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Abstract

High leverage collinearity influential observations are those high leverage points that change

the multicollinearity pattern of a data. It is imperative to identify these points as they are

responsible for misleading inferences on the fitting of a regression model. Moreover, identifying

these observations may help statistics practitioners to solve the problem of multicollinearity,

which is caused by high leverage points. A diagnostic plot is very useful for practitioners to

quickly capture abnormalities in a data. In this paper, we propose new diagnostic plots to identify

high leverage collinearity influential observations. The merit of our proposed diagnostic plots is

confirmed by some well-known examples and Monte Carlo simulations.
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1. Introduction

Multicollinearity is an exact or a near linear relationship among regressors in a multiple

linear regression. According to Kamruzzaman and Imon (2002), high leverage points or

observations that fall far from the majority of independent variables in a data set, are

a prime source of multicollinearity. Hadi (1988) pointed out that this source of multi-

collinearity is a special case in collinearity-influential observations, which may change

the multicollinearity pattern of data. They are referred to as high leverage collinearity-

enhancing observations or high leverage collinearity-reducing observations (Habshah
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et al., 2010; Habshah et al., 2011; Bagheri et al., 2012).With their presence, multiple

linear regression models encounter serious problems (Habshah et al., 2009; Bagheri et

al., 2009; Bagheri and Habshah, 2008). Hence it is very important to detect them so

that appropriate steps can be taken to remedy such problems (Bagheri and Habshah,

2012-2011; Habshah et al., 2010).

Simple scatter plots are very useful in exploring the relationship between a response

and a single explanatory variable as well as in detecting outliers. They are, however, in-

effective in revealing the complex relationships or detecting the trend and data problems

in multiple regression models. Partial plots, on the other hand, may be better substitutes

for scatter plots in a multiple linear regression. This is because these plots illustrate the

partial effects or the effects of a given predictor variable after adjusting for all the other

predictor variables in a regression model.

There are two different kinds of partial plots, namely the partial residual and the par-

tial regression or added variable plot (See partial plots in Myers, 1990 and also leverage

plots in Sall, 1990; Leverage-Residual Plot of Gray, 1983) which are documented in the

literature (Belsley et al., 1980; Cook and Weisberg, 1982). However, partial residual and

partial regression plots are generally unable to detect multicollinearity. Overlaying both

the partial residual and partial regression plots on the same plot, with the centered xi

values on the x-axis, may in fact provide an alternative method to detect multicollinear-

ity (Stine, 1995) by highlighting the amount of shrinkage in partial regression residuals.

However, when high leverage points are the source of multicollinearity, these plots will

be affected and as a result they will no longer be useful for diagnosing multicollinearity

in a data set.

Unfortunately, to the best of our knowledge, we have not found any paper in the

literature that establishes graphical methods for the identification of multicollinearity

due to high leverage points. This gap in the literature has motivated us to propose

appropriate plots that are able to classify observations according to regular observations,

high leverage points, collinearity-influential observations and vertical outliers.

These plots will be examined in this paper which is organized into five sections.

The next section, Section 2, reviews High Leverage Collinearity-Influential Measure

(HLCIM) based on Diagnostic-Robust Generalized Potential (DRGP) which is referred

to in this paper as HLCIM(DRGP). Section 3 introduces the newly proposed high lever-

age collinearity-influential observation regression diagnostic plots. Section 4 discusses

both the performance of our proposed plots by using some real data sets and their merit

according to Monte Carlo simulations. Finally, some concluding remarks are presented

in Section 5.
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2. Literature review

In the following section, high leverage collinearity-influential measure based on DRGP

will be discussed. Firstly, the regression model can be defined as the following equation:

Y = Xβββ +ǫǫǫ (1)

where Y is an (n×1) vector of response or the dependent variable, X is an (n× p) matrix

of predictors (p× 1), βββ is (p× 1) vector of unknown finite parameters to be estimated

and ǫ is an (n× 1) vector of random errors. We allow X j to denote the jth column of

the X matrix; therefore, X = [X1,X2, . . . ,Xp]. Additionally, we define multicollinearity

in terms of the linear dependence of the columns of X; thus, the vectors of X1,X2, . . . ,Xp

are linearly dependent if there is a set of constants t1, t2, . . . , tp that are not all zero, such

as ∑
p
j=1 t jX j = 0. The problem of multicollinearity is said to exist when this equation

holds approximately ∑
p
j=1 t jX j ≈ 0.

