ; ;; ;) [fx; yg ; f1; 2g]

:

We now check that none of the four strategy pro�les are Nash equilibria of �(v;R).

1. (;; ;; ;; ;) is not an equilibrium. Since [fxg ; f1; 2; 4g]P1 [;; N ] ; member 1 im-
proves by voting fxg.

2. (;; fyg ; ;; ;) is not an equilibrium. Since [;; N ]P2 [fyg ; f1; 2; 4g] ; member 2
improves by voting ;.

3. (fxg ; ;; ;; ;) is not an equilibrium. Since [fx; yg ; f1; 2g]P2 [fxg ; f1; 2; 4g] ;
member 2 improves by voting fyg.

4. (fxg ; fyg ; ;; ;) is not an equilibrium. Since [fyg ; f1; 2; 4g]P1 [fx; yg ; f1; 2g] ;
member 1 improves by voting ;.

Therefore, the set of undominated pure strategy Nash equilibria of �(v;R) is

empty. �

This example gives us some clues that suggest us to consider the domain re-

striction introduced in the next section. Note that both members 3 and 4 want

that nobody enters. Members 1 and 2 have con�icting points of view that provoke

the following cycle. Nobody entering the society is not a Nash equilibrium because

member 1 prefers that x enters. Only x entering the society is not a Nash equi-

librium because 2 prefers that y also enters. Both candidates x and y entering the

society is not a Nash equilibrium because 1 prefers that x does not enter. Only

y entering the society is not a Nash equilibrium because 2 prefers that y does not

enter.

Although 4 and x are good for member 1, 4 is more important. Member 1 knows

that 4 leaves the society when both candidates enter and that 4 stays otherwise.

Thus, 1 prefers to vote for x when nobody enters and to vote for nobody when y

enters. Then, the cycle is caused, partially, because of the preferences of 4.

Looking at the preferences of the other members we realize that, independently

of the candidates entering the society, 1 and 2 never exit. Member 3 exits when some

10



candidate enters. Therefore, bad candidates of 1, 2, and 3 can be classi�ed in two

categories: extremely bad and mildly bad.8 A bad candidate is extremely bad for

member i if his entrance makes the society to be, in any circumstance, undesirable

for i. Candidates x and y are extremely bad for 3: A bad candidate is mildly bad

for member i if his entrance does not a¤ect his exit decision. Candidate x is mildly

bad for 2 and y is mildly bad for 1: Nevertheless, x and y are neither extremely bad

nor mildly bad for 4.

If we modify the utility function of 4 in order to make candidates x and y

extremely bad or mildly bad we realize that it is possible to �nd an undominated

pure strategy Nash equilibrium. Taking u4 (x) = �20 and u4 (y) = �30 (both are
extremely bad), (;; ;; ;; ;) is an undominated Nash equilibria. Taking u4 (x) = �0:5
and u4 (y) = �30 (x is mildly bad and y is extremely bad), (fxg ; fyg ; ;; ;) is
an undominated Nash equilibria. Taking u4 (x) = �20 and u4 (y) = �0:7 (x is
extremely bad and y is mildly bad), (;; ;; ;; ;) is an undominated Nash equilibria.
Taking u4 (x) = �0:5 and u4 (y) = �0:7 (both are mildly bad), (fxg ; fyg ; ;; ;) is
an undominated Nash equilibria.9

In the remainder of the paper we show that the game �(v;R) has undominated

Nash equilibria in pure strategies whenever each agent�s preference Ri satis�es the

property of having dichotomous bads; that is, when bad candidates can be classi�ed

in extremely bad or mildly bad. We will show the existence of undominated Nash

equilibria by constructing a particular and meaningful voting pure strategy pro�le.

4 Dichotomous Bads

There are societies whose members clearly distinguish among bad candidates ac-

cording to how their election would in�uence the exit decisions. Let x be a potential

candidate. Imagine that member i highly dislikes x in such a way that i will leave

the society if x is chosen even in the best situation where all the other elected can-

didates are good for i. In this case, we say that x is an extremely bad candidate for

member i, who will exit for sure if x is elected. For instance, abortion, death penalty,

tax reform, and a military intervention in another country could be extremely bads

8See De�nitions 1 and 2 below for a formal statement of their meaning.
9The set of Nash equilibria of �(v;R) is equal to

f(V1; V2; V3; V4) 2 (2K)N j # fi 2 N j x 2 Vig � 2 and # fi 2 N j y 2 Vig � 2g[ffyg; fyg; fyg; fygg:
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in our alternative interpretation of the set K as issues. Member i may also dislike

another candidate y. However, while the election of x would trigger his exit, the

election of y is never decisive in his exit. In such a case we say that y is a mildly bad

candidate for i (in the alternative interpretation of candidates as issues, y could be

a very local policy on public transportation). Formally,

De�nition 1 Given member i�s preference Ri 2 Ri, we say that the bad candidate

x 2 B(Ri) is extremely bad for i if [G (Ri) [ fxg ; ;]Pi [G (Ri) [ fxg ; N ] :

De�nition 2 Given member i�s preference Ri 2 Ri, we say that the bad candidate

x 2 B(Ri) is mildly bad for i if for all X 2 2K such that [X; fig]Pi [X; ;], we have
[X [ fxg; fig]Pi [X [ fxg; ;] :

Given Ri 2 Ri, denote the set of extremely bad candidates for i by B�� (Ri)

and the set of mildly bad candidates for i by B� (Ri).

Remark 1 The society formed by member i and her set of mildly bad candidates

is, by its de�nition, acceptable for member i, that is, [B� (Ri) ; fig]Pi [B� (Ri) ; ;].

Remark 2 For all Ri 2 Ri, B��(Ri) \B�(Ri) = ;:

Preferences with dichotomous bads are those where bads are either of the type

that they are pivotal in triggering exit regardless of the combination of other candi-

dates or they are of the type that they are not pivotal triggering exit by themselves.

