
EU-IST Integrated Project (IP) IST-2003-506826 SEKT

SEKT: Semantically Enabled Knowledge Technologies

Inconsistent Ontology Diagnosis:
Framework and Prototype

Stefan Schlobach and Zhisheng Huang
(Vrije Universiteit Amsterdam)

Abstract.
EU-IST Integrated Project (IP) IST-2003-506826 SEKT
Deliverable D3.6.1(WP3.6)
In this document, we present a framework for inconsistent ontology diagnosis and repair by defin-
ing a number of new non-standard reasoning services to explain inconsistencies through pinpoint-
ing.
We developed two different types of algorithms for the framework, and we describe these al-
gorithms in some detail. Both algorithms have been prototypically implemented as the DION
(Debugger of Inconsistent ONtologies) andMUPStersystem. The first implements a bottom-up
approach to calculate pinpoints by the support of an external DL reasoner, the second using a
specialised tableau-based calculus.
Keyword list: ontology management, inconsistency diagnosis, ontology reasoning

Copyright c© 2005 Department of Artificial Intelligence, Vrije Universiteit Amsterdam

Document Id.
Project
Date
Distribution

SEKT/2005/D3.6.1/v0.9
SEKT EU-IST-2003-506826
October 11, 2005
internal

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/78530246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SEKT Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the European
Communities as project number IST-2003-506826.

British Telecommunications plc.
Orion 5/12, Adastral Park
Ipswich IP5 3RE, UK
Tel: +44 1473 609583, Fax: +44 1473 609832
Contact person: John Davies
E-mail: john.nj.davies@bt.com

Empolis GmbH
Europaallee 10
67657 Kaiserslautern, Germany
Tel: +49 631 303 5540, Fax: +49 631 303 5507
Contact person: Ralph Traphöner
E-mail: ralph.traphoener@empolis.com

Jozef Stefan Institute
Jamova 39
1000 Ljubljana, Slovenia
Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contact person: Marko Grobelnik
E-mail: marko.grobelnik@ijs.si

University of Karlsruhe, Institute AIFB
Englerstr. 28
D-76128 Karlsruhe, Germany
Tel: +49 721 608 6592, Fax: +49 721 608 6580
Contact person: York Sure
E-mail: sure@aifb.uni-karlsruhe.de

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP, UK
Tel: +44 114 222 1891, Fax: +44 114 222 1810
Contact person: Hamish Cunningham
E-mail: hamish@dcs.shef.ac.uk

University of Innsbruck
Institute of Computer Science
Technikerstraße 13
6020 Innsbruck, Austria
Tel: +43 512 507 6475, Fax: +43 512 507 9872
Contact person: Jos de Bruijn
E-mail: jos.de-bruijn@deri.ie

Intelligent Software Components S.A.
Pedro de Valdivia, 10
28006 Madrid, Spain
Tel: +34 913 349 797, Fax: +49 34 913 349 799
Contact person: Richard Benjamins
E-mail: rbenjamins@isoco.com

Kea-pro GmbH
Tal
6464 Springen, Switzerland
Tel: +41 41 879 00, Fax: 41 41 879 00 13
Contact person: Tom Bösser
E-mail: tb@keapro.net

Ontoprise GmbH
Amalienbadstr. 36
76227 Karlsruhe, Germany
Tel: +49 721 50980912, Fax: +49 721 50980911
Contact person: Hans-Peter Schnurr
E-mail: schnurr@ontoprise.de

Sirma Group Corp., Ontotext Lab
135 Tsarigradsko Shose
Sofia 1784, Bulgaria
Tel: +359 2 9768 303, Fax: +359 2 9768 311
Contact person: Atanas Kiryakov
E-mail: naso@sirma.bg

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences
De Boelelaan 1081a
1081 HV Amsterdam, The Netherlands
Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contact person: Frank van Harmelen
E-mail: frank.van.harmelen@cs.vu.nl

Universitat Autonoma de Barcelona
Edifici B, Campus de la UAB
08193 Bellaterra (Cerdanyola del Vallès)
Barcelona, Spain
Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contact person: Pompeu Casanovas Romeu
E-mail: pompeu.casanovas@uab.es

Siemens Business Services GmbH & Co. OHG
Otto-Hahn-Ring 6
81739 Munich, Germany
Tel: +49 89 636 40 225, Fax: +49 89 636 40 233
Contact person: Dirk Ramhorst
E-mail: dirk.ramhorst@siemens.com

Executive Summary

There are two main ways to deal with inconsistent ontologies. One is to simply avoid
the inconsistency and to apply a non-standard reasoning method to obtain meaningful an-
swers. Another approach is to diagnose and repair it when encountering inconsistencies.
This document focus on the latter.

We present a framework for inconsistent ontology diagnosis and repair by defining a
number of new non-standard reasoning services to explain inconsistencies through pin-
pointing. We also integrate the ideas of debugging in the context of model based diagno-
sis.

We developed two different types of algorithms for the framework. Both algorithms
have been prototypically implemented as part of the research described by this document.
The first, called DION (Debugger of Inconsistent ONtologies) implements a bottom-up
approach to calculate pinpoints by the support of an external DL reasoner. The second
one, called theMUPStersystem uses a a specialised labelled tableau-based calculus for
the same purpose. This documents describes both the algorithmic and the implementa-
tional aspects of the systems in some detail.

FvHTEST

Contents

1 Introduction 3

2 Inconsistent Ontologies: A Framework 6
2.1 Explaining Errors: Pinpointing . 7
2.2 Suggesting Fixes: Model-based Diagnosis 11

3 Algorithms 15
3.1 A Top-down Approach to Explanation 15

3.1.1 Debugging Unfoldable ALC-TBoxes 15
3.2 An Informed Bottom-up Approach to Explanation 19

3.2.1 General Idea . 19
3.2.2 Selection Function and Relevance Measure 19
3.2.3 Algorithms . 22

3.3 Calculating terminological diagnoses . 24
3.3.1 Three ways of implementing diagnosis 25

3.4 Pinpoints: approximating diagnosis . 28

4 Debugger of Inconsistent Ontologies: Prototypes 30
4.1 MUPSter: A Prototype for Top-Down Debugging 30

4.1.1 Implementation of MUPSter . 30
4.1.2 Installation and Test Guide . 31

4.2 DION: a prototype for bottom-up debugging 33
4.2.1 Implementation of DION . 33
4.2.2 Functionalities . 34
4.2.3 Installation and Test Guide . 35

5 Related Work 39

6 Discussion and Conclusion 41

2

Chapter 1

Introduction

Ontologies play a crucial role in the Semantic Web (SW), as they allow ”intelligent
agents” to share information in a semantically unambiguous way, and to reuse domain
knowledge (possibly created by external sources). However, this makes SW technol-
ogy highly dependent of the quality, and, in particular, of the correctness of the applied
ontology. Two general strategies for quality assurance are predominant, one based on
developing more and more sophisticated ontology modelling tools, the second one based
on logical reasoning. In this paper we will focus on the latter. With the advent of ex-
pressive ontology languages such as OWL and its close relation to Description Logics
(DL), non-trivial implicit information, such as theis-a hierarchy of classes, can often
be made explicit by logical reasoners. More crucially, however, state-of-the art DL rea-
soners can efficiently detect incoherences even in very large ontologies. The practical
problem remains what to do in case an ontology has been detected to be incoherent.

Our work was motivated by the development of the DICE1 terminology. DICE imple-
ments frame-based definitions of diagnostic information for the unambiguous and unified
classification of patients in Intensive Care medicine. The representation of DICE is cur-
rently being migrated to an expressive Description Logic (henceforth DL) to facilitate log-
ical inferences. Figure 1.1 shows an extract of the DICE terminology. In [7] the authors
describe the migration process in more detail. The resulting DL terminology (usually
called a “TBox”) contains axioms such as the following, where classes (likeBODYPART)
are translated as concepts, and slots (likeREGION) as roles:

Brain v̇ CNSu∃systempart.NervousSystemu
BodyPartu∃region.HeadAndNecku∀region.HeadAndNeck

CNSv̇ NervousSystem

Developing a coherent terminology is a time-consuming and error-prone process.
DICE defines more than 2400 concepts and uses 45 relations. To illustrate some of the

1DICE stands for “Diagnoses for Intensive Care Evaluation”. The development of the DICE terminology
has been supported by the NICE foundation.

3

CHAPTER 1. INTRODUCTION 4

CLASS SUPERCLASS SLOT SLOT-VALUE

BRAIN
BODYPART

CNS
REGION

SYSTEM PART

HEAD AND NECK

NERVOUSSYSTEM

CNS NERVOUSSYSTEM

Figure 1.1: An extract from the DICE terminology (frame-based).

problems, take the definition of a “brain” which is incorrectly specified, among others, as
a “CNS” (central nervous-system) and “body-part” located in the head. This definition
is contradictory as nervous-systems and body-parts are declared disjoint in DICE. Fortu-
nately, current Description Logic reasoners, such as RACER [11] or FaCT [13], can detect
this type of inconsistency and the knowledge engineer can identify the cause of the prob-
lem. Unfortunately, many other concepts are defined based on the erroneous definition of
“brain” forcing each of them to be erroneous as well. In practice, DL reasoners provide
lists of hundreds of unsatisfiable concepts for the DICE TBox and the debugging remains
a jigsaw to be solved by human experts, with little additional explanation to support this
process.

There are two main ways to deal with inconsistent ontologies. One is to simply avoid
the inconsistency and to apply a non-standard reasoning method to obtain meaningful
answers. In [14, 15], a framework of reasoning with inconsistent ontologies, in which
pre-defined selection functions are used to deal with concept relevance, is presented The
notion of ”concept relevance” can be used for reasoning with inconsistent ontologies.

An alternative approach to deal with logical contradictions is to debug the ontology
whenever a problem is encountered. In this document, we will focus on thisdebugging
anddiagnosisprocess. Bydebuggingwe understand the identification and elimination of
modelling errors when detecting logical contradictions in a knowledge base. Debugging
requires anexplanationfor the logical incorrectness and, as a second step, itscorrection.
In this paper we will focus on the former as the latter requires an understanding of the
meaning of represented concepts.

Our experience with debugging DICE provides some hands-on examples for the prob-
lem at hand: take the contradictory definition of brains in the DICE anatomy specifica-
tion. What information is useful for correcting the knowledge base? First, we have to
identify the precise position of errors within a TBox; that is, we need a procedure to sin-
gle out the axioms causing the contradiction. The axioms forBrain andCNSform such a
minimal incoherent subset of the DICE terminology. Formally, we introduceminimal
unsatisfiability-preserving sub-TBoxes(abbreviated MUPS) andminimal incoherence-
preserving sub-TBoxes(MIPS) as the smallest subsets of axioms of an incoherent termi-
nology preserving unsatisfiability of a particular, respectively of at least one unsatisfiable
concept. These notions will also be extended to full ontology inconsistency involving
instances.

CHAPTER 1. INTRODUCTION 5

An orthogonal view on inconsistent ontologies is based on the traditional model-based
diagnosiswhich has been studies over many years in the AI community[25]. Here the aim
is to find minimal fixes, i.e. minimal subsets of an ontology that need to be repaired or
removed to render an ontology logically correct, and therefor usable again.

To calculate pinpoints and diagnoses, there are basically two approaches, a bottom-
up method using the support of an external reasoner, and a top-down implementation of a
specialised algorithm. In this paper we describe one such approach each, the former based
on the systematic enumerations of terminologies of increasing size based on selection
functions on axioms, the latter on Boolean minimisation of labels in a labelled tableau
calculus.

Both methods have been implemented as prototypes. The prototype for the informed
bottom-up approach is called DION, which stands for a Debugger of Inconsistent ON-
tologies, the prototype of the specialised top-down method is calledMUPSter. In this
document, we are going to report on the implementation issue of both these systems, and
provide a basic introduction on how to use the systems for debugging.

This document is organised as follows: Chapter 2 proposes a framework of incon-
sistent ontology diagnosis and repair calledpinpointing. In Chapter 3 we introduce two
frameworks of algorithms for pinpointing, a top-down approach based on the analysis of
the properties of labelled tableau, and a bottom-up approach based on an informed enu-
meration of terminologies of increasing size. Chapter 4 describes the prototypesMUP-
Ster and DION, which implement the two methods, before we conclude in Chapter 6.