Since multicollinearity is a problem that exists in a data set, there is no statistical

test for its presence. Nonetheless, a statistical test can be substituted by a diagnostic

method in order to indicate the existence and extent of multicollinearity in a data set.

Belsley et al. (1980) proposed an approach for diagnosing multicollinearity based on a

singular-value decomposition of a (n× p) X matrix as:

X = UVD′ (2)

where U is the (n× p) matrix in which the columns that are associated with the p non-

zero eigenvalue of (X′X) is (n× p), V (the matrix of eigenvectors of X′X) is (p× p),

U′U = I, V′V = I, and D is a (p × p) diagonal matrix with non-negative diagonal

elements, k j, j = 1,2, . . . , p, which is called the singular-values of X. The jth Condition

Index (CI) of the X matrix is defined as:

k j =
λmax

λi

, j = 1,2, . . . , p, (3)

where λ1,λ2, . . . ,λp are the singular values of the X matrix. The largest value of k j is

defined as the Condition Number (CN) of the X matrix. Belsley (1991) stated that an

X matrix between 10 and 30 indicates a moderate to strong multicollinearity, whereas a

value of more than 30 reflects severe multicollinearity.

As previously mentioned, high leverage collinearity-influential observations are

those observations that may disrupt the multicollinearity pattern of a data. Unfortunately,

not many studies relevant to these issues are found in the literature. Hadi(1988) noted

that not all high leverage points are collinearity-influential observations, but most

collinearity-influential observations are points with high leverages. He proposed a

measure for the identification of high leverage collinearity-influential observations based
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on the influence of the ith row of X matrix on the condition index as:

δi = log
k(i)− k

k
, i = 1,2, . . . ,n, (4)

where k(i) is the eigenvalue of X(i) when the ith row of X matrix has been deleted.

He pointed out that a large negative value of δi indicates that the ith observation

is a collinearity-enhancing observation, while a large positive δi value indicates a

collinearity-reducing observation. Sengupta and Behimasankaram(1997) suggested a

more preferable measure to Hadi’s measure (Hadi ,1988) which is defined as follows:

li = log
k(i)

k
, i = 1,2, . . . ,n, (5)

According to Bagheri et al. (2012), the performance of both δi and li is only

good for the detection of a single high leverage collinearity influential observation.

Moreover, there are some drawbacks in using δi or li because there are no given specific

cutoff points to indicate which observations are collinearity-enhancing and which are

collinearity-reducing. To rectify these problems, Bagheri et al. (2012) and Bagheri

and Habshah (2012) proposed a high leverage collinearity-influential measure, namely

HLCIM (DRGP), denoted as δ
(D)
i and which is defined as follows:

δ
(D)
i =



























log
k(D)

k(D−i)
if i ∈ D and 6= {D} 6= 1

log
k(i)

k
if 6= {D} and D = i, i =,2, ..,n

log
k(D+i)

k(D)
if i ∈ R

(6)

where D is the suspected group of multiple high leverage points and R is the remaining

good observations diagnosed by DRGP based on Minimum Volume Ellipsoid (MVE)

(Habshah et al., 2009). The number of elements in the D group is denoted as 6= {D}.

k(i) indicates the condition number of the X matrix without the ith high leverage points.

k(D−i) indicates the condition number of the X matrix without the entire D group minus

the ith high leverage points where i belongs to the suspected D group. k(D+i) refers to

the condition number of the X matrix without the entire D group of high leverage points

plus the ith additional observation of the remaining group (For more information on high

leverage diagnostic measures, please refer to Hadi, 1992 and Imon, 2002).

