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Abstract 

Previous studies assessing the environmental impacts of drinking water supply 

networks have considered a bottom-up approach, analysing single case studies. This 

paper presents a top-down approach for the assessment of the operational phase of a 

water supply network. A representative sample of 50 cities was statistically analysed to 

find relations between different variables regarding electricity and water consumption 

linked with the environmental impacts of the network. The results show that some of 

the variables are clearly related to the relative energy consumption of the network. 

Such is the case for population size, where small municipalities have up to 14 times 

higher relative electricity consumption compared with medium-sized municipalities 

(1.15E-2 as opposed to 8.3E-4 kWh/m3 registered water·km of network) due to case-

specific factors such as a strong gradient between a water tank and the consumption 

point. Similarly, the cases showing low population density exhibit 7 times higher relative 

electricity consumption because of the longer distances that must be covered and the 

correlation between population density and size. The values found for greenhouse gas 

(GHG) emissions derived from the energy consumption are consistent with results from 

previous studies: on average, 5.53 kg of CO2 eq. emissions/inhabitant·year are 

released, but the variability is very high, ranging from 0.005 to 67.8 kg of CO2 eq. 

emissions/inhabitant·year. No clearly significant correlations were found between the 

relative water demand and variables such as seasonality or income per capita, which 

might indicate that water consumption depends on individual decisions of the 

population rather than on the variables assessed. Models for the estimation of water 

demand, length of network and electricity consumption were defined. However, the 

modelling of electricity consumption presented more difficulties because of its high 

variability. A protocol for data collection should be defined and implemented in the 

future to enable the analysis of more high quality case studies and for the definition of 

more accurate and reliable models. 

Keywords: urban water cycle, energy, water supply, water pipeline, sustainability, CO2 

emissions 
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1. Previous literature 

1.1. Urban water cycle 

The supply of drinking water is a basic need for the development of towns and villages. 

However, the water consumption in populated areas alters water fluxes, thus impacting 

ecosystems and resulting in degradation (UNESCO, 2006). Studies focused on urban 

metabolism, which is the sum of technical and socio-economic processes in cities, 

consider the water cycle as one of the main fluxes within cities (Kennedy, 2011). 

The consumption of water generates important environmental impacts because of the 

abstraction, treatment and transport of water (Vince et al., 2008; Racoviceanu et al., 

2007). The urban water cycle (UWC) comprises different stages, from water 

abstraction to its discharge to environment after use. First, water is extracted from the 

surface or groundwater and is transported to the drinking water treatment plant 

(DWTP), where it is treated to reach the necessary quality to be suitable for drinking. 

Then, it is transported through the principal network (transport) and the secondary 

network (distribution) to the consumption points around the urban area. Once in the 

urban area, water is used for drinking and domestic uses in houses and buildings as 

well as for a wide range of activities (e.g., industry, services). After its use, the water is 

collected and transported to the waste water treatment plant, where it is depurated to 

the necessary quality to be released back into nature (Figure 1) (UNESCO, 2006). 

Nonetheless, this schema can vary depending on the specific case. 

 
Figure 1. DWTDN within the urban water cycle. 

Among the environmental impacts generated by the consumption of water, greenhouse 

gas (GHG) emissions are of paramount interest. Sharma et al. (2008) analysed the 

GHG emissions released within the construction and operation of the UWC 

infrastructures in a residential area of 86,000 inhabitants, which generated 16,000 to 

24,000 t of CO2 eq./year. A similar study by Friedrich et al. (2009) for 200,000 residents 

obtained values of 6,000 to 10,000 t of CO2 eq./year. Another study, by Muñoz et al. 

(2010), for a broader area presented emissions of 1.5 to 2.5 t of CO2 eq./m3 of supplied 

water. The results presented in these articles show the great variability of values and 

functional units. Therefore, a top-down study comparing a representative sample of 

cases and providing average values for the consumption of water and energy would be 

of interest. 
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This article focuses on the drinking water transport and distribution network (DWTDN), 

which includes the transport of drinking water from the DWTP to the consumption point 

(Figure 1). Similarly to the UWC state of the art, studies focused on this subject present 

great variability, although they have shown that the reduction of DWTDN-related 

environmental impacts is of interest. According to the results found in articles that focus 

on one case study network, the DWTDN can represent between 20 and 40% of the 

total UWC impacts (Amores et al., 2013; Lemos et al., 2013). However, a report from 

Griffiths-Sattenspiel & Wilson (2009) analysing the UWC energy consumption in the 

USA (including consumption in households) shows that the environmental impacts of 

the DWTDN can represent between 3 and 24% of the energy consumption required to 

supply water. This study will assess more cases in Europe, providing data for contrast 

and analysing the factors that generate such a wide range of results. 

Moreover, the state of the art of UWC focused on this subject presents a great 

variability, although it has shown that the reduction of DWTDN environmental impacts 

is of interest. For example, according to Amores et al. (2013) and Lemos et al. (2013), 

the DWTDN can represent between 20 and 40% of the total UWC impacts, while 

Griffiths-Sattenspiel and Wilson (2009) reported that the environmental impacts of the 

DWTDN can represent between 3 and 24% of the energy consumption required to 

supply water. 