Hence preferences that do not have dichotomous bads are those where there may be

bads that are not pivotal by themselves but are pivotal when taken in combination

with some other candidates. Namely,

De�nition 3 A preference relation Ri 2 Ri has dichotomous bads if B(Ri) =

B��(Ri) [B�(Ri):

Let Di � Ri be the subset of member i�s preferences with dichotomous bads and

let D denote the Cartesian product D1 � � � � � Dn.
To illustrate the de�nition of a preference relation with dichotomous bads con-

sider again Example 1, in which R1, R2, and R3 have dichotomous bads, but

as we have already mentioned, R4 2 R4 does not. First, B�� (R4) = ; since
[fxg ; N ]P4 [fxg ; ;] and [fyg ; N ]P4 [fyg ; ;]. Nevertheless, its complementary set of
bads B (R4) nB�� (R4) = fx; yg has the property that [fx; yg ; ;]P4 [fx; yg ; f4g],
which means that B� (R4) 6= fx; yg. In fact, B� (R4) = ;.
Next proposition characterizes B�� (Ri) and B�(Ri) in terms of the exit function

EA : 2K ! 2N . It says that the entrance of an extremely bad candidate always

12



leads to the exit of member i whereas the entrance of a mildly bad candidate does

not a¤ect the exit of i.

Proposition 1 Let i 2 N and Ri 2 Di. Then,

B�� (Ri) = fx 2 B (Ri) j i 2 EA (X) whenever x 2 X � Kg and
B� (Ri) =

�
x 2 B (Ri) j for all X 2 2K , [i 2 EA (X [ fxg), i 2 EA (X)]

	
:

Proof See Appendix A. �

We now establish some useful properties of the exit function EA : 2K ! 2N for

the domain of preferences with dichotomous bads D.

Proposition 2 Let R = (R1; :::; Rn) 2 D.
(2:1) Then, EA (A) = [x2AEA (x) for all A � K:
(2:2) Assume A;B;C � K are such that A � B and B\C = ;. Then, EA (B [ C)n
EA (B) � EA (A [ C) n EA (A) :
(2:3) Assume A;B;C � K are such that A � B and B \ C = ;. Then,P

j2f(B[C)
ui (j)�

P
j2f(B)

ui (j) �
P

j2f(A[C)
ui (j)�

P
j2f(A)

ui (j) :

Proof See Appendix B. �

Property (2.2) says that the exit produced by the additional entrance of new

candidates (C) is larger the smaller is the set of elected candidates. Property (2.3)

says that there are increasing returns to scale in the sense that the larger the set of

elected candidates is the larger is the interest of members to accept new subsets of

candidates.

5 An undominated Nash equilibrium

LetW =(Wx)x2K be the set of families of winning coalitions de�ning the voting by

committees v and let R = (R1; :::; Rn) 2 D. To construct an undominated Nash
equilibrium in pure strategies of �(v;R) we �rst consider the following process which

may be understood as if each member would vote for candidates in successive stages.

� Stage 1: For all i 2 N de�ne the set �V 1i as the best subset of candidates that

member i would like to admit taking into account the exit it would induce.

Formally,

�V 1i =
�
X 2 2K j f (X)Pif (X 0) for all X 0 � K such that X 0 6= X

	
:
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By strictness and EA (;) = ;, �V 1i is well de�ned and it contains a unique
subset (possibly the empty set). Moreover,

f
�
�V 1i
�
Ri [;; N ]Pi

�
�V 1i ; ;

�
:

Therefore, i =2 EA
�
�V 1i
�
. Set

V 1i = �V 1i ,

�V 1 =
�
x 2 K j

�
i 2 N j x 2 �V 1i

	
2 Wx

	
; and

V 1 = �V 1:

Notice that �V 1 = v
��
�V 1i
�
i2N

�
; i.e., �V 1 is the set of elected candidates when

members vote
�
�V 1i
�
i2N .

� Stage t+1: Assume that �V ri ; �V r; V ri ; and V r have been de�ned for all r � t

and all i 2 N; and f (V t)Pi [V t; ;] when i =2 EA (V t) :We will de�ne �V t+1i and

V t+1i for all i 2 N; and �V t+1 and V t+1:

If i 2 EA (V t), by property (2.1), there exists x 2 V t \ B�� (Ri) such that
i 2 EA (x). Therefore, i 2 EA (V t [X) for all X � K n V t: In this case we
take �V t+1i = �V ti :

If i =2 EA (V t) then,

�V t+1i =
�
X � K n V t j f

�
V t [X

�
Pif

�
V t [X 0� for all X 0 � K n V t s.t. X 0 6= X

	
:

By strictness, �V t+1i is well de�ned and it contains a unique subset (possibly

the empty set). Moreover,

f
�
V t [ �V t+1i

�
Rif

�
V t
�
Pi
�
V t; ;

�
:

Therefore, i =2 EA
�
V t [ �V t+1i

�
: Given V t, the set �V t+1i is the best subset of

candidates that member i would like to admit, once the set V t has already

been elected, taking into account the exit it would induce. Set

V t+1i = [t+1r=1
�V ri ;

�V t+1 =
�
x 2 K n V t j

�
i 2 N j x 2 �V t+1i

	
2 Wx

	
; and

V t+1 = [t+1r=1
�V r:

The set V t+1i represents the candidates voted by i in stages 1; :::; t+1 while �V t+1

represents the candidates joining the society when members vote
�
�V t+1i

�
i2N .

Finally, V t+1 represents the candidates joining the society in stages 1; :::; t+1.
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This process ends either at T = 1 if V 1 = ; or at T � 2 when there exists

such T satisfying �V T�1 6= ; and �V T = ;. The following example illustrates this
construction.