Bagheri et al. (2012) and Bagheri and Habshah(2012) proposed some cutoff points

for θi, i = 1,2, . . . ,n:

cut1(θ ) = Median(θi)− cMad(θi) (7)
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cut2(θ ) = Median(θi)+ cMad(θi) (8)

where cut1(θ ) is the cutoff point for collinearity-enhancing measure and cut1(θ ) is

the collinearity-reducing measure cutoff point. Median and Mean Absolute Deviation

(MAD) stand for robust measures of central tendency and dispersion, respectively. θi

can be δi , li , or δ
(D)
i and c is the chosen constant value of 3.|θi| ≥ |cut1(θ )| for θi < 0

and θi ≥ cut2(θ ) for θi > 0 is an indicator that the ith observation is a high leverage

collinearity-enhancing or -reducing observation, respectively.

Bagheri et al. (2012) pointed out that δ
(D)
i values which exceed the cutoff point and

belong to the D groups are called high leverage collinearity-influential observations.

On the other hand, those δ
(D)
i which exceed the cutoff point and belong to the R

group are called collinearity-influential observations. Since the existence of these points

have unduly effects on the parameter estimates, it is imperative to quickly identify

them by using diagnostic plots. In this regard, new diagnostic plots to separate high

leverage collinearity-influential observations from collinearity-influential observations

are proposed.

3. Proposed diagnostic plots

Identifying outliers and high leverage points is a fundamental step in the least squares

regression model building process. The usage of graphical tools is one of the easiest

ways to quickly capture abnormal points in a data set. Rousseeuw and Van Zomeren

(1990) proposed the usage of diagnostic plots and referred to them as an outlier map to

classify observations into four types of data points, namely regular observations, good

leverage points, vertical outliers and bad leverage points. The proposed outlier map plots

the standardized residual ( ri

σ̂i
,for i = 1,2, . . . ,n) versus Squared Robust Mahalanobis

Distance based on (MVE)(RMD2(MVE)) or Squared Robust Mahalanobis Distance

based on Minimum Covariance Determinant (RMD2(MCD)). The disadvantage of this

plot is that it uses robust distance which has the tendency to declare more observations

as high leverage points due to swamping effects (Habshah et al., 2009). Since robust

distance fails to accurately identify high leverage points correctly while the DRGP is

able to successfully identify their presence, in this paper we suggest the usage of DRGP

in the construction of our proposed diagnostic plots.

The first proposed plot is similar to the outlier map of Rousseeuw and Van Zomeren

(1990), except that the robust distance is substituted with the DRGP. As suggested

by Rousseeuwand Van Zomeren (1990), the standardized Least Trimmed Squares

Residuals (LTSR) residuals are plotted on the Y-axis. We name the first proposed

plot the LTSR-DRGP plot. First, each of the LTS residuals, ri for i = 1,2, ..,n, is

standardized by σ̂. The LTSR -DRGP plots the standardized LTS residuals against the

DRGP. In the LTSR -DRGP plot, any observation which exceeds the Y-axis boundaries
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(±
√

X2
1,0.975) is called a vertical outlier while any that exceeds the X-axis boundaries

(Median(p∗ii) + cMad(p∗ii) where p∗ii is the value of DRGP (Habshah et al., 2009) is

called a good leverage point. When an observation exceeds both the y-axis and the x-

axis boundaries, it is called a bad leverage point.

The second proposed plot is based on the newly developed diagnostic measure

for the identification of multiple high leverage collinearity-influential observations,

HLCIM(DRGP), denoted as δ
(D)
i as presented in Equation (6). We name this plot

the DRGP-HLCIM plot. It plots the DRGP against the High Leverage Collinearity-

influential Measure.