Chapter 2

Inconsistent Ontologies: A Framework

This chapter deals with debugging and diagnosis of inconsistent Description Logic on-
tologies. Description Logics are a family of well-studied set-description languages which
have been in use for over two decades to formalise knowledge. They have a well-defined
model theoretic semantics, which allows for the automation of a number of reasoning
services.

We shall not give a formal introduction into Description Logics here, but point to
the second chapter of the DL handbook [2] for an excellent introduction. Briefly, in
DL concepts will be interpreted as subsets of a domain, and roles as binary relations.
In a terminological componentT (called TBox) the interpretations of concepts can be
restricted to themodelsof T . Let, throughout the paper,T = {Ax1, . . . , Axn} be a set
of (terminological) axioms, whereAxi is of the formCiv̇Di for each1 ≤ i ≤ n and
arbitrary conceptsCi andDi.

Let U be a finite set, called the universe. A mappingI, which interprets DL concepts
as subsets ofU is amodelof a terminological axiomCv̇D, if, and only if,CI ⊆ DI . A
model for a TBoxT is an interpretation which is a model for all axioms inT . Based on
this semantics a TBox can be checked forincoherence, i.e., whether there areunsatisfiable
concepts: concepts which are necessarily interpreted as the empty set in all models of the
TBox. More formally

1. A conceptA is unsatisfiablew.r.t. a terminologyT if, and only if,AI = ∅ for all
modelsI of T .

2. A terminologyT is incoherentif there exists a concept-name inT , which is unsat-
isfiable.

In an assertional component, the so-calledABox, properties of instances of the domain
and relations between instances can be specified. Formally, an ABox is a set ofassertions
of the formi : C andr(i, j), whereC andr are concepts and relations. and wherei and
j are individual names. An interpretationI is then amodel for an ABoxA if it is a model

6

CHAPTER 2. INCONSISTENT ONTOLOGIES: A FRAMEWORK 7

for all assertions, i.e. if, and only if,iI ∈ CI andrI(iI , jI) for i : C ∈ A andr(i, j) ∈ A,
respectively. Finally, aDescription Logic ontology(henceforth simplyontology) is a pair
O = (T ,A), and amodel of this ontologyO is an interpretation which is both a model for
A andT . We will often refer to the set of terminological axioms and assertions simply as
theaxiomsof the ontology.

Based on these definition we can now define a third logical property which points to
a potential modelling error, inconsistency.

3. An ontologyO = (T ,A) is inconsistentif it has no models.

Conceptually, these three cases are allsimplemodelling errors because we assume that
a knowledge modeller would not specify something an impossible concept in a complex
way.

In this chapter we study ways ofexplaining incoherence and unsatisfiability in DL
terminologies, and inconsistency of ontologies. We propose to simplify an ontologyO in
order to reduce the available information to the root of the logical error. More concretely
we will exclude axioms which are irrelevant to the contradiction. We will call this process
pinpointing.

2.1 Explaining Errors: Pinpointing

In this section we will formally introduce axiom pinpointing as a first step in explaining
the logical contradictions of unsatisfiability of a concept, incoherence of a terminology
and inconsistency of an ontology. By axiom pinpointing, we mean the identification of
minimal subsets of a terminology or an ontology containing logical contradictions.

Let us be more precise:axiom pinpointingmeans identifying debugging-relevant ax-
ioms, where an axiom isrelevant if a contradictory TBox becomes coherent once the
axiom is removed or if, at least, a particular, previously unsatisfiable concept turns satisfi-
able. Consider the following (incoherent) TBoxT ∗, whereA,B andC are primitive and
A1, . . . , A7 defined concept names:

ax1:A1v̇¬A u A2 u A3 ax2:A2v̇A u A4

ax3:A3v̇A4 u A5 ax4:A4v̇∀s.B u C
ax5:A5v̇∃s.¬B ax6:A6v̇A1 t ∃r.(A3 u ¬C u A4)
ax7:A7v̇A4 u ∃s.¬B

The set of unsatisfiable concept names that will be returned by a DL reasoner is
{A1, A3, A6, A7}. Although this is still of manageable size, it hides crucial information,
e.g., that unsatisfiability ofA1 depends on unsatisfiability ofA3, which is incoherent be-
cause of the contradictions betweenA4 andA5. We will use this example to explain our
debugging methods.

CHAPTER 2. INCONSISTENT ONTOLOGIES: A FRAMEWORK 8

Minimal unsatisfiability-preserving sub-TBoxes (MUPS)

MIPS are incoherent sets of terminological axioms which can, possibly, not be traced back
to the unsatisfiability of a particular concept name. If we are interested in the causes for
unsatisfiability of a particular concept we need a more fine-grained notion, calledminimal
unsatisfiability-preserving sub-TBoxesof a TBox and a particular concept.

Unsatisfiability-preserving sub-TBoxes of a TBoxT and an unsatisfiable conceptA
are subsets ofT in whichA is unsatisfiable. In general there are several of these sub-
TBoxes and we select the minimal ones, i.e., those containing only axioms that are nec-
essary to preserve unsatisfiability.

Definition 1 Let A be a concept which is unsatisfiable in a TBoxT . A setT ′ ⊆ T is a
minimal unsatisfiability-preserving sub-TBox (MUPS)of T if

• A is unsatisfiable inT ′, and

• A is satisfiable in every sub-TBoxT ′′ ⊂ T ′.

We will abbreviate the set of MUPS ofT andA bymups(T , A). MUPS for our example
TBox T ∗ and its unsatisfiable concepts are:

mups(T ∗, A1)= {{ax1, ax2}, {ax1, ax3, ax4, ax5}}
mups(T ∗, A3)= {{ax3, ax4, ax5}}
mups(T ∗, A6)= {{ax1, ax2, ax4, ax6},

{ax1, ax3, ax4, ax5, ax6}}
mups(T ∗, A7)= {{ax4, ax7}}

MUPS are useful for relating unsatisfiability to sets of axioms but we will also use them
in Section 3.1.1 to calculate MIPS.

Minimal incoherence-preserving sub-TBoxes (MIPS)

MIPS are the smallest subsets of an original TBox preserving unsatisfiability of at least
one atomic concept.

Definition 2 Let T be an incoherent TBox. A TBoxT ′ ⊆ T is aminimal incoherence-
preserving sub-TBox (MIPS) ofT if

• T ′ is incoherent, and

• every sub-TBoxT ′′ ⊂ T ′ is coherent.

CHAPTER 2. INCONSISTENT ONTOLOGIES: A FRAMEWORK 9

We will abbreviate the set of MIPS ofT bymips(T). ForT ∗ we get three MIPS:

mips(T ∗) = {{ax1, ax2}, {ax3, ax4, ax5}, {ax4, ax7}}

It can easily be checked that each of the three incoherent TBoxes inmips(T ∗) is indeed a
MIPS as taking away a single axiom renders each of the three coherent. The first one sig-
nifies, for example, that the first two axioms are already contradictory without reference
to any other axiom, which suggests a modelling error already in these two axioms.

We will refer to the explanation of unsatisfiability of concepts and incoherence of a
terminology as terminological pinpointing. In a next step, we will have to tackle the case
of inconsistency of a set of assertions with respect to a terminology.

Cores

Minimal incoherence-preserving sub-TBoxes and ontologies identify smallest sets of ax-
ioms causing the original ontology to be incoherent. In terminologies such as DICE,
which are created through migration from other representation formalisms, there are
several such sub-TBoxes, each corresponding to a particular contradictory terminology.
Coresare now sets of axioms occurring in several of these incoherent TBoxes. The more
MIPS such a core belongs to, the more likely its axioms will be the cause of contradic-
tions.

Definition 3 LetT be a TBox. A non-empty intersection ofn different MIPS inmips(T)
(with n ≥ 1) is called aMIPS-core of arityn (or simplyn-ary core) for T .

Instead ofMIPS-cores of arityn we will also talk ofn-ary cores. Every set containing
precisely one MIPS is, at least, a 1-ary core. The most interesting cores of a TBox,T ,
are those with axioms that are present in as many MIPS ofT as possible, i.e., having
maximal arity. On the other hand, the size of a core is also significant, as a bigger size
points to clusters of axioms causing contradictions in combination only.

In our running example, axiomax4 occurs both in{ax3, ax4, ax5} and{ax4, ax7},
which makes{ax4} a core of arity 2 forT1, which is the core of maximal arity in this
example.

Minimal inconsistency preserving Sub-Ontologies (MISO)

Finally, we have to consider the case where a full ontology is inconsistent, i.e. where there
is no model of all assertions with respect to the background terminology. The reason for
this logical error can be twofold, in an assertion a counter-example to one or more termi-
nological axioms is found, and the terminology has to be fixed. Alternatively, assertions
could be erroneous. To cover both cases, we define here a simple unifying approach of
calculating minimal inconsistent sub-ontologies, where we reduce both the terminology
and the assertions.

CHAPTER 2. INCONSISTENT ONTOLOGIES: A FRAMEWORK 10

Definition 4 Let O = (T ,A) be an inconsistent ontology. An ontologyO′ = (T ′,A′)
whereT ′ ⊆ T andA′ ⊆ A is aminimal inconsistency preserving sub-ontology (MISO)
ofO if, and only if,

• O′ is inconsistent, and

• every sub-ontologyO′′ = (T ′′,A′′), whereT ′′ ⊂ T ′ andA′′ ⊆ A′ is coherent.

Note, that we presented this definition of MISOs purely on inconsistency, without any
priory assumptions, such as for example to require the terminology to be coherent.

As an example, suppose that the following set of assertionsA∗ is given, and inter-
preted with respect to our example terminologyT ∗.

T ∗ = {

ax1: A1v̇¬A u A2 u A3 ax2: A2v̇A u A4

ax3: A3v̇A4 u A5 ax4: A4v̇∀s.B u C
ax5: A5v̇∃s.¬B ax6: A6v̇A1 t ∃r.(A3 u ¬C u A4)
ax7: A7v̇A4 u ∃s.¬B

A∗ = {
ass1: i1 :A1 ass2: i2 :A4

ass3: i3 :¬B ass4: s(i2, i3)
ass5: i4 :A4 u A5 ass6: i2 :∀s.B

There are a number of MISOs, for example,

O∗
1 = ({ax1, ax2}, {ass1}), O∗

2 = ({ax4}, {ass2, ass3, ass4}),
O∗

3 = (∅, {ass3, ass4, ass6}), O∗
4 = ({ax4, ax5}, {ass5}).

Some comments are in order: the most simple case is the ontologyO∗
1, which is inconsis-

tent becauseA1 is unsatisfiable in the terminology. In this case, the MISO consists of the
assertionass1 which forcesi1 to be an instance of the unsatisfiable conceptA1, and the
MUPS forA1.

Unfortunately, inconsistency is not always due to unsatisfiability of concepts in the
TBox, as the other example show. InO∗

2, the axiomax4 forces everyr successor to be
in B, whereas the assertionsass2, ass3 andass4 force the particular role filleri3 to be in
¬B.

In the third example, we show that inconsistency can even arise without a terminology
involved, as the definition of ans relation betweeni2 andi3 and the universal quantifi-
cation overs in ass6 contradicts the assertion thati3 : ¬B, even without any necessary
background knowledge. Finally, there are cases, such asO∗

4, when an individual is as-
serted to be an instance of two classes

Obviously, the notion of a core could be extended easily to MISOs.

CHAPTER 2. INCONSISTENT ONTOLOGIES: A FRAMEWORK 11

Languages and Algorithms

The definitions for axiom pinpointing are language independent, as they are simply based
on subsets of sets of axioms, where the structure of the individual axioms is not relevant.
However, the calculation of explanations varies between languages, depending on the
expressiveness of specialised algorithms (for our top-down methods) or of the general
purpose reasoning tools such as RACER (for our bottom-up approach). In the following
section 3.1.1 we will give a specialised (and complete) algorithm to calculate MIPS and
MUPS in the case of unfoldableALC-TBoxes, and a general algorithm for expressive
languages such asSHIQ.

First, however, let us place our pinpointing method in the context of the well studied
diagnosis framework of Reiter and de Kleer.