Example 2 Let N = f1; 2; 3g be a society and let K = fx; yg be the set of
candidates. Assume that v is voting by quota 1. Consider the additive preference

pro�le R = (R1; R2; R3) 2 R represented by the following utility functions:

u1 u2 u3

1 10 3 1

2 1 10 2

3 100 1 3

x 2 11 �7
y 4 �2:1 �7

.

Note that R 2 D. Moreover, B�� (R1) = B� (R1) = ;; B�� (R2) = ;; B� (R2) =
fyg ; B�� (R3) = fx; yg ; and B� (R3) = ;. We now compute �V ti for all i and t.

tni 1 2 3
�V 1i ; x ;
�V 2i y ; ;
�V 3i ; ; ;

:

Then, T = 3, V 31 = fyg ; V 32 = fxg ; and V 33 = ;: Observe that initially member 1 is
not interested in the entrance of any of the two candidates since they produce the

exit of member 3. But, once x is elected (member 2 likes him very much) and thus,

member 3 exits, then member 1 wants y to be elected. Therefore, along the process,

member 1 has only voted for y which is dominated by voting for both (x and y).�

To avoid this, and since our objective is to identify an undominated pure strategy

Nash equilibrium, we modify the process by adding to each V Ti the best subset Hi
(taking into account its e¤ects on the exit of other members) of the set Ai of good

candidates that i has not voted for along the process but have joined the society

before i exits. Formally, for each i 2 N ,

Ai =

(
G (Ri) \

�
V T�1nV Ti

�
if i =2 EA

�
V T
�

G (Ri) \
�
V t�1nV Ti

�
if i =2 EA (V t�1) and i 2 EA (V t) for some t

and

Hi =
�
X � Ai j f

�
V Ti [X

�
Pif

�
V Ti [X 0� for all X 0 � Ai such that X 0 6= X

	
.
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We now prove that Hi is well de�ned. By convention we set V 0 = ;. We �rst
prove that i =2 EA

�
V Ti
�
considering two cases:

� Assume that i 2 EA
�
V T
�
. Then, there exists h 2 f0; :::; T � 1g such that

i =2 EA
�
V h
�
but i 2 EA

�
V h+1

�
: By the de�nition of the process �V ti = �V hi

for all t = h + 1; :::; T and i =2 EA
�
V t [ �V t+1i

�
for all t = 0; :::; h. Then, by

property (2:1) ; i =2 EA
�
�V ti
�
for all t = 1; :::; h + 1: Since V Ti = [h+1t=1

�V ti ; by

property (2:1) ; i =2 EA
�
V Ti
�
:

� Assume now that i =2 EA
�
V T
�
: By the de�nition of the process i =2 EA

�
V t [ �V t+1i

�
for all t = 0; :::; T �1: Then, by property (2:1) ; i =2 EA

�
�V ti
�
for all t = 1; :::; T:

Since V Ti = [h+1t=1
�V ti ; by property (2:1) ; i =2 EA

�
V Ti
�
.

Notice that, by de�nition of EA; f
�
V Ti
�
Pi
�
V Ti ; ;

�
because i =2 EA

�
V Ti
�
. By

strictness we conclude that Hi is well de�ned, it is a singleton, and

f
�
V Ti [Hi

�
Rif

�
V Ti
�
Pi
�
V Ti ; ;

�
:

Using the process de�ned above, we now de�ne the vote of each member i 2 N
by

Zi = V
T
i [Hi:

Remark 3 By de�nition of EA, f (Zi)Pi [Zi; ;] implies that i =2 EA (Zi) for all
i 2 N:

Next proposition states two properties of the procedure de�ning Z = (Zi)i2N .

First, if member i votes for candidate x in stage t; i will vote for x in any later

stage t0 > t; whenever x has not been elected yet. Second, when members vote�
V Ti
�
i2N the set of elected candidates coincides with the set of elected candidates

when members vote (Zi)i2N .

Proposition 3 Let R 2 D. Then,
(3:1) For all i 2 N and 1 � t � T � 1, if x 2 �V ti then, x 2 �V t

0
i for any t0 > t

whenever x =2 V t0�1:
(3:2) v

��
V Ti
�
i2N

�
= v

�
(Zi)i2N

�
= V T .

Proof See Appendix C. �

Observe that, as a consequence of property (3.1), given i 2 N and 1 � t � t0 � T;
�V ti � V t

0 [ �V t0i :
Theorem 1 below states our main result of the paper: if the society selects the

candidates to become new members by a voting by committees v without vetoers
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and members follow the exit procedure given by EA; (Z1; :::; Zn) is an undominated

Nash equilibrium of �(v;R).

Theorem 1 Assume R 2 D and let v be a voting by committees without vetoers.

Then, (Z1; :::; Zn) is an undominated Nash equilibrium of �(v;R).

Proof See Appendix D. �

The proof of Theorem 1 is involved and hard to follow. The main reason is

that the identi�cation of the strategy pro�le Z = V T [ H is based on a recursive

construction (to obtain V T ) that has to be further modi�ed to include the vote for

some (unvoted) good candidates (H). Hence, our arguments are less transparent

than we would like because they are often indirect and/or inductive. However, the

main arguments of the proof are the following. First, we show by contradiction that

for each i 2 N , Zi is an undominated strategy (see Lemma 3). Suppose that for
i 2 N , there exists an strategy V 0i that dominates Zi. Then, we show both that

Zi � V 0i (1)

and

V 0i \ (KnZi) = ;: (2)

Observe that (1) and (2) imply V 0i = Zi. To obtain condition (1), and since by

de�nition, Zi = V Ti [ Hi, we �rst show (using an induction argument on t) that
V Ti � V 0i and then that Hi � V 0i . Condition (2) is obtained by contradiction after
distinguishing between two kind of strategies depending on the exit decision of i

(that is, i 2 EA(V T ) and i =2 EA(V T )). Second, in Lemma 4, we show that Z is a
Nash equilibrium strategy by showing that for all i 2 N , Zi is a best response given
Z�i. And we do so by distinguishing between the same two kind of strategies used

above that depends on the exit decision of i.