The third proposed plot is also based on HLCIM(DRGP). This plot is called the

LTSR -HLCIM plot. In this plot, the Standardized LTS Residuals are plotted against

the High Leverage Collinearity-influential Measure. Figures 1, 2 and 3 show the Venn

diagram or Ballentine view of the LTSR-DRGP, the DRGP-HLCIM, and the LTSR-

HLCIM plots, respectively. It is important to note that the proposed cutoff points are as

follows:

cut1(P∗
ii ) = Median(P∗

ii )+ cMad(P∗
ii ) (9)

where P∗
ii is the DRGP. If the proposed δ

(D)
i in Equation 6 is employed, then cut1

(

δ
(D)
i

)

and cut2
(

δ
(D)
i

)

from Equations 7 and 8 are the cutoff points for detecting high leverage

collinearity-enhancing and -reducing observations, respectively.

Figure 1 separates the data set into groups of regular observations, vertical (or

regression) outliers, and good or bad leverage points. The figure groups the data set

according to whether the observation is a high leverage point and/or a vertical outlier.

Nevertheless, it does not take into consideration the multicollinearity pattern of a data

set.

Figure 2 groups the data set according to whether the observation is a high leverage

point or a collinearity-influential observation. Hence, it classifies the data set into groups
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Figure 1: The Venn Diagram or Ballentine View of LTSR-DRGP Plot.
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Figure 3: The Venn Diagram or Ballentine View of LTRS-HLCIM Plot.

of regular observations, high leverage points, high leverage collinearity-enhancing/re-

ducing observations, and collinearity-enhancing/reducing observations.

This figure also does not take into consideration whether the observation is abnor-

mal in theY-direction. Finally, Figure 3 classifies the data as regular observations, ver-

tical outliers, good leverage collinearity-enhancing/reducing observations, collinearity-

enhancing/reducing observations, bad leverage collinearity-enhancing/reducing obser-

vations as well as collinearity-enhancing/reducing observations with large residuals.

One of the interesting features of this figure is that it takes into account the good leverage

points which are also collinearity-influential observations. Most statisticians believe that

good leverage points are not problematic since they are in the same fitted regression line

as the other data set and they decrease the standard error of the parameter estimations

because they increase the variability of X (see for instance Moller et al., 2005; Ander-

sen, 2008). However, these points maybe collinearity-influential observations and like
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bad leverage points, they may be destructive to the regression analysis. A joint DRGP-

HLCIM and LTSR-HLCIM plot can give a clearer view of the outlyingness of any points

in the X-direction or Y-direction as well as the multicollinearity pattern of a data set. In

the following section, the performance of our proposed diagnostic plots is measured by

applying these plots to influential cases with authentic and well-known data sets.

4. Results and discussion

Numerical and Monte Carlo simulation results will be discussed in the following sub

sections.

4.1. Numerical results

In this section, the performance of the proposed diagnostic plots, namely the LTSR-

DRGP, the DRGP-HLCIM, and the LTSR-HLCIM are investigated through the usage of

some commonly referred data sets such as the Hawkins-Bradu-Kass data, Commercial

Properties data and Body Fat data sets. The first data set is taken from Hawkins, Bradu,

and Kass(1984) while the second and third are taken from Kutner et al.(2005).

The Hawkins-Bradu-Kass data set is constructed to have ten bad leverage points

(cases 1− 10) and four good leverage points (cases 11− 14) (Rousseeuw and Leroy,

1987; Habshah et al., 2009; Bagheri et al., 2012). Figure 4 presents the proposed

diagnostic plots for the Hawkins-Bradu-Kass data set. According to parts (a) and (c)

of this figure, cases 11−14 are not only good leverage points but are also good leverage

collinearity-enhancing observations. Moreover, cases 1−10 are bad leverage points and

bad leverage collinearity-enhancing observations. It is important to mention that cases

1-14 are all high leverage collinearity-enhancing observations (Figure 4, part (b)). Also,

it is worth noting that even though cases 11− 14 are good leverage points, they are

collinearity-enhancing observations. Hence, more attention is needed in the estimation

of their parameters.

Figure 5 presents the diagnostic plots for the Hawkins-Bradu-Kass data set without

the first 14 observations. It can be observed from parts (a) and (b) of Figure 5 that this

data set does not have any vertical outliers nor any high leverage points. Nonetheless, it

has one collinearity-reducing observation (case 53) which was masked in the presence

of the first 14 observations.