2.2 Suggesting Fixes: Model-based Diagnosis

The specific problem that is tackled in the theory of model-based diagnosis is to find
minimal fixed to inconsistent systems, i.e., smallest sets of components, that have to be
fixed in order to turn an inconsistent system into a coherent one. For the time being
this means in our context to find minimal sets of axioms that one has to fix or remove
to render a concept satisfiable, a TBox coherent, or an ontology consistent. This notion
is orthogonal to pinpointing, as MIPS, MUPS and MISOs can be seen as special cases
of conflict sets, and diagnoses can then be calculated from these conflict sets. We will
introduce model-based diagnosis for logically contradicting ontologies by reducing the
problem to the classical first-order representation of diagnosis in Reiter’s original work.

In [25], Ray Reiter introduced a general framework for diagnosis based on first prin-
ciples. He defines asystemas a pair(Sd,Cmp) whereSd, thesystem description, is a set
of first order (FO) sentences, and whereCmp, thesystem components, is a finite set of
constants. To represent a terminology as a system for terminological debugging we repre-
sent satisfiability and incoherence as first-order satisfiability. Let(C, x)t be the standard
translation from a conceptC into FO-logic given a variablex, i.e. where, for example,

(C1 u C2, x)
t = (C1, x)

t ∧ (C2, x)
t,

(¬C, x)t = ¬(C, x)t,
(∃R.C, x)t = ∃R(x, y) ∧ (C, x)t,

(A, x)t = A(x) for atomic concept names.

This standard translation can be trivially extended to TBox axioms:(Cv̇D)t =
∀x.(C, x)t → (D, x)t. A TBox T translates into the first-order statementT t =
axt

1 ∧ . . . ∧ axt
n.

Terminological and first-order satisfiability have a different flavour. Consider the
translation of example TBoxT ∗.

CHAPTER 2. INCONSISTENT ONTOLOGIES: A FRAMEWORK 12

∀x(A1(x) → ¬A(x) ∧A2(x) ∧A3(x))∧
∀x(A2(x) → A(x) ∧A4(x))∧
. . .
∀x(A3(x) → A4(x)) ∧A5(x)∧
∀x(A4(x) → ∀y(S(x, y) → B(y)) ∧ C(x))∧
∀x(A5(x) → ∃y(S(x, y) ∧ ¬B(y)))∧
∀x(A6(x) → A1(x) ∧ ∃y(R(x, y) ∧A3(y) ∧ ¬C(y) ∧A4(y)))∧
∀x(A7(x) → A4(x) ∧ ∃y(S(x, y) ∧ ¬B(y)))

which is consistent, even thoughA1 is terminologically unsatisfiable. To make the trans-
lation satisfiability preserving, in the sense that a concept is satisfiable w.r.t. a TBox if,
and only if, its first-order correspondence formula is satisfiable, we introduceexpecta-
tions, such asE = {∃yA(y)}. Then,A is satisfiable w.r.t.T if, and only if, T t ∪ E is
satisfiable.1

To handle consistency of an ontology we do not need such a conceptual extension,
because the standard translation of an ontology preserves logical consistency, in the sense
that the translated ontology is first-order consistent if, and only if, the ontology is con-
sistent w.r.t. the DL semantics. Here, the translation is a simple extension of the pre-
vious translation(·)t, where individual names are translated into first-order constants.
Formally, we have the translation of the assertions defined by(i : C)t = (C, i)t (using
the previous definition for(C, i)t, but now extended from variables to individuals) and
(R(i, j)t = R(i, j). Let nowAt denote the translation of all the assertions in an ABoxA,
then it is easy to see thatO = (T ,A) is consistent if, and only if,T t ∧ At is consistent.

Terminological system descriptions

Terminological system description will capture the semantics of the terminology, and the
components are those axioms, which are potentially erroneous. A distinct predicateAB(·)
can be added to denote abnormality of components.2 In our interpretation, truth of this
predicate means that the axiom is erroneous, and should not contribute to the semantics
of the terminology. The(terminological) system descriptionSd(T) for a terminologyT
is the FO-formula:(

¬AB(ax1) → axt
1

)
∧ . . . ∧

(
¬AB(axn) → axt

n

)
1The distinction between first-order and DL satisfiability is well-known, but has sometimes lead to

confusion in discussions with people without the DL background.
2In this paper, we decided to take axioms as our components for a first diagnosis framework. The

choice of components is one of the main control mechanisms for diagnostic purposes. We are currently
investigating alternative sets of components, such as sub-concepts of concepts in axioms and assertions, but
this ongoing research.

CHAPTER 2. INCONSISTENT ONTOLOGIES: A FRAMEWORK 13

A diagnosis problem occurs when the terminological system description is unsatisfiable
w.r.t. a set of expectations.3

Definition 5 Let Sd(T) be terminological system description ofT , andEx be a set of
FO-formulas calledexpectations. Let, furthermoreCmp ⊆ T be a set of axioms, the
components. We call(Sd(T), Ex, Cmp) a(terminological) diagnosis problemif Sd(T)∪
Ex) is inconsistent.

Let us look at two particular diagnosis problems, first, to explain unsatisfiability of
a particular concepts, and,secondly, to explain incoherence. In what follows we will call
the terminological diagnosis problem(Sd(T), {∃yA(y)}, T) theunsatisfiability problem,
and(Sd(T), {

∧
A∈T ∃yA(y)}, T) the incoherence problem.

Ontological system descriptions

To define an ontological diagnosis problem, we have to extend the notion of a terminolog-
ical system description to ABoxes. Again, we take axioms and assertions as diagnostic
components. The(ontological) system descriptionSd(O) for an ontologyO = (T ,A),
whereA = {ass1, . . . , assm}, is the FO-formula:(

Sd(T) ∧ (¬AB(ass1) → asst
1) ∧ . . . ∧ (¬AB(ass1) → asst

m)
)

An ontological diagnosis problem occurs when the ontological system description is un-
satisfiable.

Definition 6 Let Sd(O) be ontological system description ofO. Let, furthermore
Cmp ⊆ T be a set of axioms, thecomponents. We call (Sd(T), Cmp) an (ontologi-
cal) diagnosis problemif Sd(T) is inconsistent.

Diagnosing terminologies and ontologies

We extend Reiter’s definition of a diagnosis to terminological diagnosis problems by ap-
plying Proposition 3.4. of [25]. Note, that in this framework there is no conceptual
difference for diagnosis of incoherence or unsatisfiability problems.

Definition 7 Let T be an incoherent terminology. A(terminological) diagnosisfor
(Sd(T), Ex, Cmp) is a minimal set∆ ⊆ T such that

Sd(T) ∪ Ex ∪ {¬AB(ax) | ax ∈ T \∆} is consistent.

3Expectations replace observations in Reiter’s original framework. Observations follow from the se-
mantics of the system.

CHAPTER 2. INCONSISTENT ONTOLOGIES: A FRAMEWORK 14

In DL terms, a diagnosis∆ for the terminological diagnosis problem is a minimal
sub-terminology of an unsatisfiable (or incoherent) terminologyT (w.r.t. a conceptA),
such thatA is unsatisfiable w.r.t. the remaining TBoxT \∆ (respectively, thatT \∆ is
coherent).

From
mips(T ∗) = {{ax1, ax2}, {ax3, ax4, ax5}, {ax4, ax7}}

the 6 diagnoses
{ax1, ax3, ax7},
{ax1, ax4},

{ax1, ax5, ax7},
{ax2, ax3, ax7},
{ax2, ax5, ax7}
{ax2, ax4}

can be derived. It can easily be checked, that for all theseT ∆, the TBoxesT ′ = T \ T ∆

are coherent, and that there are no smallerT ∆ with this property.

Finally, it remains to define diagnoses for the ontological inconsistency problem
which is done in precisely the same way as before.

Definition 8 LetO = {(T ,A)} be an inconsistent ontology. An(ontological) diagnosis
for (Sd(O), Cmp) is a minimal set∆ ⊆ (T ∪ A) such that

Sd(T) ∪ {¬AB(ax) | ax ∈ (T ∪ A) \∆} is consistent.

It should be noted that diagnoses and MIPS (MUPS) are complementary for debug-
ging. A diagnosis suggests which axioms should be ignored (or fixed) to make the ter-
minology coherent, but not every diagnosis necessarily contains the erroneous axiom.
Suppose, thatax2 andax4 contain errors, and that all other axioms are correct. The first
diagnose{ax1, ax3, ax7}, though correct, will not identify the error. In a large diagnoses
space it might be difficult to find the right diagnosis. Each MIPS, on the other hand,
definitively contains a culprit for the logical conflict.

Chapter 3

Algorithms

We present two general approaches to calculate explanations: a top-down method, which
reduces the reasoning into smaller parts in order to explain a subproblem with reduced
complexity, and an informed bottom-up approach, which enumerates possible solutions
in a clever way. Both approaches will be represented for terminological reasoning only,
but can, in principal, easily be extended to full ontology debugging.1

3.1 A Top-down Approach to Explanation

In order to calculate minimal incoherence preserving sub-terminologies (MIPS) we first
calculate the minimal unsatisfiability preserving sub-terminologies (MUPS) for each un-
satisfiable concept. This is done in a top-down way: we calculate the set of axioms
needed to maintain a logical contradiction by expanding a logical tableau with labels.
This method is efficient, as it requires a single logical calculation per unsatisfiable con-
cept. On the other hand, it is based on a variation of a specialised logical algorithm, and
only works for Description Logics for which such a specialised algorithm exists and is
implemented. At the moment, such a purpose-build method only exists for the DLALC,
and a restricted type of TBoxes, namelyunfoldableones.

3.1.1 Debugging Unfoldable ALC-TBoxes

Practical experience has shown that applying our methods on a simplified version of DICE
can already provide valuable debugging information. We will therefore only provide al-
gorithms for unfoldableALC-TBoxes [21] as this significantly improves both the com-
putational properties and the readability of the algorithm.

1The extension of the bottom-up method is trivial, as we only have to define a new selection function
and systematic enumeration. For the top-down approach things are a bit more complicated, as we now have
analyse forests rather than trees. However, this seems to be a technical rather than a conceptual problem.

15

CHAPTER 3. ALGORITHMS 16

(u): if (a : C1 u C2)label ∈ B, but not both(a : C1)label ∈ B and(a : C2)label ∈ B
then B′ := B ∪ {(a : C1)label, (a : C2)label}.

(t): if (a : C1 t C2)label ∈ B, but neither(a : C1)label ∈ B nor (a : C2)label ∈ B
then B′ := B ∪ {(a : C1)label} andB′′ := B ∪ {(a : C2)label}.

(Ax) if (a : A)label ∈ B and(Av̇C) ∈ T
then B′ := B ∪ {(a : C)label∪{Av̇C}}.

(∃): if (a : ∃Ri.C)label ∈ B, Ri ∈ NR and all other rules have been applied on all
formulas overa, and if{(a : ∀Ri.C1)label1 , . . . , (a : ∀Ri.Cn)labeln} ⊆ B is
the set of universal formulas fora w.r.t. Ri in B,

then B′ := {(b : C)label, (b : C1)label1∪label, . . . , (b : Cn)labeln∪label}
whereb is a new individual name not occurring inB.

Figure 3.1: Tableau Rules forALC-Satisfiability w.r.t. a TBoxT (with Labels)

The calculation of MIPS depends on the MUPS only, and we will provide an algorithm
to calculate these minimal unsatisfiability-preserving sub-TBoxes based on Boolean min-
imisation of terminological axioms needed to close a standard tableau ([2] Chapter 2).

Usually, unsatisfiability of a concept is detected with a fully saturated tableau (ex-
panded with rules similar to those in Figure 3.1) where all branches contain a contradic-
tion (or close, as we say). The information which axioms are relevant for the closure is
contained in a simple label which is added to each formula in a branch. Alabelled for-
mula has the form(a : C)x wherea is an individual name,C a concept andx a set of
axioms, which we will refer to aslabel. A labelled branch is a set of labelled formulas
and a tableau is a set of labelled branches. A formula can occur with different labels on
the same branch. A branch is closed if it contains a clash, i.e. if there is at least one pair
of formulas with contradictory atoms on the same individual. The notions of open branch
and closed and open tableau are defined as usual and do not depend on the labels. We
will always assume that any formula is innegation normal form(nnf) and newly created
formulas are immediately transformed. We usually omit the prefix “labelled”.