Next example shows that there might be other undominated Nash equilibrium

strategies di¤erent from (Z1; :::; Zn).

Example 3 Let N = f1; 2; 3g be a society and let K = fx; yg be the set of
candidates. Assume that v is voting by quota 1. Consider the preference pro�le

R = (R1; R2; R3) 2 D represented by the following utility functions:
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u1 u2 u3

1 10 4 1

2 2 10 2

3 20 8 2

x 4 �1 �10
y �1 2 �10

:

In this case Z1 = Z2 = Z3 = ;. Consider the strategy pro�le V 0 = (fxg; fyg; ;). It
is straightforward to show that V 0 is a Nash equilibrium of �(v;R). Moreover, fxg
is undominated for member 1 because when member 2 votes fyg the best reply of
member 1 is to vote fxg: With similar arguments we can conclude that to vote fyg
is undominated for member 2: Of course, ; is undominated for member 3: Therefore,
V 0 (6= Z) is an undominated pure strategy Nash equilibrium of �(v;R). �
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Appendix A. Proof of Proposition 1

Before proving Proposition 1, we establish a useful Lemma. Observe that monotonic-

ity and loneliness imply EA(;) = ;.

Lemma 1 Assume that Ri 2 Di and i 2 EA (X). Then, there exists x 2 X such

that x 2 B�� (Ri).

Proof Since i 2 EA (X) = [Tt=1EAt (X) we conclude that i 2 EAt0 (X) for some
t0 � T and hence,

[X; ;]Pi
�
X;N n

�
[t0�1t=1 EA

t (X)
��
:

Since preferences are monotonic,�
X;N n

�
[t0�1t=1 EA

t (X)
��
Ri [X; fig] :

By contradiction, assume that X \B�� (Ri) = ;. Since Ri has dichotomous bads,

[X; fig]Ri
�
B� (Ri) ; fig

�
:

By indi¤erence and transitivity of Ri,�
B� (Ri) ; ;

�
Ii [X; ;]Pi

�
B� (Ri) ; fig

�
:

But this is a contradiction since [B� (Ri) ; fig]Pi [B� (Ri) ; ;] by Remark 1. �

Proof of Proposition 1 We need to prove the following four statements:

(a) B�� (Ri) � fx 2 B (Ri) j i 2 EA (X) whenever x 2 X � Kg.

Take x 2 B�� (Ri) and X � K such that x 2 X. By indi¤erence,

[X; ;] Ii [G (Ri) [ fxg ; ;] .

Since x 2 B�� (Ri),

[G (Ri) [ fxg ; ;]Pi [G (Ri) [ fxg ; N ] :

By additivity,

[G (Ri) [ fxg ; N ]Ri [X;N ] ;

where Ri = Ii if X = G (Ri) [ fxg and Ri = Pi if X 6= G (Ri) [ fxg, by
strictness. By transitivity, [X; ;]Pi [X;N ]. Hence, i 2 EA1 (X) � EA (X).
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(b) fx 2 B (Ri) j i 2 EA (X) whenever x 2 X � Kg � B�� (Ri).

Take X = fxg. Since i 2 EA (X), by Lemma 1, there exists y 2 B�� (Ri)\X.
Then, x 2 B�� (Ri).

(c) B� (Ri) � fx 2 B (Ri) j for all X � K, [i 2 EA (X [ fxg), i 2 EA (X)]g.

Take x 2 B� (Ri) and X � K: We now prove that i 2 EA (X [ fxg) if and
only if i 2 EA (X).
Assume that i 2 EA (X). Then, by Lemma 1, there exists y 2 X such

that y 2 B�� (Ri). By (a), we conclude that i 2 EA (X [ fxg) because
y 2 X [ fxg.
Assume that i 2 EA (X [ fxg). Then, by Lemma 1, there exists y 2 X [ fxg
such that y 2 B�� (Ri). Since Ri has dichotomous bads and x 2 B� (Ri) we
conclude that y 6= x. Then, y 2 X \B�� (Ri) and hence i 2 EA (X) because
of (a).

(d) fx 2 B (Ri) j for all X � K, [i 2 EA (X [ fxg), i 2 EA (X)]g � B� (Ri).

Since Ri has dichotomous bads it is enough to prove that if x 2 B�� (Ri)
then x does not satisfy that for all X � K, i 2 EA (X) if and only if i 2
EA (X [ fxg). Assume X = ;. By loneliness and monotonicity, there is no
initial exit; i.e., EA (;) = ; and hence i =2 EA (;). But i 2 EA (fxg) because
x 2 B�� (Ri). �

Appendix B. Proof of Proposition 2

Proof of Proposition 2 Let i 2 EA (A). By Lemma 1, there exists x 2 A \
B�� (Ri). By part (a) in the proof of Proposition 1, i 2 EA (X) for every X � K
such that x 2 X. Then, i 2 EA(x) and EA (A) � [x2AEA (x) : Now, assume that
i 2 EA (x) with x 2 A. Then, by Lemma 1, x 2 B�� (Ri) and hence, by Proposition
1, i 2 EA (A) : This proves (2.1).
To prove properties (2:2) and (2:3) assume thatA;B;C � K are such thatA � B

and B \ C = ;. By property (2:1), we have that EA (B [ C) =
S

x2B[C
EA(x) and

EA (B) =
S
x2B

EA(x). Note that
S

x2B[C
EA(x)n

S
x2B

EA(x) =
S
x2C

EA(x)n
S
x2B

EA(x).