Diagnostic plots for the original and modified Commercial Properties data set are

presented in Figures 6 and 7, respectively. The original data set has 19 high leverage

points (observations 1, 2, 3, 6, 7, 8, 17, 21, 26, 29, 37, 45, 53, 54, 58, 61, 62, 72 and

79) with only two (cases 6 and 62) bad leverage points (Figure 6 part (a)). Moreover,

cases 9, 63, 64, 65, and 68 are vertical outliers. There are no high leverage collinearity-

enhancing observations in this data set (Figure 6 part (b)). Parts(b) and (c) of Figure 6
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Figure 4: Diagnostic Plots of Hawkins-Bradu-Kass Data Set.
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Figure 6: Diagnostic Plots of Commercial Properties Data Set.

reveal that cases 8, 26, 53, and 61 are high leverage collinearity-reducing observations

and good leverage collinearity-reducing observations, respectively.

After modifying the Commercial Properties data set by replacing observations 1,

2, 3, 6, 7 and 8 in each of the explanatory variables by fixed values of 300, 200,

100, 300, 200, and 100, respectively, these observations became good leverage points

(Figure 7 part (a)). Figure 7 part (a) also indicates that case 8 is a bad leverage point.

All the modified cases of 1, 2, 3, 6, 7 and 8 are high leverage collinearity-enhancing

observations (Figure 7, part (b)). According to Figure 7, part (c), case 8 is a bad leverage

collinearity-enhancing observation while cases 1, 2 , 3, 6 and 7 are good leverage

collinearity-enhancing observations. Hence, cases 1, 2, 3, 6, and 7 require more attention

in order to prevent any misleading conclusions.

Figures 8 to 10 are diagnostic plots for the original and modified Body Fat data

set. Part (a) of Figure 8 shows that the original Body Fat data set has four good

leverage points (cases 5, 15, 1 and 3) and having zero vertical outliers. Only case

15 is a high leverage collinearity-reducing observation. It can be seen that case 13,

a non high leverage, is also a collinearity-reducing observation (Figure 8 part (b)).

Additionally, cases 15 and 13 are good leverage collinearity-reducing and collinearity-

reducing observations, respectively (Figure 8 part (c)).
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Figure 7: Diagnostic Plots of Modified Commercial Properties Data Set.
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Figure 8: Diagnostic Plots of Original Body Fat Data Set.
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Figure 9: Diagnostic Plots of Modified x1 Body Fat Data Set.
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Figure 10: Diagnostic Plots of Modified x1 and x2 in the Same Positions Body Fat Data Set.
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Figure 9 and 10 illustrates the modified Body Fat data set when the first observation

of x1 is fixed to 300 and when the first observation of x1 and x2 is fixed to 300, respec-

tively. Figures 9 and 10, part (a), reveal that the added contaminated point is a bad lever-

age point. Moreover, according to Habshah et al. (2011) when the high leverage point

only exists in x1, case 1 becomes a high leverage collinearity-reducing observation (Fig-

ure 9 part (b)). Figure 10 part (b) however, shows case 1 as a high collinearity-enhancing

observation when modification is for x1 and x2 in the same position. Furthermore, part

(c) in Figure 9 shows that case 1 is a bad leverage collinearity-reducing observation

while in part (c) of Figure 10 it is a bad leverage collinearity-enhancing observation.

4.2. Monte Carlo simulation study

In this section, a Monte Carlo simulation study was designed to assess the merit of our

proposed diagnostic plots in terms of its ability to separate the data set according to regu-

lar observations, vertical outliers (regression outliers), collinearity-enhancing/reducing

observations with large residuals, bad leverage collinearity-enhancing/reducing obser-

vations, good leverage collinearity-enhancing/reducing observations and collinearity-

enhancing/reducing observations. To achieve this aim, non-collinear and collinear data

sets with three regressors were generated in such a way that different scenarios were

created, namely, high leverage collinearity-enhancing/reducing observations and verti-

cal outliers. It is important to mention here that although the proposed diagnostics plots

can detect collinearity-enhancing/reducing observations clearly, they were not explicitly

generated. In each scenario, four samples of size 40, 60, 100, and 300 and different lev-

els of high leverages of (the percentage of added contaminated cases) = 0.05,0.10, 0.15,

0.20 with unequal weights were considered.