To calculate a minimal unsatisfiability-preserving TBox for a concept nameA w.r.t.
an unfoldable TBoxT we construct a tableau from a branchB initially containing only
(a : A)∅ (for a new individual namea) by applying the rules in Figure 3.1 as long as
possible. The rules are standardALC-tableau rules with lazy unfolding, and have to be
read as follows: assume that there is a tableauT = {B,B1, . . . , Bn} with n+1 branches.
Application of one of the rules onB yields the tableauT ′ := {B′, B1, . . . , Bn} for the
(u), (∃) and(Ax)-rule,T ′′ := {B′, B′′, B1, . . . , Bn} in case of the(t)-rule.

Once no more rules can be applied, we know which atoms are needed to close a
saturated branch and can construct a minimisation function forA andT according to the
rules in Figure 3.2. A propositional formulaφ is called aminimisation function forA
andT if A is unsatisfiable in every subset ofT containing the axioms which are true in
an assignment makingφ true. In our case axioms are used as propositional variables in
φ. As we can identify unsatisfiability ofA w.r.t. a setS of axioms with a closed tableau

CHAPTER 3. ALGORITHMS 17

if rule = (u) has been applied to(a : C1 u C2)label andB′ is the new branch
return min function(a,B′, T);

if rule = (t) has been applied to(a : C1 t C2)label andB′ andB′′ are the new branches
return min function(a,B′, T) ∧ min function(a,B′′, T);

if rule = (∃) has been applied to(a : ∃R.C)label, B′ is the new branch andb the new variable
return min function(a,B′, T) ∨ min function(b, B′, T);

if rule = (Ax) has been applied andB′ is the new branch
return min function(a,B′, T);

if no further rule can be applied
return:

∨
(a:A)x∈B,(a:¬A)y∈B(

∧
ax∈x ax ∧

∧
ax∈y ax);

Figure 3.2:min function(a,B, T): Minimisation-function for the MUPS-problem

using only the axioms inS for unfolding, branching on a disjunctive rule implies that we
need to join the functions of the appropriate sub-branches conjunctively. If an existential
rule has been applied, the new branchB′ might not necessarily be closed on formulas for
both individuals. Assume thatB′ closes on the individuala but not onb. In this case
min function(a,B, T) = ⊥, which means that the related disjunct does not influence the
calculation of the minimal incoherent TBox.

Based on the minimisation functionmin function(a, {(a : A)∅}, T) (let us call itφ)
which we calculated using the rules in Figure 3.2 we can now calculate the MUPS forA
w.r.t. T . The idea is to use prime implicants ofφ. A prime implicantax1 ∧ . . . ∧ axn

is the smallest conjunction of literals2 implying φ [24]. As φ is a minimisation func-
tion every implicant ofφ must be a minimisation function as well and therefore also the
prime implicant. But this implies that the conceptA must be unsatisfiable w.r.t. the set
of axioms{ax1, . . . , axn}. As ax1 ∧ . . . ∧ axn is the smallest implicant we also know
that {ax1, . . . , axn} must be minimal, i.e. a MUPS. Theorem 3.1.1 captures this result
formally.

Theorem 3.1.1 LetA be a concept name, which is unsatisfiable w.r.t. an unfoldableALC-
TBoxT . The set of prime implicants of the minimisation function minfunction(a, {(a :
A)∅}, T) is the setmups(T , A) of minimal unsatisfiability-preserving sub-TBoxes ofA
andT .

PROOF. We first prove the claim that the propositional formula
φ := min function(a, {(a : A)∅}, T) is indeed a minimisation function for the MUPS
problem w.r.t. an unsatisfiable conceptA and a TBoxT . We show that a tableau starting
on a single branchB := {(a : A)∅} closes on all branches by unfolding axioms only,
that are evaluated as true in an assignment makingφ true. This saturated tableauTab∗ is
a particular sub-tableau of the original saturated tableauTab which we used to calculate

2Note that in our case all literals are non-negated axioms.

CHAPTER 3. ALGORITHMS 18

min function(a, {(a : A)∅}, T), and it is this connection that we make use of to prove
our first claim. Every branch in the new tableau is a subset of a branch occurring in
the original one and we definevisible formulasas those labelled formulas occurring in
both tableaux. By induction over the rules applied to saturateTab we can then show that
each branch in the original tableau closes on at least one pair of visible formulas. IfA
is unsatisfiable w.r.t.T , the tableau starting with the branch{(a : A)∅} closes w.r.t.T .
As we have shown that this tableau closes w.r.t.T on visible formulas, it follows that
Tab∗ is closed on all branches, which proves the first claim. By another induction over
the application of the rules in Figure 3.2 we can prove thatφ is amaximalminimisation
function, which means thatψ → φ for every minimisation functionψ. This proves the
first part of the proof; the first claim (and the argument from above) implies that every
implicant of a minimisation function identifies an unsatisfiability-preserving TBox, and
maximality implies that prime implicants identify the minimal ones.

To show that the conjunction of every MUPS{ax1, . . . , axn} is a prime implicant of
min function(a, {(a : A)∅}, T) is trivial asax1 ∧ . . .∧ axn is a minimisation function by
definition. But as we know thatmin function(a, {(a : A)∅}, T) is maximal we know that
ax1∧ . . .∧axn→min function(a, {(a : A)∅}, T) which implies thatax1∧ . . .∧axn must
be prime as otherwise{ax1, . . . , axn} would not be minimal. 2 Satisfiability

in ALC is PSPACE-complete, and calculating MUPS does not increase the complexity as
we can construct the minimisation function in a depth-first way, allowing us to keep only
one single branch in memory at a time. However, we calculate prime implicants of a
minimisation function the size of which can be exponential in the number of axioms in
the TBox. Therefore, approximation methods have to be considered in practice avoiding
the construction of fully saturated tableaux in order to reduce the size of the minimisation
functions.

From MUPS we can easily calculate MIPS, but we need an additional operation on
sets of TBoxes, calledsubset-reduction. Let M = {T1, . . . , Tm} be a set of TBoxes.
Thesubset-reductionof M is the smallest subsetsr(M) ⊆ M such that for allT ∈ M
there is a setT ′ ∈ sr(M) such thatT ′ ⊆ T . A simple algorithm for the calculation of
MIPS for T now simply follows from Theorem 3.1.2, which is a direct consequence of
the definitions of MIPS and MUPS.

Theorem 3.1.2 Let T be an incoherent TBox with unsatisfiable concepts∆T . Then,
mips(T) = sr(

⋃
A∈∆T mups(T , A)).

Checking elements ofmips(T) for cores of maximal arity requires exponentially
many checks in the size ofmips(T). In practice, we therefore apply a bottom-up method
searching for maximal cores of increasing size stopping once the arity of the cores is
smaller than 2.

CHAPTER 3. ALGORITHMS 19

3.2 An Informed Bottom-up Approach to Explanation

3.2.1 General Idea

In this section we propose an informed bottom-up approach to calculate MUPS by the
support of an external DL reasoner, like RACER. The main advantage of this approach is
that it can deal with any DL-based ontology if it has been supported by an external rea-
soner. Currently there exist several well-known DL reasoners, like RACER and FACT++.
Those external DL reasoners have been proved to be very reliable and stable. They already
support various DL-based ontology languages, including OWL. Thus, by the bottom-up
approach we can obtain an OWL debugger almost for free, although the price is paid for
its performance.

Given an unsatisfiable conceptc and a formula set(i.e., an ontology)T , we can cal-
culate the MUPS ofc by selecting a minimal subsetΣ of T in which c is unsatisfiable
in Σ. We use a similar selecting procedure which has been used in the system PION for
reasoning with inconsistent ontologies[14]. In the PION approach, a selection function
is designed to one which can extend selected subset by checking on axioms which are
relevant to the current selected subset which starts initially with a query. Although the
approach which is based this kind of relevance extension procedure may not give us the
complete solution set of MUPS/MIPS, it is good enough to provide us an efficient ap-
proach for debugging inconsistent ontologies. We are going to report the evaluation of
this informed bottom-up approach in the SEKT deliverable D3.6.2 entitled ”Evaluation
of Inconsistent Ontology Diagnosis”.

3.2.2 Selection Function and Relevance Measure

Given an ontology (i.e., a formula set)Σ and a queryφ, a selection functions is one which
returns a subset ofΣ at the stepk > 0. Let L be the ontology language, which is denoted
as a formula set. We have the general definition about selection functions as follows:

Definition 3.2.1 (Selection Functions)A selection functions is a mappings : P(L) ×
L×N → P(L) such thats(Σ, φ, k) ⊆ Σ.

In this approach, we extend the definition of the selection function so that it starts from a
conceptc instead of from a query (i.e., a formulaφ). As we have discussed above, select
functions are usually defined by a relevance relation between a formula and a formula set.
We will use a relevance relation as the informed message to guide the search strategy for
MUPS.

Definition 3.2.2 (Direct Relevance Relation)A direction relevance relationR is a set
of formula pairs. Namely,R ⊆ L× L.

CHAPTER 3. ALGORITHMS 20

Definition 3.2.3 (Direct Relevance Relation between a Formula and a Formula Set)
Given a direction relevance relationR, we can extend it to a relationR+ on a formula
and a formula set, i.e.,R+ ⊆ L× P(L) as follows:

〈φ,Σ〉 ∈ R+iff there exists a formulaψ ∈ Σ such that〈φ, ψ〉 ∈ R.

We have implemented the prototype of the informed bottom-up approach. The pro-
totype is called DION, which stands for a Debugger of Inconsistent Ontologies. We will
discuss the implementation of DION in Chapter 4. DION uses a DIG data format as its in-
ternal data representation format. Therefore, in the following, we define a direct relevance
relation which is based on the ontology language DIG.

In DIG, concept axioms has only the following three forms:impliesc(C1, C2),
equalc(C1, C2), anddisjoint(C1, · · · , Cn), which corresponds with the concept impli-
cation statement, the concept equivalence statement, and the concept disjoint statement
respectively.

Given a formulaφ, we useC(φ) to denote the set of concept names that appear in the
formulaφ.

Definition 3.2.4 (Direct concept-relevance)An axiomφ is directly concept-relevant to
a formulaψ, writtenSynConRel(φ, ψ), iff
(i) C1 ∈ C(ψ) if the formulaφ has the formimpliesc(C1, C2),
(ii) C1 ∈ C(ψ) or C2 ∈ C(ψ) if the formulaφ has the formequalc(C1, C2),
(iii) C1 ∈ C(ψ) or · · · or Cn ∈ C(ψ) if the formulaφ has the formdisjoint(C1, · · · , Cn).

Definition 3.2.5 (Direct concept-relevance to a set)A formulaφ is concept-relevant to
a formula setΣ iff there exists a formulaψ ∈ Σ such thatφ andψ are directly concept-
relevant.

For a terminologyT and a conceptc, we can define a selection functions in terms of
the direct concept relevance as follows:

Definition 3.2.6 (Selection function on concept relevance)
(i) s(T , c, 0) = {ψ | ψ ∈ T andψ is directly concept-relevant toc};
(ii)s(T , c, k) = {ψ | ψ ∈ T andψ is directly concept-relevant tos(T , c, k − 1)} for k >
0.

In order to do so, we extend the definition of direct concept relevance so that we
can say something like an axiomψ is directly concept-relevant to a conceptc, i.e.,
SynConRel(ψ, c). It is easy to see that it does not change the definition of direct rel-
evance relation.

CHAPTER 3. ALGORITHMS 21

Figure 3.3: Algorithm formups(T , c)
k := 0
mups(T , c) := ∅
repeat
k := k + 1

until c unsatisfiable ins(T , c, k)
Σ := s(T , c, k)− s(T , c, k − 1)
for all Σ′ ∈ P(Σ) do

for all φ ∈ Σ/Σ′ do
if Σ′ ∪ {φ} 6∈ mups(T , c) then

Σ′′ := s(T , c, k − 1) ∪ Σ′

if c satisfiable inΣ′′ andc unsatisfiable inΣ′′ ∪ φ then
mups(T , c) := mups(T , c) ∪ {Σ′′ ∪ {φ}}

end if
end if

end for
end for
mups(T , c) := MinimalityChecking(mups(T , c))
return mups(T , c)

Figure 3.4: Algorithm for the minimality checking onmups(T , c)
for all Σ ∈ mups(T , c) do

Σ′ := Σ
for all φ ∈ Σ′ do

if c unsatisfiable inΣ′ − {φ} then
Σ′ := Σ′ − {φ}

end if
end for
mups(T , c) := mups(T , c)/{Σ} ∪ {Σ′}

end for
return mups(T , c)

CHAPTER 3. ALGORITHMS 22

3.2.3 Algorithms

We use an informed bottom-up approach to obtain MUPS. In logics and computer sci-
ence, an increment-reduction strategy is usually used to find minimal inconsistent sets[8].
Under this approach, the algorithm first finds a set of inconsistent sets, then reduces the
redundant axioms from the subsets. Similarly, a heuristic procedure for finding MUPS
consists of the following three stages:

• Heuristic Extension: Using a relevance-based selection function to find two sub-
setsΣ andS such that a conceptc is satisfiable inS and unsatisfiable inS ∪ Σ.