Applying again property (2:1), we have that EA(C) =
S
x2C

EA(x) and EA(B) =S
x2B

EA(x). Thus,

EA (B [ C) n EA (B) = EA(C)nEA(B). (3)
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Using similar arguments, we also obtain that

EA (A [ C) n EA (A) =
S

x2A[C
EA(x)n

S
x2A

EA(x) (4)

=
S
x2C

EA(x)n
S
x2A

EA(x)

= EA(C)nEA(A):

Because EA (A) � EA (B) ; (3) and (4) imply that property (2.2) holds.
By de�nition of f :

f(B [ C) = (B [ C) [ [NnEA (B [ C)]
f(B) = B [ [NnEA (B)]

f(A [ C) = (A [ C) [ [NnEA (A [ C)]
f(A) = A [ [NnEA (A)]:

Thus,P
j2f(B[C)

ui (j)�
P

j2f(B)
ui (j) =

P
j2B[C

ui (j)+
P

j2NnEA(B[C)
ui (j)�

P
j2B

ui (j)�
P

j2NnEA(B)
ui (j) :

Because B \ C = ; and NnEA(B) � NnEA(B [ C),P
j2f(B[C)

ui (j)�
P

j2f(B)
ui (j) =

P
j2C

ui (j)�
P

j2EA(B[C)nEA(B)
ui (j) :

On the other hand,P
j2f(A[C)

ui (j)�
P

j2f(A)
ui (j) =

P
j2A[C

ui (j)+
P

j2NnEA(A[C)
ui (j)�

P
j2A
ui (j)�

P
j2NnEA(A)

ui (j) :

Because A \ C = ; and NnEA(A) � NnEA(A [ C),P
j2f(A[C)

ui (j)�
P

j2f(A)
ui (j) =

P
j2C

ui (j)�
P

j2EA(A[C)nEA(A)
ui (j) :

By monotonicity and property (2.2),P
j2C

ui (j)�
P

j2EA(B[C)nEA(B)
ui (j) �

P
j2C

ui (j)�
P

j2EA(A[C)nEA(A)
ui (j) :

Hence, property (2.3) holds. �

Appendix C. Proof of Proposition 3

Proof of Proposition 3 (3:1) If i 2 EA (V t) then, by the de�nition of the process,
�V t

0
i = �V ti for all t

0 > t: Hence, x 2 �V t0i :
Assume now that i =2 EA (V t) and let t0 > t. We consider two cases:
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� We �rst assume that i =2 EA
�
V t

0�1�. Suppose that x =2 �V t
0
i . Then, Q =

�V ti n
�
V t

0�1 [ �V t0i
�
6= ; because x 2 Q. Applying property (2:3) in Proposition

2 when de�ningA, B, and C as V t�1[
�
�V ti nQ

�
, V t

0�1[ �V t0i , andQ, respectively,
we obtain that P

j2f(V t0�1[ �V t0i [Q)
ui (j)�

P
j2f(V t0�1[ �V t0i )

ui (j) �P
j2f(V t�1[ �V ti )

ui (j)�
P

j2f(V t�1[( �V ti nQ))
ui (j) > 0;

where the last inequality comes from the de�nition of �V ti . Then,

f
�
V t

0�1 [ �V t0i [Q
�
Pif

�
V t

0�1 [ �V t0i
�
;

which contradicts the de�nition of �V t
0
i :

� We now assume that i 2 EA
�
V t

0�1�. Let t� > t be such that i =2 EA �V t��
but i 2 EA

�
V t

�+1
�
: We know that t � t� < t0 and t0 > t + 1. Because of

the previous case we know that x 2 �V t
�+1
i . By the de�nition of the process,

�V t
0
i =

�V t
0�1
i = ::: = �V t

�+1
i . Hence, x 2 �V t0i :

(3:2) We �rst prove that v
��
V Ti
�
i2N

�
= V T : Of course, V T � v

��
V Ti
�
i2N

�
:

We prove that v
��
V Ti
�
i2N

�
� V T . Suppose that x 2 v

��
V Ti
�
i2N

�
but x =2 V T .

Then,
�
i 2 N j x 2 V Ti

	
2 Wx: If x 2 V Ti there exists 1 � ti � T such that x 2 �V tii

because V Ti = [Tt=1 �V ti . By property (3:1), x 2 �V Ti because x =2 V T ; V T = [Tt=1 �V t;
and x 2 �V tii : Then,

�
i 2 N j x 2 �V Ti

	
2 Wx and hence, x 2 �V T � V T ; which is a

contradiction.

We now prove that v
��
V Ti
�
i2N

�
= v

�
(Zi)i2N

�
: We know that V Ti � Zi for

all i 2 N: Then, v
��
V Ti
�
i2N

�
� v

�
(Zi)i2N

�
: Suppose that x 2 v

�
(Zi)i2N

�
but

x =2 v
��
V Ti
�
i2N

�
: Then, x 2 Hi for some i 2 N and hence, by de�nition of Hi,

x 2 V T � v
��
V Ti
�
i2N

�
; which is a contradiction. �

Appendix D. Proof of Theorem 1

The proof of Theorem 1 follows from the following three Lemmata, which assume

that R 2 D and v is a voting by committees without vetoers.

Lemma 2 Let i 2 N and X � K. Then,
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a) to vote for X \G (Ri) is at least as good as to vote for X;
b) if there exists x 2 X \B (Ri) such that i is not a dummy for x then, to vote

for X is dominated by to vote for X \G (Ri) :

Proof Assume that X 0 = X \G (Ri).
a) We prove that given S 0i = X 0; Si = X; Sj � K for all j 2 Nn fig ; then,
ui (S

0
i; S�i) � ui (Si; S�i) : Take T 0 = v (S 0i; S�i) and T = v (Si; S�i) : By de�nition,

ui (S
0
i; S�i) =

8<:
P

j2NnEA(T 0)
ui (j) +

P
j2T 0

ui (j) if i =2 EA (T 0)

0 otherwise.