In order to generate high leverage collinearity-enhancing observations, each variable

was firstly generated from Uniform (0,1) to produce non-collinear data sets. This

generated data is referred to as the regular observations. The last 100%α observations

of the regular observations of each regressor were then replaced with certain percentage

of high leverage points to create high leverage collinearity-enhancing observations. To

generate the high leverage points as collinearity-enhancing with unequal weights in

non-collinear data sets, the values corresponding to the first high leverage point were

kept fixed at 10 and those of the successive values were created by multiplying the

observations index, i, by 10.

As per Lawrence and Arthur (1990), high leverage collinearity-reducing observa-

tions were created by generating collinear regressors on the outset:

xi j = (1−ρ2)zi j +ρzi(t1) (10)

where the zi j, i= 1, . . . ,n; j = 1, . . . , t+1 ; t=3, are independent standard normal random

numbers. The value of ρ2 or the correlation between the two explanatory variables, was
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Table 1: The abbreviations used in Tables 2-6.

Abbreviations Meaning

CN the condition number of X matrix without high leverage points

CN∗ the condition number of X matrix with high leverage points

RO the number of simulated regular observations

VO the number of simulated vertical outliers

DCEO the number of detected collinearity-enhancing observations

set to be equal to 0.95 which causes high collinearity between regressors. High leverage

collinearity-reducing observations in collinear data sets were then created by replacing

the first 100(α
2
) percent observations of X1 and the last 100(α

2
) percent observations

of X2 with high leverage points. To create vertical outliers, a dependent variable from

a Uniform (0, 1) was firstly generated. For each sample size, a certain percentage of

outliers was generated by randomly deleting a certain percentage of ’good’ observations

and replacing them with ’bad’ data points. The first outlier is kept fixed at 100 (102) and

the successive values are created by multiplying the observations index, i, by 10.

The Good leverage Collinearity-Enhancing Observation (GLCEO) was created in

such a way that the High leverage Collinearity-Enhancing Observation (HLCEO) is

generated without any vertical outlier. On the other hand, Bad leverage Collinearity-

Enhancing Observation (BLCEO) was created when both HLCEO and vertical outliers

were generated. Similarly, Good leverage Collinearity-Reducing Observation (GLCRO)

was created only when High leverage Collinearity-Reducing Observation (HLCRO) was

generated, while the Bad leverage Collinearity-Reducing Observation (BLCRO) was

created when both HLCRO and vertical outliers were generated.

Table 1 shows the notations used in Tables 2-6 (D in the entire abbreviations indicates

the number of detected observations by the proposed plots). We ran 10,000 simulations.

The results based on their averages are presented in Tables 2 to 6. Due to space

constraints, only the results for n = 40 and 300 are included. The conclusions of other

results were consistent.

Let us first look at Table 2 when α= 0.00. It can be seen that when there is no vertical

outliers or high leverage points in the data, the value of CN=CN∗ and is less than 5.0,

indicating that there is no multicollinearity problem. It is also interesting to note that our

proposed plots can detect almost all observations as regular observations (on the average

of 96 percent). The results in Table 2 also indicate that in the presence of vertical outliers

and in the absence of high leverage points, the data sets do not have multicollinearity

problems (CN < 5.0). The results also suggest that the number of detected vertical

outliers is reasonably close to the number of generated vertical outliers.