• Enumeration Processing: Enumerating subsetsS ′ of S to obtain a setS ′ ∪ Σ in
which the conceptc is unsatisfiable. We call those setsc-unsatisfiable sets.

• Minimality Checking : Reducing redundant axioms from thosec-unsatisfiable sets
to get MUPSs.

The following is an algorithm for MUPSs. The algorithm first finds two subsetsΣ andS
of T . Compared withT , the setΣ is relatively small. The algorithm then tries to exhaust
the powerset ofΣ to getc-unsatisfiable sets. Finally, by the minimality checking it obtains
the MUPSs. We can define the minimality checking as a sub-procedure as shown in the
algorithm 3.4.

The complexity of the algorithm 3.3 is exponent to|Σ|. AlthoughΣ is much smaller
thanT , it is still not very useful in the implementation. One of the improvement is to
do pruning. We can check the subsets ofΣ with increasing cardinality of the subsets.
Namely, we can always pick up the subsets with a less cardinality first, (i.e., the power
set ofΣ is sorted). First, set the cardinalityn = 1, namely pick up only one axiomφ in
Σ, check ifc is unsatisfiable in{φ} ∪ s(T , c, k − 1). If ’yes’, then it ignores any superset
S such that{φ} ⊂ S. After all of the subsets with the cardinalityn have been checked,
increasen by 1. Moreover, we can do checking and pruning during the powerset is built.
That leads to the algorithm 3.5 in which we use the setS to book thec-satisfiable subsets.

Proposition 3.2.1 (Soundness of the Algorithms MUPS)The algorithms to compute
MUPS above are sound. In other words, they always return MUPSs.

PROOF. It is easy to see that the conceptc is always unsatisfiable for any elementS
in the setmups(T , c). Otherwise it is never added into the set. The minimality condition
is achieved by the procedure of the minimality checking. Therefore, the algorithms for
MUPSs are sound. 2

Take our running example. To calculatemups(T1, A1), the algorithm first gets the
set Σ = {ax2} = {ax1, ax2} − {ax1}. Thus,mups(T1, A1) = {{ax1, ax2}}. We

CHAPTER 3. ALGORITHMS 23

Figure 3.5: Algorithm formups(T , c) with pruning

k := 0
mups(T , c) := ∅
repeat
k := k + 1

until c unsatisfiable ins(T , c, k)
Σ := s(T , c, k)− s(T , c, k − 1)
S := {s(T , c, k − 1)}
for all φ ∈ Σ do

for all S ′ ∈ S do
if c satisfiable inS ′ ∪ {φ} andS ′ ∪ {φ} 6∈ S then
S := S ∪ {S ′ ∪ {φ}}

end if
if c unsatisfiable inS ′ ∪ {φ} andS ′ ∪ {φ} 6∈ mups(T , c) then
mups(T , c) := mups(T , c) ∪ {S ′ ∪ {φ}}

end if
end for

end for
mups(T , c) := MinimalityChecking(mups(T , c))
return mups(T , c)

Figure 3.6: Finding a MUPS forT in which a conceptc is unsatisfiable

Σ := ∅
repeat

for all φ1 ∈ T \ Σ do
if SynConcRel(φ1, c) or there is aφ2 ∈ Σ such thatSynConRel(φ1, φ2) then

Σ := Σ ∪ {φ1}
end if

end for
until c is unsatisfiable inΣ
for all φ ∈ Σ do

if c is unsatisfiable inΣ− {φ} then
Σ := Σ− {φ}

end if
end for

CHAPTER 3. ALGORITHMS 24

can see that the algorithm cannot find thatS1 = {ax1, ax3, ax4, ax5} ∈ mups(T1, A1).
However, it does not change the result of MIPS, because we have a subset{ax3, ax4, ax5}
of S1, which will be inmups(T1, A3). To calculatemups(T1, A6), the algorithm first
gets the setΣ = {ax2, ax5} = {ax1, ax2, ax3, ax4, ax5, ax6} − {ax1, ax3, ax4, ax6}.
Thus,mups(T1, A6) = {{ax1, ax3, ax4, ax5, ax6}}. Again, the algorithm cannot find
that {ax1, ax2, ax4, ax6} ∈ mups(T1, A6). However, it does not affect MIPS, because
{ax1, ax2} ∈ mups(T1, A1). Therefore, the algorithms for MUPSs proposed above are
sound, but not complete. As we have argued above, this informed bottom-up approach is
efficient for inconsistent ontology diagnosis.

Sometimes it is useful to find just a single MUPS by using the relevance relation
without referring to a selection function. Algorithm 3.6 uses the increment-reduction
strategy to find a single MUPS for an unsatisfiable concept, without a selection function.
The algorithm finds a subset of the ontology in which the concept is unsatisfiable first,
then reduces the redundant axioms from the subset.

We can obtain MUPSs for all unsatisfiable concepts. Based on those MUPSs, we can
calculate MIPS, core, and pinpoints further, by using the standard algorithms which have
been discussed in the previous chapter. Those data can be used for knowledge workers to
repair the ontology to avoid unsatisfiable concepts[27, 26].

3.3 Calculating terminological diagnoses

Terminological diagnosis, as defined in the previous section, is an instance Reiter’s diag-
nosis from first principles. Therefore, we can use Reiter’s algorithms to calculate termi-
nological diagnoses. What is required is a method to produce conflict sets, and we will
discuss three different options for this. Let us first recall the basic methodology from [25].

Given an incoherent terminologyT , a conflict setfor (Sd(T), Ex, Cmp) is a set
CS ⊆ Cmp, such thatSd(T) ∪ Ex ∪

⋃
ax∈CS {¬AB(ax)} is inconsistent. A conflict

set is minimal if, and only of, no proper subset of it is a conflict set for the same diagnosis
problem.

The following proposition is the basis for calculating diagnosis on the basis of conflict
sets.

Proposition 3.3.1 ([25] Proposition 4.2.) A set∆ ⊆ T is a diagnosis for a terminological
diagnosis problem(Sd(T), Ex, Cmp) iff ∆ is a minimal set such thatT \ ∆ is not a
conflict set of(Sd(T), Ex, Cmp).

The basic idea to calculate diagnosis from conflict sets is based on minimal hitting
sets. SupposeC is a collection of sets. Ahitting setfor C is a setH ⊆

⋃
S∈C S such that

H ∩ S 6= ∅ for eachS ∈ C. A hitting set is minimal forC iff no proper subset of it is a
hitting set forC.

CHAPTER 3. ALGORITHMS 25

This gives the basis of Reiter approach to calculate diagnoses given the following
theorem which is a direct consequence of Corollary 4.5 in [25].

Theorem 3.3.1 A set ∆ ∈ T is a diagnosis for a terminological diagnosis problem
(Sd(T), Ex, Cmp) iff ∆ is a minimal hitting set for the collection of conflict sets for
(Sd(T), Ex, Cmp).

To calculate minimal hitting trees Reiter introduces hitting set trees (HS-trees). For
a collectionC of sets, a HS-treeT is the smallest edge-labelled and node-labelled tree,
such that the root is labelled byX if C is empty. Otherwise it is labelled with any set in
C. For each noden in T , letH(n) be the set of edge labels on the path inT from the root
to n. The label forn is any setS ∈ C such thatS ∩H(n) = ∅, if such a set exists. Ifn
is labelled by a setS, then for eachσ ∈ S, n has a successor,nσ joined ton by an edge
labelled byσ. For any node labelled byX, H(n), i.e. the labels of its path from the root,
is a hitting set forC.

Figure 3.7 shows a HS-treeT for the collection

C = {{1, 2, 3, 4, 5, 6}{3, 4, 5}, {1, 2, 4, 6}, {1, 2}, {4, 7}}

of sets.T is created breadth first, starting with root noden0 labelled with{1, 2, 3, 4, 5, 6}.
For diagnostic problems the sets in the collection are conflict sets which are created on de-
mand. In our case, conflict sets for a terminological diagnosis problem can be calculated
by a standard DL engine because of the following simple proposition.

Proposition 3.3.2 For any setC of components (terminological axioms) in a terminolog-
ical diagnostic problem, the FO-formulaSd(T)∪Ex∪

⋃
ax∈C {¬AB(ax)} is inconsistent

if, and only if,A is unsatisfiable inT \ C.

These calls are computationally expensive, which means that we have to minimise
them. In Figure 3.7, those nodes are boxed, for which labels were created by calls to the
prover.T reuses already calculated and smallest possible labels, and is pruned in a variety
of ways, which are defined in detail in [25]. Just for example, noden0 is relabelled with
a subset{3, 4, 5} of its label. We denote by1×, that element1 is deleted. Note, that no
successor for this element has to be created. Noden6 has been automatically labelled
with {4, 7}, because the intersection of its pathh(n6) = {2, 3} is empty with an already
existing conflict set in the tree.

3.3.1 Three ways of implementing diagnosis

The generality of Reiter’s algorithm has the advantage of giving some levy for particular
methodological choices. We implemented three ways of calculating conflict sets.

CHAPTER 3. ALGORITHMS 26

1. Use an optimised DL reasoner to return a conflict set in each step of the creation of
the HS-tree. The only way to get conflict sets for an incoherent TBoxT is to return
T itself, i.e. themaximal conflict set.

2. Use an adapted DL reasoner to returnsmall conflict sets, which it can derive from
the clashes in a tableau proof.

3. Use a specialised method to returnminimal conflict sets, e.g., using the methods of
[27].

Diagnosis with maximal conflict sets

The most general way to calculate terminological diagnosis based on hitting sets is to
use one of the state-of-the-art optimised DL reasoner. The advantage is obvious: the ex-
pressiveness of the diagnosis is only restricted by the expressiveness of the DL reasoning
implemented in the reasoner. We use RACER, which allows to diagnose incoherent ter-
minologies up toSHIQ without restriction on the structure of the TBox. The algorithm
to use RACER is simple: ifT is incoherent, returnT , other return∅. As RACER is
highly optimised we can expect to get the maximal conflict sets efficiently.

The disadvantage of this naive approach is that the conflict sets are huge, and even
with reusing of node labels and pruning, the HS-tree become quickly to large to handle.
Take TBoxT ∗ with its incoherence problem(Sd(T ∗), {

∧
A∈T ∃yA(y)}, T ∗,∅), where

related HS-tree already has 380 nodes, and needs 67 calls to RACER. We will see that the
price we pay for the gain in expressiveness is too high, and that the smaller conflict sets
are required.

Diagnosis with small conflict sets

The disadvantage of using a DL reasoner as a black-box is that they do not provide any
information on which components contribute to the incoherence. Technically, this means
which axioms contribute to the closure of the tableau. To show that already straight-
forward collecting of clash-enforcing axioms can dramatically improve the efficiency of
diagnosis, we implemented a simple tableau calculus for unfoldableALC TBoxes. This
reasoner returns an unordered, and not necessarily minimal, list of axioms which are (in-
directly) responsible for the clashes in the tableau. The basic idea is to label each formula
with a set of axioms, which are added to a formula in the tableau whenever they are
used to “unfold” a defined concept. This algorithm is not optimised, but returns small
conflict sets, and the sizes of the HS-Trees decrease dramatically. Figure 3.7 shows the
hitting tree for the incoherence problem forT ∗ where small conflict sets have been col-
lected from tableau proofs. Compared to the previous method, there were only 14 nodes
created, and 11 calls to the DL reasoner necessary.