Since X 0 � X; T 0 � T . By property (2:1), EA (T 0) � EA (T ). Then, because

preferences are monotonic, P
j2NnEA(T 0)

ui (j) �
P

j2NnEA(T )
ui (j) :

Since X 0 = X \G (Ri),
P

j2T 0 ui (j) �
P

j2T ui (j) : We consider three cases:

� i 2 EA (T 0) � EA (T ) : Then,

ui (S
0
i; S�i) = ui (Si; S�i) = 0:

� i =2 EA (T 0) but i 2 EA (T ) : Then,

ui (S
0
i; S�i) =

P
j2NnEA(T 0)

ui (j) +
P
j2T 0

ui (j) � 0 = ui (Si; S�i) :

� i =2 EA (T 0) and i =2 EA (T ) : Then,

ui (S
0
i; S�i) =

P
j2NnEA(T 0)

ui (j) +
P
j2T 0

ui (j)

�
P

j2NnEA(T )
ui (j) +

P
j2T
ui (j)

= ui (Si; S�i) :

b) Take X� = fx 2 X \B (Ri) j i is not a dummy for xg : Assume X� 6= ;. For
any x 2 X�, let Wx 2 Wm

x be such that i 2 Wx: We now prove that there exists

S�i = (Sj)j2Nnfig satisfying ui (S
0
i; S�i) > ui (Si; S�i) : For each j 2 Nn fig de�ne

Sj = X
0[fx 2 X� j j 2 Wxg : Then, v (S 0i; S�i) = X 0 and v (Si; S�i) = X 0[X� = Y:

Then, P
j2X0

ui (j) >
P
j2Y

ui (j) :
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By property (2:1), EA (X 0) � EA (Y ) and henceP
j2NnEA(X0)

ui (j) �
P

j2NnEA(Y )
ui (j) :

Then, P
j2NnEA(X0)

ui (j) +
P
j2X0

ui (j) >
P

j2NnEA(Y )
ui (j) +

P
j2Y

ui (j) :

Since X 0 � G (Ri) we conclude that i =2 EA (X 0) : Then,

ui (S
0
i; S�i) =

P
j2NnEA(X0)

ui (j) +
P
j2X0

ui (j) > 0:

We consider two cases.

� i 2 EA (Y ) : Then, ui (S 0i; S�i) > ui (Si; S�i) because ui (Si; S�i) = 0:

� i =2 EA (Y ) : Then, ui (S 0i; S�i) > ui (Si; S�i) because

ui (Si; S�i) =
P

j2NnEA(Y )
ui (j) +

P
j2Y

ui (j) :

�

Lemma 3 For each i 2 N , the strategy Zi is undominated.

Proof Assume that Zi is dominated by V 0i and Zi 6= V 0i : Then, for each S =

(S1; :::; Sn) 2
�
2K
�N
; ui (V

0
i ; S�i) � ui (Zi; S�i) : By Remark 3, i =2 EA (Zi) : Since

Zi is dominated by V 0i we conclude that i =2 EA (V 0i ) : By Lemma 2 a), we can

assume that V 0i \ B (Ri) = ;: We will get a contradiction by proving that V 0i = Zi:
We �rst prove that Zi � V 0i and later that V 0i \ (K n Zi) = ;:

1. Zi � V 0i . We can assume, without loss of generality, that if i is a dummy for
x and x 2 Zi then x 2 V 0i . If not, take

V 00i = V
0
i [ fx 2 Zi such that i is a dummy for xg

and proceed with V 00i instead of V
0
i . Notice that V

00
i and V

0
i are payo¤equivalent

for i.

We �rst prove that V Ti � V 0i by induction on t: We start by proving that

V 1i � V 0i : Suppose not. Then, Q = V 1i n V 0i 6= ;: Given x 2 Q let Wx 2 Wm
x

be such that i 2 Wx: We know that Wx exists because i is not a dummy

for x. For each j 2 Nn fig de�ne Sj = V 0i [ fx 2 Q j j 2 Wxg : Of course,
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v (V 0i ; S�i) = V
0
i . Moreover, V

0
i � v (Zi; S�i) because v has no vetoers. Since

Q � V 1i � Zi it is easy to conclude that v (Zi; S�i) = V 0i [Q: Since i =2 EA (Zi)
and i =2 EA (V 0i ) we conclude, by property (2:1), that i =2 EA (V 0i [ Zi) and
i =2 EA (V 0i [Q) : Then,

ui (Zi; S�i)� ui (V 0i ; S�i) =
P

j2f(V 0i [Q)
ui (j)�

P
j2f(V 0i )

ui (j) .

By de�nition of �V 1i (= V
1
i ) and since ; 6= Q � G(Ri),P

j2f(V 1i )
ui (j)�

P
j2f(V 1i nQ)

ui (j) > 0:

Applying property (2:3) in Proposition 2 when de�ningA, B, andC as V 1i nQ =
V 1i \ V 0i , V 0i , and Q, respectively, we obtain that

ui (Zi; S�i)� ui (V 0i ; S�i) �
P

j2f(V 1i )
ui (j)�

P
j2f(V 1i nQ)

ui (j) > 0;

which contradicts that Zi is dominated by V 0i : Then, V
1
i � V 0i :

Induction hypothesis: Assume that V ti � V 0i .
We now prove that V t+1i � V 0i : We assume that i =2 EA (V t), otherwise the
result is trivial because V Ti = V ti . Since V

t+1
i = V ti [ �V t+1i it is enough to

prove that �V t+1i � V 0i : Suppose not. Then, Q = �V t+1i n V 0i 6= ;: Given x 2 Q
let Wx 2 Wm

x be such that i 2 Wx: We know that Wx exists because i is not

a dummy for x. For each j 2 Nn fig de�ne Sj = V 0i [ V t [ fx 2 Q j j 2 Wxg.
Since v has no vetoers, V 0i [ V t � v (Zi; S�i) and V 0i [ V t � v (V 0i ; S�i). Now
it is easy to conclude that v (V 0i ; S�i) = V