As for the generated bad/good leverage collinearity-enhancing observations data (see

Tables 3-4), all the CN∗ values (> 30) drastically increased in the presence of high lever-

age points. This indicates that high leverage points are the cause of multicollinearity.
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Table 2: The number of detected abnormal observations in the simulated data sets with vertical outliers.

n 40 300

α 0.00 0.05 0.10 0.15 0.20 0.20 0.00 0.05 0.1 0.20

CN 3.54 3.54 3.39 3.39 3.39 3.29 3.29 3.29 3.29 3.29

CN∗ 3.54 3.54 3.39 3.39 3.39 3.29 3.29 3.29 3.29 3.29

RO 40.00 38.00 36.00 34.00 32.00 300.00 285.00 270.00 255.00 240.00

DRO 38.42 34.59 33.24 31.95 31.27 298.75 283.38 268.39 253.07 238.09

VO 0.24 2.00 4.00 6.00 8.00 0.00 15.00 30.00 45.00 60.00

DVO 0.00 1.85 3.87 5.88 7.89 0.00 14.30 29.47 44.60 59.74

DCEO-VO 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.07 0.13 0.17

DBLCEO 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DGLCEO 0.05 0.19 0.25 0.25 0.25 1.06 0.00 0.00 0.00 0.00

DCEO 0.00 0.05 0.01 0.00 0.00 0.00 1.03 1.00 0.93 0.90

DCRO-VO 0.00 0.05 0.00 0.00 0.00 0.00 0.67 0.96 1.17 1.00

DBLCRO 0.76 0.05 0.12 0.13 0.00 0.10 0.00 00.00 0.00 0.00

DGLCRO 0.34 0.72 0.27 0.25 31.00 0.09 0.10 0.10 0.10 0.10

DCRO 0.00 2.5 2.24 1.54 0.28 0.00 0.49 0.01 0.00 0.00

Table 3: The number of abnormal observations in the simulated data sets with bad leverage collinearity-

enhancing observations.

n 40 300

α 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

CN 3.56 3.41 3.38 3.64 3.29 3.30 3.29 3.27

CN∗ 23.68 60.09 107.56 166.13 131.70 375.29 704.68 1107.26

RO 38.00 36.00 34.00 32.00 285.00 270.00 255.00 240.00

DRO 35.49 34.04 32.72 30.99 283.07 268.35 252.89 238.72

DVO 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DCEO-VO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BLCEO 2.00 4.00 6.00 8.00 15.00 30.00 45.00 60.00

DBLCEO 1.74 3.91 5.95 8.00 14.87 30.00 45.00 60.00

DGLCEO 0.26 0.09 0.00 0.00 0.00 0.00 0.98 0.30

DCEO 0.44 0.18 0.00 0.00 0.00 0.00 0.00 0.00

DCRO-VO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DBLCRO 0.00 0.00 0.00 0.00 0.00 0.00 00.00 0.00

DGLCRO 0.15 0.18 0.15 0.00 0.56 0.50 0.02 0.00

DCRO 1.62 1.60 1.18 1.01 1.50 1.15 1.11 0.98

On the other hand, all the CN∗ values (< 5.00) for the generated bad/good leverage-

reducing observations (see Tables 5-6) dramatically reduced in the presence of high

leverage collinearity-reducing observations, suggesting that high leverage points con-

ceal the problem of multicollinearity. The large and small values of CN∗ confirm that

the generated data are collinear and non-collinear data sets, respectively. It can be ob-

served that the number of detected bad/good leverage collinearity-enhancing observa-

tions is fairly close to the simulated data. A similar conclusion can be made for the



66 Diagnostic plot for the identification of high leverage collinearity-influential observations

Table 4: The number of abnormal observations in the simulated data sets with good leverage collinearity-

enhancing observations.

n 40 300

α 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

CN 3.46 3.50 3.13 3.64 3.29 3.30 3.29 3.27

CN∗ 23.69 61.92 107.60 166.05 132.15 377.64 704.52 1107.30

RO 38.00 36.00 34.00 32.00 285.00 270.00 255.00 240.00

DRO 35.62 34.36 32.65 31.00 283.16 268.53 253.91 239.01

DVO 0.15 0.00 0.08 0.00 0.00 0.00 0.00 0.00

DCEO-VO 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BLCEO 2.00 4.00 6.00 8.00 15.00 30.00 45.00 60.00