CHAPTER 3. ALGORITHMS 27

n0 : {1×, 2
×

, 3, 4, 5, 6
×}

n1 : {3, 4, 5}

×

1

n2 : {1, 2, 4
×

, 6
×}

3

n5 : {4, 7}

1

×

4

n11 : ∅X

7

n6 : {4, 7}

2

×

4

n12 : ∅X

7

n3 : {1, 2}

4

n7 : ∅X

1

n8 : ∅X

2

n4 : {1, 2}

5

n9 : {4, 7}

1

×

4

n13 : ∅X

7

n10 : {4, 7}

2

×

4

n14 : ∅X

7

Figure 3.7: HS-Tree with small conflict sets

Diagnosis with minimal conflict sets

Previously, we recalled the notion of minimal unsatisfiability (and incoherence) preserv-
ing sub-terminologies MUPS and MIPS, which were introduced in [27] for the debugging
of terminologies.

The MUPS of an incoherent terminologyT and an unsatisfiable conceptA are the
minimal conflict sets for the unsatisfiability problem(Sd(T), {∃yA(y)}, T ,∅). It is eas-
ily checked that each MUPS{{ax1, ax2}, {ax1, ax3, ax4, ax5}} for A1 andT ∗ is indeed
a minimal conflict set for the unsatisfiability problems(Sd(T ∗),∃yA1(y)), T ∗,∅). Based
on the MUPS, it is straightforward to calculate MIPS, which are the conflict sets for the
incoherence problem.

Proposition 3.3.3 The MIPS of an incoherent terminologyT are the minimal conflict
sets for the incoherence problem(Sd(T), {

∧
A∈T ∃yA(y)}, T ,∅).

Given a collection of MIPSM = {mips1, . . . ,mipsn}, where each MIPSmipsi is a
set of axiomsax1i, . . . , axkii. The diagnoses for the incoherence problem is then the set
of prime implicants of the Boolean formula:∧

1≤i≤n

∨
1≤j≤k

axij

Figure 3.8 shows the hitting tree for the incoherence problem

(Sd(T ∗), {
∧

A∈T

∃yA(y)}, T ∗,∅)

for T ∗ where minimal conflict sets have been calculated as MIPS.3 This time there were
only 12 nodes created.

3An axiomaxi is represented by the numberi.

CHAPTER 3. ALGORITHMS 28

n0 : {1, 2}

n1 : {3, 4, 5}

1

n3 : {4, 7}

3

×

4

n9 : ∅X

7

n4 : ∅

4

n5 : {4, 7}

5

×

4

n10 : ∅X

7

n2 : {3, 4, 5}

2

n6 : {4, 7}

3

×

4

n11 : ∅X

7

n7 : ∅

4

n8 : {4, 7}

5

×

4

n12 : ∅X

7

Figure 3.8: HS-Tree with minimal conflict sets

3.4 Pinpoints: approximating diagnosis

MIPSs, MUPS, MISOs and their cores do not offer an immediate recipe for fixing an
incoherent web ontology. Diagnoses on the other hand can be very expensive to calculate
(see the discussion on page 18). For practical reasons we therefore introduced the notion
of a pinpoint, which is a small, but not necessarily minimal, set of axioms which have to
be fixed or removed to make an ontology logically correct.

Here, we describe the idea to calculate pinpoints for MIPSs. The strategy iteratively
calculates the cores (of size 1) of maximal arity, repeating the process on the remaining
MIPSs. Moreover, the algorithms for MIPS and MUPS have been implemented for ter-
minological debugging ofALC terminologies. To apply them to web ontologies we need
some preprocessing. Given a web ontologyO we apply the following steps:

1. Remove the ABox, as well as property statements and axioms where the left-hand
side is non-atomic.

2. Replace equivalence statements by implications

3. Collect all implicationsC v D1,. . . ,C v Dn in a single conjunctionC v D1 u
· · · uDn.

4. Call the resulting terminologyT (not necessarily unfoldable)

The strategy for automatically fixing the incoherences by pinpointing is then as follows;
calculate:

1. the setUnsat(T) of unsatisfiable concept-names inT using RACER;

2. the MUPSmups(T , CN) for all concept-namesCN ∈ Unsat(T);

3. the MIPSsmips(T) for T from the MUPS;

4. letM := mips(T), P (O) = ∅. Now calculate whileM 6= ∅:

(a) the core{ax} of M of size 1 with maximal arity, and add it toP (O);

CHAPTER 3. ALGORITHMS 29

(b) remove fromM the MIPS containingax.

5. P (O) will be called thepinpoint ofO.

6. Finally, removeP (O) from T .

The pinpoint of the ontologyO is a set of axioms in the preprocessed version. Every
axiom corresponds precisely to a concept-name (because of step 3) or is a disjointness
statement. By the pinpoint of an ontology, we will therefore refer both to sets of axioms
as well as to sets of concept and disjointness statements. Note that for debugging and
semantic clarification, we often focus on these pinpoints. This is because there is usually
only a handful of those as compared to hundreds of MIPSs, which can be quite com-
plicated. However, in practice, MIPSs will always have to be consulted if one wants to
understand the underlying reasons for incoherence of an ontology.

Fixing an ontology by pinpointing offers a simple solution to the incoherence problem
since by adjusting or removing the information about the pinpoints we can guarantee to
the restoration of logical coherence with (almost) minimal intrusion in the ontology. Pin-
points correspond to hitting-sets [25] for the MIPS, but they are not necessarily minimal.
Take, as example, a setM = {{ax1, ax2}, {ax3, ax4}, {ax5, ax1}, {ax5, ax3}} of MIPS,
with {ax5, ax1, ax3} as possible pinpoint, even though{ax1, ax3} is a miminal covering
set forM . On the other hand, it has to be remarked that calculating minimal hitting-sets
from the set of MIPS is NP-COMPLETE, as compared to linear time to calculate pinpoints
from the MIPS.

Chapter 4

Debugger of Inconsistent Ontologies:
Prototypes

4.1 MUPSter: A Prototype for Top-Down Debugging

4.1.1 Implementation of MUPSter

We have implemented theMUPSter-system as a prototype for the top-down debugging of
incoherent terminologies. The system implements the tableau-based approach described
in section 3.1.1 to calculate the MUPS of an unsatisfiable concept, the three methods to
calculate diagnoses for the incoherence problem, as well as cores, pinpoints and other
debugging facilities.

MUPSter is implemented in JAVA, and is based on the WELLINGTON reasoner1,
making external calls to RACER for efficient “black-box” computations of unsatisfiable
concepts. A given terminology is parsed and analysed, and iteratively debugged in the
following order:

• Unsatisfiable concepts:a request to RACER is send to return a list of unsatisfiable
concepts

• MUPS: for each unsatisfiable concept, the set of MUPS is calculated, using a spe-
cialised labelled tableau.

– a minimisation function is calculated from the fully expanded tableau

– the minimisation function is minimised with an implementation of a hitting-
set algorithm to calculate prime-implicant.

– these prime implicants are the MUPS.

1 Wellington was developed at King’s College, London [10]. It supports the standardkrss format and
the DIG language.

30

CHAPTER 4. DEBUGGER OF INCONSISTENT ONTOLOGIES: PROTOTYPES 31

• MIPS: MIPS can easily be calculated from the MUPS of all unsatisfiable concepts.

• Pinpoints and Cores(as described in the previous section)

• Diagnoses:based on the MIPS (as minimal conflict sets) we can calculate diag-
noses.

4.1.2 Installation and Test Guide

MUPSteris available as a JAVA jar archive, and can, in principal, be executed platform
independent on machines running JAVA 1.5.2. MUPSter performs debugging on inco-
herentALC-terminologies. If the terminology is unfoldable, the algorithms calculate the
set of all MUPS, MIPS and diagnoses. Otherwise, the algorithm is incomplete, and the
results can often be not very useful.

MUPSterstill is an experimental prototype, and in some cases problems will most
probably occur. However, installing and runningMUPSter is very easy, simply follow
the instructions below:

• DownloadMUPSter: Download the filemupster.jar from

\url{http://www.wasp.cs.vu.nl/sekt/mupster}

• Pre-process ontology:MUPSter’s parsers are for the time being not very robust,
and the language accepted is rather restricted. On the previously mentioned website,
some scripts are available for convenience to transform a krss ontology into format
where problems could be avoided.

• Download RACER: MUPSter requires RACER to run as a server as external DL
reasoner. RACER can be downloaded from the website:http://www.sts.
tu-harburg.de/ ∼r.f.moeller/racer/download.html

• Start RACER: The RACER server has to be started and listen to the default port:
8000

• Run MUPSter: Under Linux runMUPSter with the following command line:

java -jar mupster.jar -f file.krss (options)
for ontologies in krss-format

java -jar mupster.jar -f file.dig -dig (options)
for ontologies in dig-format

whereoptions = [-u unsatfile] [-v] [-r] [-o] . It is recom-
mended not to use the -r and -o options.

2The system has been developed and tested under Linux, and there are known problems to runMUPSter
under Windows.

http://www.sts.tu-harburg.de/~r.f.moeller/racer/download.html
http://www.sts.tu-harburg.de/~r.f.moeller/racer/download.html

CHAPTER 4. DEBUGGER OF INCONSISTENT ONTOLOGIES: PROTOTYPES 32

Description

MUPSter parses an ontology according to the file specification (krss is the default).
It then starts debugging and diagnosis depending on the options that are set. In a file
unsatfile the user can specify the unsatisfiable concept-names as a comma-free list.3

The other options are

-v MUPSter runs inverbose mode, and returns more (intermediate) debugging in-
formation.

-r MUPSter onlycalculatesdiagnosiswith Reiter’s algorithm withmaximal conflict
sets. Only use this option on small, but expressive ontologies. Note, that the ontol-
ogy has to be extremely small, be small because the method is extremely slow.

-r -o MUPSter only calculatesdiagnosiswith Reiter’s algorithm withsmall conflict
sets. The method is still quite slow, and only works forALC-terminologies.

In all other cases,MUPSter currently calculates the full set of debugging operations:
MUPS, MIPS, pinpoints and diagnosis.

Output

MUPSter prints a debugging analysis of the original terminology to<STOUT>. The
output ofMUPSter on our example terminologyT ∗ from section 2 is as follows:

> there are 12 concept names of which 4 are incoherent

0th Mups(A6) = [(and A3 A1 A4 A5 A6), (and A6 A1 A2 A4)]
1th Mups(A1) = [(and A1 A2), (and A3 A1 A4 A5)]
2th Mups(A3) = [(and A3 A4 A5)]
3th Mups(A7) = [(and A7 A4)]

> Mips(T): (and A1 A2)
(and A3 A4 A5)
(and A7 A4)

Core: {A4} of arity 2 with definition (and (all S B) C)
Core: {A1} of arity 1 with definition (and (not A) A2 A3)
Pinpoint: [A4, A1]

3Note that the names of the concepts have to be the same as thoseMUPSter returns. In order to avoid
any problems with this option runMUPSterwith the verbose option [-v], and copy the list of unsatisfiable
concepts into a single fileunsatfile . From this file you will have to remove the commas.

CHAPTER 4. DEBUGGER OF INCONSISTENT ONTOLOGIES: PROTOTYPES 33

Calculating Diagnoses from MIPS
> Diagnoses(T): [A1, A4]

[A2, A4]
[A1, A3, A7]
[A1, A5, A7]
[A2, A3, A7]
[A2, A5, A7]

Time for Debugging: 567ms

4.2 DION: a prototype for bottom-up debugging

4.2.1 Implementation of DION

We have implemented a prototype DION as a debugger of inconsistent ontologies. The
system is implemented as an intelligent interface between an application and state-of-the
art description logic reasoners and provides server-side functionality in terms of an XML-
based interface for uploading an inconsistent ontology and posing queries for debugging.
Requests to the server are analysed by the main control component that also transforms
queries into the underlying query processing. The main control element also interacts
with the ontology repository and ensures that the reasoning components are provided with
the necessary information and coordinates the information flow between the reasoning
components.

Figure 4.1: Architecture of DION.

An overview of the DION architecture is shown in Figure 4.1. It has the following
components:

CHAPTER 4. DEBUGGER OF INCONSISTENT ONTOLOGIES: PROTOTYPES 34

• DION Server: The DION server acts as a server which deals with requests from
other ontology applications.

• Main Control Component: The main control component performs the main pro-
cessing, like query analysis, query pre-processing, and interacting with the ontology
repositories.

• Selection Functions: The relevance-based selection function component provides
heuristic facilities to evaluate the queries.