0
i [ V t and v (Zi; S�i) = V 0i [ V t [Q:

Then,

ui (Zi; S�i)� ui (V 0i ; S�i) =
P

j2f(V t[V 0i [Q)
ui (j)�

P
j2f(V t[V 0i )

ui (j) :

By de�nition of �V t+1i ,P
j2f(V t[ �V t+1i )

ui (j)�
P

j2f(V t[( �V t+1i nQ))
ui (j) > 0:

Applying property (2:3) in Proposition 2 when de�ning A, B, and C as�
V t [ �V t+1i

�
n Q = V t [

�
�V t+1i nQ

�
, V t [ V 0i , and Q, respectively, we obtain

that

ui (Zi; S�i)� ui (V 0i ; S�i) �
P

j2f(V t[ �V t+1i )
ui (j)�

P
j2f(V t[( �V t+1i nQ))

ui (j) > 0;
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which contradicts that Zi is dominated by V 0i : Then, �V
t+1
i � V 0i and hence,

V t+1i � V 0
i :

We have proved that V Ti � V 0i : We now prove that Hi � V 0i : Suppose not,
then Q = Hi n V 0i 6= ;. Given x 2 Q let Wx 2 Wm

x be such that i 2 Wx: We

know that Wx exists because i is not a dummy for x. For each j 2 Nn fig
de�ne Sj = V 0i [ fx 2 Q j j 2 Wxg : Using arguments similar to those already
used before we conclude that v (V 0i ; S�i) = V

0
i and v (Zi; S�i) = V

0
i [Q: Then,

ui (Zi; S�i)� ui (V 0i ; S�i) =
P

j2f(V 0i [Q)
ui (j)�

P
j2f(V 0i )

ui (j) :

By de�nition of Hi, P
j2f(V Ti [Hi)

ui (j)�
P

j2f(V Ti [(HinQ))
ui (j) > 0:

Applying property (2:3) in Proposition 2 when de�ning A, B, and C as�
V Ti [Hi

�
nQ = V Ti [ (Hi nQ), V 0i , and Q, respectively, we obtain that

ui (Zi; S�i)� ui (V 0i ; S�i) �
P

j2f(V Ti [Hi)
ui (j)�

P
j2f(V Ti [(HinQ))

ui (j) > 0;

which contradicts that Zi is dominated by V 0i : Then, Hi � V 0i . Since Zi =

V Ti [Hi we conclude that Zi � V 0i :

2. V 0i \ (K n Zi) = ;: Suppose not. We already know that V 0i \ B (Ri) = ;. We
can assume without loss of generality that if i is a dummy for x and x =2 Zi
then x =2 V 0i . If not, take

V 00i = V
0
i n fx 2 V 0i such that i is a dummy for xg

and proceed with V 00i instead of V
0
i . Notice that V

00
i and V

0
i are payo¤equivalent

for i. We consider two cases:

� i =2 EA
�
V T
�
:

�We �rst prove that (V 0i n Zi)\(G (Ri) n Ai) = ;. Suppose not. Then,
Q = (V 0i n Zi)\(G (Ri) n Ai) 6= ;. Given x 2 Q letWx 2 Wm

x be such

that i 2 Wx: We know that Wx exists because i is not a dummy for

x. By the process de�ning Z (step T ) we know that for any subset

Q0 � K if V T�1 \Q0 = ; and Q0 6= �V Ti ,P
j2f(V T�1[ �V Ti )

ui (j) >
P

j2f(V T�1[Q0)
ui (j) :
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For each j 2 Nn fig de�ne Sj = V T�1 [ �V Ti [ fx 2 Q j j 2 Wxg :
Using arguments similar to those already used before we conclude

that V T�1 [ �V Ti [Q � v (V 0i ; S�i) and v (Zi; S�i) = V T�1 [ �V Ti : Take
Q0 = v (V 0i ; S�i) n V T�1, then

ui (Zi; S�i) =
P

j2f(V T�1[ �V Ti )
ui (j)

and

ui (V
0
i ; S�i) =

P
j2f(V T�1[Q0)

ui (j) :

Since V T�1 \ Q0 = ; and Q0 � �V Ti [ Q ) �V Ti , ui (Zi; S�i) >

ui (V
0
i ; S�i) ; which contradicts that Zi is dominated by V

0
i .

�We now prove that (V 0i n Zi) \ Ai = ;. Suppose not. Then, Q =

(V 0i n Zi) \ Ai 6= ;. Given x 2 Q let Wx 2 Wm
x be such that i 2 Wx:

We know thatWx exists because i is not a dummy for x. By de�nition

of Hi we know that for all Q0 � Ai; Q0 6= Hi;P
j2f(V Ti [Hi)

ui (j) >
P

j2f(V Ti [Q0)
ui (j) :

For each j 2 Nn fig de�ne Sj = V Ti [Hi [ fx 2 Q j j 2 Wxg : Using
arguments similar to those already used before we conclude that V Ti [
Hi [ Q � v (V 0i ; S�i) and v (Zi; S�i) = V Ti [ Hi: Since (V 0i n Zi) \
(G (Ri) n Ai) = ; we conclude that v (V 0i ; S�i) = V Ti [Hi [Q: Take
Q0 = Hi [Q, then

ui (Zi; S�i) =
P

j2f(V Ti [Hi)
ui (j)

and

ui (V
0
i ; S�i) =

P
j2f(V Ti [Q0)

ui (j) :

Since Q0 � Ai and Q0 6= Hi (Q 6= ;) we conclude that ui (Zi; S�i) >
ui (V

0
i ; S�i) ; which contradicts that Zi is dominated by V

0
i :

� i 2 EA
�
V T
�
. Then, there exists t < T such that i =2 EA (V t�1) ; i 2

EA (V t) ; and Zi = V ti [Hi. Using the same arguments that in the case
i =2 EA

�
V T
�
we obtain a contradiction. �
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Lemma 4 (Z1; :::; Zn) is a Nash equilibrium of �(v;R).