DBLCEO 1.74 4.00 5.95 8.00 14.91 30.00 45.00 60.00

DGLCEO 0.45 0.09 0.00 0.00 0.09 0.00 0.98 0.30

DCEO 0.44 0.18 0.00 0.00 0.00 0.00 0.00 0.00

DCRO-VO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DBLCRO 0.00 0.00 0.00 0.00 0.00 0.00 00.00 0.00

DGLCRO 0.15 0.09 0.10 0.00 0.55 0.31 0.02 0.00

DCRO 1.63 1.46 1.17 1.00 1.20 1.16 1.07 0.99

Table 5: The number of abnormal observations in the simulated data sets with bad leverage collinearity-

reducing observations.

n 40 300

α 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

CN 39.40 38.91 36.33 41.17 36.80 37.13 38.34 38.97

CN∗ 13.12 4.46 1.06 1.13 1.02 1.01 1.01 1.00

RO 38.00 36.00 34.00 32.00 285.00 270.00 255.00 240.00

DRO 36.45 35.48 33.67 32.00 284.02 269.78 255.00 240.00

DVO 0.15 0.03 0.00 0.00 0.00 0.00 0.00 0.00

DCEO-VO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DBLCEO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DGLCEO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DCEO 0.65 0.33 0.31 0.00 0.01 0.00 0.00 0.00

DCRO-VO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BLCRO 2.00 4.00 6.00 8.00 15.00 30.00 45.00 60.00

DBLCRO 1.85 3.96 5.98 8.00 15.00 30.00 45.00 60.00

DGLCRO 0.10 0.11 0.04 0.00 0.98 0.22 0.00 0.00

DCRO 0.80 0.10 0.00 0.00 0.00 0.00 0.00 0.00

case of detecting bad/good leverage collinearity-reducing observations. It is very im-

portant to note that as the value of alpha increases, the degree of multicollinearity also

increases/decreases.
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Table 6: The number of abnormal observations in the simulated data sets with bad leverage collinearity-

reducing observation.

n 40 300

α 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

CN 38.39 40.70 36.33 40.13 36.76 37.16 38.34 37.28

CN∗ 1.84 2.49 1.06 1.04 1.02 1.01 1.01 1.00

RO 38.00 36.00 34.00 32.00 285.00 270.00 255.00 240.00

DRO 36.56 35.12 33.47 31.62 282.01 269.23 255.00 240.00

DVO 0.25 0.15 0.00 0.00 0.00 0.00 0.00 0.00

DCEO-VO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DBLCEO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DGLCEO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DCEO 0.31 0.39 0.33 0.26 0.00 0.00 0.00 0.00

DCRO-VO 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BLCRO 2.00 4.00 6.00 8.00 15.00 30.00 45.00 60.00

DBLCRO 1.85 3.96 5.98 8.00 15.00 30.00 45.00 60.00

DGLCRO 0.10 0.11 0.04 0.00 0.98 0.22 0.00 0.00

DCRO 0.66 0.34 0.20 0.12 2.99 0.77 0.00 0.00

5. Conclusions

Based on Rousseeuw and Van Zomeren (1990) and Rousseeuw and Van Driessen (1999)

and their development of Residual-Distance and Distance to Distance plots, three new

diagnostic plots are proposed; the LTSR-DRGP, DRGP-HLCIM, and LTSR-HLCIM.

The LTSR-DRGP plot was able to identify regular observations, good or bad leverage

points and vertical outliers. The DRGP-HLCIM plot was able to classify the observa-

tions as regular observations, high leverage points, high leverage collinearity-enhancing

or collinearity- reducing observations and collinearity-enhancing or collinearity-reducing

observations. Finally, the LTSR-HLCIM plot successfully distinguishes vertical outliers,

good leverage collinearity-enhancing/reducing observations, collinearity-enhancing/re-

ducing observations and bad leverage collinearity-enhancing/reducing observations and

collinearity-enhancing/re-

ducing observations with large residuals. Thus, the merits of our proposed diagnostic

plots are confirmed, as reflected in their application to different authentic data sets and

in the Monte Carlo simulation study.
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