• DIG Client : DION’s DIG client is the standard XDIG client, which calls external
DL reasoners which support the DIG interface to obtain the standard DL reasoning
capabilities.

• Ontology Repositories: The ontology repositories are used to store ontologies and
other system specifications.

The DION prototype is implemented in Prolog and uses the XDIG interface [17], an
extended DIG description logic interface for Prolog4. DION is designed to be a simple
API for a general debugger with inconsistent ontologies. It supports extended DIG re-
quests from other ontology applications, including OWL and DIG[4]5. This means that
DION can be used as an interface of an inconsistent ontology debugger as it supports the
functionality of the underlying reasoner by just passing requests on and provides reason-
ing functionalities if needed. Therefore, the implementation of DION will be independent
of those particular applications or systems.

4.2.2 Functionalities

The current version of the DION prototype has the following characteristics:

• Debugging Support: calculates MUPSs, MIPSs, cores, and pinpoints

• Interface Support: supports the XDIG interface, an extended DIG interface.

• Ontology Languages: supports the DIG format as well as the OWL language.
Ontological data in the OWL format is translated automatically by the XDIG com-
ponent ’owl2dig’6.

4http://wasp.cs.vu.nl/sekt/dig
5http://dl.kr.org/dig/
6However, note that the component ’owl2dig’ is still under development. The complete specification of

OWL DL is not yet supported .

http://wasp.cs.vu.nl/sekt/dig
http://dl.kr.org/dig/

CHAPTER 4. DEBUGGER OF INCONSISTENT ONTOLOGIES: PROTOTYPES 35

4.2.3 Installation and Test Guide

1. Download: The DION package is available from the DION website:http://
wasp.cs.vu.nl/sekt/dion/ Unzip the DION package into a directory. We
will call the directoryDION ROOT .

2. Installation of SWI-Prolog : DION requires that SWI-Prolog (version 5.4.7 or
higher) has been installed on your computers. It can be downloaded from the SWI-
Prolog website:http://www.swi-prolog.org Install SWI-Prolog into a di-
rectory. We will call that directorySWIPROLOG ROOT .

3. Installation of XDIG : You can find the zip file ’diglibrary.zip’, the XDIG libraries
in the directoryDION ROOT . Unzip the file ’diglibrary.zip’ into the SWI-Prolog
library directory, i.e.,SWIPROLOG ROOT/library.

4. Installation of RACER : DION requires RACER (version 1.7.14 or higher) as its
external DL reasoner. Other DL reasoners may work for DION if they support
the DIG DL interface, however, they have not yet been tested. RACER can be
downloaded from the website:http://www.sts.tu-harburg.de/ ∼r.f.
moeller/racer/download.html

The DION testbed ’diontest.htm’ is a DION client with a graphical interface, which is
designed as a webpage. Therefore it can be launched from a web browser which supports
Javascript. A screenshot of the DION testbed, is shown in Figure 4.2.

The current version of the DION testbed supports tests for which both the DION server
(with default port: 8004) and the external DL reasoner (with the default port: 8000) are
running on the localhost. The default hostname of the DION server and the external DL
reasoner is ’localhost’. For a DION server which runs on a remote host, change the host
and port data in the ’dionmain.htm’ file. Namely, replace the URL ’http://127.0.0.1:8004’
with another valid URL.

Before starting the DION test, make sure that the DION server and the external DL
reasoner (i.e. RACER) are running at the host with the correct ports.

1. Launch RACER: Racer can be launched by the following command: racer -http
8000 Alternatively, click on the file ’racer8000.bat’ if the DION download package
includes the reasoner RACER and the batch file.

2. Launch DION server: click on the file ’dion server.pl’ in the DION directory. If
you encounter the global stack limit problem because of a big amount of test data,
you should increase the size of the global stack. The windows users can edit the
path setting of ’plwin.exe’ in the file ’dionserverbigGlobalStack.bat’, then launch
it.

http://wasp.cs.vu.nl/sekt/dion/
http://wasp.cs.vu.nl/sekt/dion/
http://www.swi-prolog.org
http://www.sts.tu-harburg.de/~r.f.moeller/racer/download.html
http://www.sts.tu-harburg.de/~r.f.moeller/racer/download.html

CHAPTER 4. DEBUGGER OF INCONSISTENT ONTOLOGIES: PROTOTYPES 36

Figure 4.2: DION testbed

CHAPTER 4. DEBUGGER OF INCONSISTENT ONTOLOGIES: PROTOTYPES 37

The TELL and ASK request data can be copied into the TELL text area and the ASK
text area respectively. After that, you can click on the buttons ’Tell’ and ’Ask’ to make the
corresponding requests. The request data can also be posted from any application without
using the DION testbed. That is useful if the test data exceeds the text area limit.

The MadCow Ontology7 is an inconsistent ontology in which MadCow is stated as
a Cow which eats brains of Sheep, whereas Cow is considered as a Vegetarian. DION
finds the four pinpoints: (i) either removing the statement ’Cows are vegetarians’, or (ii)
removing the statement which defines MadCow as a Cow which eats brains of sheep, or
(iii) removing the statement ’sheep are animals’, or (iv) removing the statement which
defines Vegetarian as one which never eats parts of animals. The DION pinpoints of the
MadCow ontology are shown in Figure 4.3.

7http://www.daml.org/ontologies/399

http://www.daml.org/ontologies/399

CHAPTER 4. DEBUGGER OF INCONSISTENT ONTOLOGIES: PROTOTYPES 38

Figure 4.3: Pinpoints of the MadCow Ontology

Chapter 5

Related Work

Dealing with inconsistency in applications and logics has a long tradition, and the field of
model-based diagnosis, for example, looks back at over 20 years of history. In contrast
their is relatively little work on logical modelling support of ontologies, and work on
explanation of reasoning has only become popular in the last few years.

In [14], a framework of reasoning with inconsistent ontologies, in which pre-defined
selection functions are used to deal with concept relevance, is presented. The notion of
”concept relevance” is used for reasoning with inconsistent ontologies. A prototype called
PION (Processing Inconsistent ONtologies), which is based on a syntactic relevance-
based selection function is implemented. In this document, we have used the concept rel-
evance, a technique which is developed in PION, for the informed bottom-up approach of
inconsistent ontology diagnosis. In [12], Haase et al. survey four different approaches to
handling inconsistency in DL-based ontologies: consistent ontology evolution, repairing
inconsistencies, reasoning in the presence of inconsistencies and multi-version reasoning.
They present a common formal basis for all of them, and use this common basis to com-
pare these approaches. They discuss the different requirements for each of these methods,
the conditions under which each of them is applicable, the knowledge requirements of the
various methods, and the different usage scenarios to which they would apply.

In [20], Meyer et al. propose to recast techniques for propositional inconsistency
management into the description logic setting. They show that the additional structure
afforded by description logic statements can be used to refine these techniques. Their
approach focus on the formal semantics for such techniques, although they do provide
high-level decision procedures for the knowledge integration strategies discussed.

Recently, the Description Logic community has started to work on explanation of rea-
soning. From a more practical point of view, closest to our work are the Chimaera and
PROMPT tools described in [18] and [22], which provide support for the merging, analy-
sis and diagnosis of a knowledge base but not, to our knowledge, for debugging. Despite a
significant interest in explanation of DL reasoning recently shown in the DL community
(as [9] suggests) relatively little work has been published on the subject. One excep-

39

CHAPTER 5. RELATED WORK 40

tion is [19] where the author provides explanation for subsumption and non-subsumption.
Her approach, based onexplanation as proof fragments, uses structural subsumption for
CLASSIC and has been extended toALC-tableau reasoning in [5]. In contrast to this
approach, our non-standard reasoning services for axiom pinpointing focus on the reduc-
tion of information, and are independent of particular calculi or implementations. In [23],
Parsia et al. have integrated a number of debugging cues generated from their reasoner,
Pellet, in their hypertextual ontology development environment, Swoop. These debugging
cues, in conjunction with extensive undo/redo and Annotea based collaboration support
in Swoop, significantly improve the OWL debugging experience, and point the way to
more general improvements in the presentation of an ontology to users. However, their
explanation facilities are very simple, as they only point to the “last” contradiction in an
unsatisfiability proof, and do not have a pinpointing facility in case of more complicated
or multiple contradictions.

In [3], Baclawski et al. introduce the ConsVISor tool for consistency checking of
ontologies.This tool is a consistency checker for formal ontologies, including both tra-
ditional data modelling languages and the more recent ontology languages. ConsVISor
checks consistency by verifying axioms. ConsVISor is part of the UBOT toolkit that uses
a variety of techniques such as theorem proving and logic programming.Some examples
of the use of these tools are given in [3].

Finally, we should mention that the techniques, that we use to calculate MIPSs, how-
ever, are similar to those introduced in [1], where the authors use Boolean minimisation
to calculate minimal inconsistent ABoxes to construct an implicit minimal model for de-
faults.

Chapter 6

Discussion and Conclusion

Summary

With the arrival of more expressive ontology languages in the Semantic Web community,
logical modelling errors increasingly become a problem that can seriously hamper the
construction and application of ontologies. As a first step of logical modelling support
in such cases we introduced a framework forpinpointing, which is based on the idea
that modelling errors can best be detected in ontologies of minimal size still containing
the contradiction. Secondly, the principle of parsimony suggests that an ideal fix of an
erroneous ontology is to considerdiagnoses, i.e. minimal sets of axioms which are to be
repaired to render the ontology logically correct.

Pinpointing The first element of our framework to deal with incoherence and incon-
sistency in ontologies was to present a strategy for automatically identifying and fixing
incoherences that is based on the explaining of their causes and, secondly, choosing (and
eliminating) axioms that most frequently participate in the underlying logical contradic-
tions. We have introduced the non-standard reasoning services MIPS, MUPS, MISOs
and pinpoints, which facilitate the identification of error-relevant minimal subsets of on-
tological axioms in DL terminologies and ontologies, and the subsequent debugging of
logically inconsistencies.

As we investigated debugging as an integral part of the practical development of a
realistic terminology, we developed effective algorithms to calculate MIPS, MUPS and
pinpoints. To determine MUPS, there are two types of algorithms, both were imple-
mented prototypically. The first type, a top-down analysis of a closed labelled tableau
with Boolean minimisation, was developed for the particular application of the DICE
terminology. Therefore, some restrictions apply, most importantly the restriction to un-
foldableALC TBoxes. Neither is essential, and we conjecture that it is not too hard to
extend our algorithms to find MIPS both for more expressive languages and for general
TBoxes. Both issues will be addressed in future investigations. The other method for

41

CHAPTER 6. DISCUSSION AND CONCLUSION 42

calculating MUPS is bottom-up: we enumerate terminologies by size, and check for in-
coherence until we find a minimal one. The advantage of this second method is that it is
universally usable for ontologies in any language for which a generic consistency checker
exists, e.g.SHIQ(D) for the RACER reasoner, and that there are no restrictions on
the type of axioms. The disadvantage is that the algorithms are not complete, i.e. not all
MUPS are guaranteed to be found. Furthermore, we expect a specialised algorithm to per-
form better, a claim which we will further investigate in the upcoming SEKT Deliverable,
3.6.2.

Diagnosis The second, orthogonal, approach to dealing with incoherence and inconsis-
tency of ontologies is based on model-based diagnosis. Representing the terminological
incoherence problems as a first-order system descriptions allows us, at least in theory, to
use Reiter’s general framework to calculate diagnoses for very expressive terminologies.
There are several conceivable extensions: one can use diagnoses to explain correct and
incorrect subsumption. Given a coherent terminology, one can specify subsumption (or
non-subsumption) as expectations. Similarly, extending diagnosis with instances is easy,
one simply has to add assertional axioms to the system description, and instance relations
to the expectations. In all cases, diagnosis works “off-the-shelf” as long as the compo-
nents are set of axioms. But even this leaves room for extension, as one can easily choose
particular subsets of a terminology as sets of components, which not only can be very
useful in practice, but can improve the efficiency significantly.

This will be necessary, as our experimental evaluation shows that the complexity of
the general problem is so high that it is doubtful whether it will work on large incoherent
terminologies. Only the two more specialised algorithms work in practice, which implies
that implicit information on proofs is required. We believe that it should be feasible to
extract small conflict sets from a more verbatim output of current DL reasoner. Applying
an optimised, efficient and expressive general-purpose reasoning system for small con-
flict set creation has many advantages, as it would make the much more efficient method
based on small conflict sets available for terminologies such asWINE or MadC. Given
our bottom-up method to create MUPS, we plan to combine the advantages of the three
approaches described in this paper; taking generic algorithm for debugging of incoherent
terminologies, which should be reasonably efficient, and applicable on expressive ontolo-
gies.