Proof We prove that for all i 2 N; ui (Zi; Z�i) � ui (V 0i ; Z�i) for all V 0i 2 2K .
Assume that i 2 EA

�
V T
�
: By property (2.1) there exists x 2 V T such that

i 2 EA (x) : Because of the process de�ning Z there exists t � T such that�
j 2 N n fig j x 2 �V tj

	
2 Wx and hence fj 2 N n fig j x 2 Zjg 2 Wx. Then, x 2

v (V 0i ; Z�i), which means that i 2 EA (V 0i ; Z�i). Therefore, ui(Z) = ui(V 0i ; Z�i).
Assume now that i =2 EA

�
V T
�
: We prove it by contradiction. Suppose that

ui (V
0
i ; Z�i) > ui (Vi; Z�i) : By property (3:2) ; v (Zi; Z�i) = V

T and hence, ui (Zi; Z�i) =P
j2f(V T ) ui (j). Since ui (V

0
i ; Z�i) > ui (Zi; Z�i) and i =2 EA

�
V T
�
, ui (V 0i ; Z�i) =P

j2f(V 0) ui (j) ; where V
0 = v (V 0i ; Z�i) : We assume, without loss of generality, that

V 0i � (Zi [ V 0) : If not, take V 00i = V 0i \ (Zi [ V 0) and proceed with V 00i instead of V 0i
because v (V 00i ; Z�i) = v (V

0
i ; Z�i) : We proceed in two steps.

1. We prove that if Q = V 0i \
�
V 0 n V T

�
6= ; then V �i = V 0i \ Zi satis�esP

j2f(V �)
ui (j) >

P
j2f(V T )

ui (j) ;

where V � = v (V �i ; Z�i) : Notice that V
0 = V � [ Q; and V � � V T : Since

V T = V T�1, Q � V 0, and Q\ V T = ;. Because of the de�nition of Stage T of
the process, Q \ �V Ti = ;: Then, by de�nition of �V Ti ,P

j2f(V T[ �V Ti )
ui (j) >

P
j2f(V T[ �V Ti [Q)

ui (j) :

Applying property (2:3) in Proposition 2 when de�ning A, B, and C as V T ,

V T [ �V Ti , and Q, respectively, we obtain thatP
j2f(V T[ �V Ti [Q)

ui (j)�
P

j2f(V T[ �V Ti )
ui (j) �

P
j2f(V T[Q)

ui (j)�
P

j2f(V T )
ui (j) :

Then, P
j2f(V T )

ui (j) >
P

j2f(V T[Q)
ui (j) :

We know that V � � V T : If V � = V T we get a contradiction because V 0 = V �[
Q = V T [ Q: Assume that V � 6= V T : Applying property (2:3) in Proposition
2 when de�ning A, B, and C as V �, V T , and Q, respectively, we obtain thatP

j2f(V T[Q)
ui (j)�

P
j2f(V T )

ui (j) �
P

j2f(V 0)
ui (j)�

P
j2f(V �)

ui (j) :

28



Then, P
j2f(V �)

ui (j) >
P

j2f(V 0)
ui (j) >

P
j2f(V T )

ui (j) :

As a consequence of this part we can assume, without loss of generality, that

V 0i � Zi: Then, V 0 � V T .

2. For each t = 1; :::; T we de�ne St = �V t \ (K n V 0) : Assume that x 2 St.

According with Zi, candidate x is elected in stage t of the process. According

with V 0i , x is not elected. Then, member i votes for x in Stage t
�
x 2 �V ti

�
.

Notice that V 0 =
TS
t=1

�
�V t n St

�
. We will get a contradiction by proving thatP

j2f(V T )
ui (j) �

P
j2f(V 0)

ui (j) :

For all t = 1; :::; T + 1 we de�ne

Rt = V t�1 [
�
[Ta=t

�
�V a n Sa

��
:

Observe that R1 = V 0, RT+1 = V T and Rt+1 = Rt [ St for all t = 1; :::; T � 1
(by convenience we take V 0 = ;). We proceed by induction. We �rst prove
that RT satis�es P

j2f(RT+1)
ui (j) �

P
j2f(RT )

ui (j) :

Notice that RT = V T�1 [
�
�V T n ST

�
= V T because �V T = ;: Then, the result

holds trivially. Assume now that for all t = t� + 1; :::; T;P
j2f(Rt+1)

ui (j) �
P

j2f(Rt)
ui (j) :

We now prove that P
j2f(Rt�+1)

ui (j)�
P

j2f(Rt�)
ui (j) � 0:

If St
�
= ; the result holds trivially because Rt�+1 = Rt� : Assume that St� 6= ;:

By de�nition of �V t
�
i we know thatP

j2f(V t��1[ �V t�i )
ui (j)�

P
j2f(V t��1[( �V t�i nSt�))

ui (j) > 0:

Applying property (2:3) in Proposition 2 when de�ning A, B, and C as V t
��1[�

�V t
� n St�

�
, Rt

�
, and St

�
, respectively, we obtain thatP

j2f(Rt�+1)
ui (j)�

P
j2f(Rt�)

ui (j) �
P

j2f(V t��1[ �V t�i )
ui (j)�

P
j2(V t��1[( �V t�i nSt�))

ui (j) � 0:
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Then,
P

j2f(V T )
ui (j) =

P
j2f(RT+1)

ui (j) � ::: �
P

j2f(R1)
ui (j) =

P
j2f(V 0)

ui (j) ;

which is the desired contradiction. �
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