Relation with SEKT 3.4.1: Reasoning with inconsistent ontologies

In an earlier SEKT Deliverable (D3.4.1, [16]), we presented an entirely different approach
to dealing with inconsistent ontologies. There, we presented a framework of reasoning
with inconsistent ontologies, in which pre-defined selection functions are used to select
subsections of the ontology which are both sufficiently large to answer a given query, and
sufficiently small to avoid containing any inconsistencies. Although there are technical

CHAPTER 6. DISCUSSION AND CONCLUSION 43

similarities between that work and the work presented here (the use of the notion of rel-
evance in the bottom-up approach of section 3.2), the two approaches are conceptually
different, and in fact complementary: D3.4.1 tries to “live” with the inconsistencies, and
do query-answering as good as possible in the presence of them, while D3.4.2 tries to
remove the inconsistencies (through a process of diagnosis and repair), so that queries
can be answered on the repaired, consistent ontology. It is natural to ask when one should
choose for which approach. Although more practical experience is required in this matter,
we would argue that this decision depends mainly on the use-case at hand.

For example, in a typical Semantic Web setting, one would be importing ontologies
from other sources, making it impossible to repair them, and the scale of the combined
ontologies may be too large to make repair effective.

Also, it may not always be possible for users of an ontology to decide on the correct
repair-actions for an inconsistency, or even to choose between the alternative diagnoses
for an inconsistency.

On the other hand, for an ontology owner, it might make sense to debug on ontology
“off-line”, before intensive use by others (the DICE scenario mentioned in chapter 1 is an
example of this use).

A further consideration is the fact that the “reasoning with inconsistencies” approach
of D3.4.1 is inherently heuristic: no guarantee can be given whether it is possible for a
given query to determine a consistent subset of the ontology large enough to answer the
query. The approach of section 3.2 on the other hand are algorithmic, and are guaranteed
to find the inconsistencies if they exist.

This discussion is by no means exhaustive, but serves to indicate that the choice be-
tween the complementary approaches of the earlier D3.4.1 and the current D3.4.1 is in-
deed use-case dependent.

Future Work

The research described in this paper raise a number of challenging technical issues, mostly
related to performance of the algorithms: first we will have to address the computational
problems by improving the HS-Tree implementation as well as the tableau calculus of
our DL engine for the top-down method. One possible line of attack on this is to investi-
gate the integration of our algorithms in existing high-performance DL-reasoners such as
Fact++ or Pellet. Along similar lines, we could consider to make MUPSter and DION
available as a Protéǵe. This would make the SEKT technology available to a much wider
audience. As another important step in this direction we will in SEKT Deliverable 3.6.2
perform an extensive evaluation of the tools we presented here.

Preliminary experiments and experience on the debugging on incoherent terminolo-
gies in our practical applications, e.g. on the DICE terminology, have shown promising
results. Although we failed in some cases to calculate diagnoses, we almost always re-

CHAPTER 6. DISCUSSION AND CONCLUSION 44

trieved MIPS in reasonable time (within minutes even for complex terminologies with
several thousand concepts and hundreds of unsatisfiable concepts). More problematic
was that the choice of axioms as components, which was perceived as too coarse in prac-
tise. More precisely, the notion of a MIPS as a subset of a terminology is often not
sufficient to explain the logical contradiction, because of their complexity, and the users
of the system, in our case domain experts in medical modelling expressed an urgent inter-
est in more fine-grained debugging. Some first ideas for this have been presented in [6].
An alternative research direction is to extend the functionality of the tool, for example by
explaining subsumption and instance relations with the methods described above.

On a higher level, there are many interesting relations of diagnosis and debugging
with other problems, that we plan to address, including to integrate the diagnosis approach
with reasoning with inconsistent and approximated ontological reasoning. The potential
is easily seen, as we determine minimal sub-ontologies (e.g. when calculating diagnoses)
which we can be use for reasoning instead of the original, inconsistent, ontology. This
immediately suggests a first way of reasoning with inconsistency, and gives rise to new
approximation techniques.

From an orthogonal perspective, new challenges to debugging and diagnosis arise
when we move from single ontologies to distributed or multi-version settings. Here, logi-
cal incorrectness can occur in mappings or when ontologies are merged, so that questions
of preference of axioms (for example between local and global ontologies) or between
different versions of ontologies have to be taken into account.

A further, and again orthogonal set of challenges arises from possible variations in the
language used to represent the ontologies. In this report, we have concentrated on OWL
DL as the language in which to express the ontologies. However, with the advent of rule-
languages on the Semantic Web, the question arises if our techniques can be extended to
include such more expressive languages. As explained in section 3.4, the calculation of
explanations varies between languages, depending on the expressiveness of specialised
algorithms (for our top-down methods) or of the general purpose reasoning tools such as
RACER (for our bottom-up approach). In principle, the general bottom-up approach can
be applied to any language for which there is a sufficiently efficient reasoner available.
This suggests that it will not be possiblein general to diagnose rule-sets in the same
way as we have diagnoses OWL DL ontologies, since many of the current candidates
for Semantic Web rule-languages are no longer even decidable, and hence it would not
even be possiblein generalto notice there inconsistency. This is simply an instance of
the general trade-off between what one can express in a language on the one hand (its
expressivity), and the computations that such a language allows on the other hand. The
undiagnosabilityin generalof rule-sets will have to be taken into account. Nevertheless,
it may well be the case that many rule-sets that will be writtenin practiceturn out to be
diagnosable. This is a matter of further empirical research, that can only be settled when
such rule-sets will become available.

A second, related issue is the extension of our methods from terminological reasoning

CHAPTER 6. DISCUSSION AND CONCLUSION 45

only to full ontology debugging. Chapter 3 presented two general approaches to calculate
explanations: a top-down method, which reduces the reasoning into smaller parts in order
to explain a subproblem with reduced complexity, and an informed bottom-up approach,
which enumerates possible solutions in a clever way. Both can, in principal, easily be
extended to full ontology debugging. The extension of the bottom-up method is trivial,
as we only have to define a new selection function and systematic enumeration. For the
top-down approach things are a bit more complicated, as we now have analyse forests
rather than trees. However, this seems to be a technical rather than a conceptual problem.

In this work, we have diagnosed ontologies that were expressed OWL DL.

Bibliography

[1] F. Baader and B. Hollunder. Embedding defaults into terminological knowledge rep-
resentation formalisms. Technical Report RR-93-20, Deutsches Forschungszentrum
für Künstliche Intelligenz GmbH, 1993.

[2] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors.The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2003.

[3] Kenneth Baclawski, Mieczyslaw M. Kokar, Richard Waldinger, and Paul A. Kogut.
Consistency checking of semantic web ontologies. InProceedings of ISWC2002,
2002.

[4] Sean Bechhofer, Ralf M̈oller, and Peter Crowther. The dig description logic inter-
face. InInternational Workshop on Description Logics (DL2003). Rome, September
2003.

[5] A. Borgida, E. Franconi, and I. Horrocks. ExplainingALC subsumption. InProc.
of the 14th Eur. Conf. on Artificial Intelligence, pages 209–213, 2000.

[6] R. Cornet, S. Schlobach, and A. Abu-Hanna. Knowledge representation with ontolo-
gies: Present challenges - future possiblities.submitted to the International Journal
Of Human Computer Studies, 2005.

[7] Ronald Cornet and Ameen Abu-Hanna. Evaluation of a frame-based ontology. A
formalization-oriented approach. InProceedings of MIE2002., volume 90, pages
488–93, 2002.

[8] Maria Garcia de la Banda, Peter J. Stuckey, and Jeremy Wazny. Finding all minimal
unsatisfiable subsets. InFifth ACM-SIGPLAN International Conference on Princi-
ples and Practice of Declarative Programming, pages 32–43. ACM, 2003.

[9] Minutes of the DL Implementation Group Workshop, 2002.http://dl.kr.org/

dig/minutes-012002.html , visited on January 9, 2003.

[10] U. Endriss. Reasoning in description logics withWELLINGTON 1. 0. InProceedings
of the Automated Reasoning Workshop 2000, 2000.

46

http://dl.kr.org/dig/minutes-012002.html
http://dl.kr.org/dig/minutes-012002.html

BIBLIOGRAPHY 47

[11] Volker Haarslev and Ralf M̈oller. Description of the racer system and its applica-
tions. In Proceedings of the International Workshop on Description Logics (DL-
2001), pages 132–141. Stanford, USA, August 2001.

[12] Peter Haase, Frank van Harmelen, Zhisheng Huang, Heiner Stuckenschmidt, and
York Sure. A framework for handling inconsistency in changing ontologies. In
Proceedings of ISWC2005, 2005.

[13] I. Horrocks. The FaCT system. InTABLEAUX 98, pages 307–312, 1998.

[14] Z. Huang, F. van Harmelen, and A. ten Teije. Reasoning with inconsistent ontolo-
gies. InProceedings of the International Joint Conference on Artificial Intelligence
- IJCAI’05, 2005.

[15] Z. Huang, F. van Harmelen, A. ten Teije, P. Groot, and C. Visser. Reasoning with
inconsistent ontologies: a general framework. Project Report D3.4.1, SEKT, 2004.

[16] Zhisheng Huang and Frank van Harmelen. Reasoning with inconsistent ontologies:
a general framework. Deliverable D3.4.1, SEKT, 2004.

[17] Zhisheng Huang and Cees Visser. Extended dig description logic interface support
for prolog. Deliverable D3.4.1.2, SEKT, 2004.

[18] D. McGuinness, R. Fikes, J. Rice, and S. Wilder. The chimaera ontology environ-
ment. InThe Seventeenth National Conference on Artificial Intelligence, 2000.

[19] Deborah McGuinness.Explaining Reasoning in Description Logics. PhD thesis,
Department of Computer Science, Rutgers University, 1996.

[20] Thomas Meyer, Kevin Lee, and Richard Booth. Knowledge integration for descrip-
tion logics. InProceedings of The 7th International Symposium on Logical Formal-
izations of Commonsense Reasoning, 2005.

[21] B. Nebel. Terminological reasoning is inherently intractable.AI, 43:235–249, 1990.

[22] N. Now and M. Musen. PROMPT: Algorith and tool for automated ontology merg-
ing and alignment. InProceedings of the Seventeenth National Conference on Arti-
ficial Intelligence. AAAI Press, 2000.

[23] Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging owl ontologies. InThe
14th International World Wide Web Conference (WWW2005), 2005.

[24] W.V. Quine. The problem of simplifying truth functions.American Math. Monthly,
59:521–531, 1952.

[25] R. Reiter. A theory of diagnosis from first principles.Artif. Intelligence, 32(1):57–
95, 1987.

BIBLIOGRAPHY 48

[26] S. Schlobach. Semantic clarification by pinpointing. InProceedings of ESWC2004,
2004.

[27] S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of
description logic terminologies. InProceedings of the eighteenth International Joint
Conference on Artificial Intelligence, IJCAI’03. Morgan Kaufmann, 2003.

	1 Introduction
	2 Inconsistent Ontologies: A Framework
	2.1 Explaining Errors: Pinpointing
	2.2 Suggesting Fixes: Model-based Diagnosis

	3 Algorithms
	3.1 A Top-down Approach to Explanation
	3.1.1 Debugging Unfoldable ALC-TBoxes

	3.2 An Informed Bottom-up Approach to Explanation
	3.2.1 General Idea
	3.2.2 Selection Function and Relevance Measure
	3.2.3 Algorithms

	3.3 Calculating terminological diagnoses
	3.3.1 Three ways of implementing diagnosis

	3.4 Pinpoints: approximating diagnosis

	4 Debugger of Inconsistent Ontologies: Prototypes
	4.1 MUPSter: A Prototype for Top-Down Debugging
	4.1.1 Implementation of MUPSter
	4.1.2 Installation and Test Guide

	4.2 DION: a prototype for bottom-up debugging
	4.2.1 Implementation of DION
	4.2.2 Functionalities
	4.2.3 Installation and Test Guide

	5 Related Work
	6 Discussion and Conclusion