1.2. Drinking water transport and distribution network 

The DWTDN system consists of a series of stages the water has to cover, from the first 

water storage tank just after the drinking water treatment plant (DWTP) to the 

consumption point. Its life cycle can be divided in two main blocks: construction 

(production, transport, installation and end of life) and operation (use and maintenance) 

(Figure 2). The factors influencing the environmental impacts of the construction phase 

can be determined and generalised for all networks. The most relevant factors are the 

length of the network, the pipe material used and the dimensions of the trench for 

installation (Sanjuan-Delmás et al., 2013). In contrast, the use phase depends on 

factors whose influence is not as clear, such as the geographical location of the 

network elements, the urban form and the economic activity in the area. This results in 

large variations among the resource consumption of different networks. It must also be 

highlighted that the cost of the energy for pumping water is not significant compared 

with other expenses, such as the cost of the soil. Thus, urban planning has not been 

optimised for water transport; rather, it has evolved by disregarding this factor. 

 

Figure 2 Diagram of the DWTDN life cycle stages 
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To address this great variability of the use phase, it was decided that it should be 

analysed separately. The environmental impacts of the DWTDN construction phase 

have been assessed previously by Sanjuan-Delmás et al. (2013). 

The maintenance phase includes operations such as internal coating of the pipes, 

rehabilitation, replacement of smaller parts of a pipeline, repair and inspection. The 

environmental impact these operations generate is relevant when the grid is stagnant, 

because there is no impact of DWTDN construction (Venkatesh & Brattebø, 2012). 

Nevertheless, previous studies have concluded that the resource consumption of the 

maintenance phase is negligible compared with the energy consumed to pump water 

(Venkatesh & Brattebø, 2011; Piratla et al, 2012; Del Borghi et al, 2013). For this 

reason, the maintenance phase was not considered in this study. 

This article aims to address the environmental impacts of the use stage, and thus, the 

remaining elements of the DWTDN life cycle were excluded from the scope of the 

study. 

Figure 3 shows a diagram of the DWTDN and the boundaries of the system under 

study. 

 

Figure 3 Diagram of the DWTDN with the system boundaries of the study. 

The use phase can account for a large percentage of the UWC energy consumption 

(60 to 91%; Stokes & Horvath, 2006). The most characteristic feature of this phase is 

the electricity consumption required to pump water through the DWTDN. Previous 

results have presented a large variation and represent a significant part of the 

environmental impacts, for example, 17.2% of the UWC energy consumption 

(Venkatesh & Brattebø, 2011) and 98% of the DWTDN environmental impacts (Piratla 
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et al., 2012). Moreover, the environmental impacts derived from water pumping have a 

great potential for reduction by, for instance, increasing the share of renewable 

energies in the electricity mix (Mohapatra, 2002). To provide more information about 

the use phase of the DWTDN and the variability of results observed in previous 

studies, this article assesses the use phase with data from 50 real cases. 

The energy consumption for pumping water has a strong relation with urban planning 

(Filion, 2008) as well as with orography and the sequence of urban structure 

development. The greater the difference in height or the longer the distance between 

the consumption point and the DWTP, the greater the increase in energy needed to 

pump water. The same is true for the form of urban planning and the initial estimations 

made. Thus, this energy consumption will differ from one municipality to another 

depending on the location of the elements of the network in the territory and their 

adaptation along time. Another factor to take into account is that this energy for 

pumping increases with the aging of the network due to increased roughness of the 

pipe (Filion et al., 2004) and factors such as more frequent leakages. 

If the orography of the area allows it, the transport of water through the DWTDN can be 

accomplished by gravity, without, or with relatively little, energy consumption. When 

this is not possible, the use of more sustainable energy sources to generate the 

electricity required to pump the water may help reduce the environmental impacts of 

the DWTDN. For instance, the main contribution to the environmental impacts of the 

DWTDN in the city of Alexandria was the generation of electricity with fossil fuels 

(Mahgoub et al., 2010).  

Finally, one important issue regarding the environmental impacts of the DWTDN is the 

loss of water through the network by leakages (Friedrich et al., 2009). Losing water 

increases the environmental impacts of the water supply system because, on the one 

hand, it increases the volume of water treated and the energy consumed to transport it 

and, on the other hand, because of the loss of resources. In Europe, there are great 

differences in the percentage of water lost through the urban water cycle, varying from 

less than 5% (Germany) to 50% (Bulgaria). For Spain, approximately 20% of the water 

is lost (European Environmental Agency, 2003). Although these are estimates, it is 

clear that there is great potential for the reduction of water consumption by reducing 

the amount of water lost. 

Having observed the high variability of use phase environmental impacts in previous 

literature; this study aims to analyse, correlate and model the relevant variables that 

influence the environmental impacts of the DWTDN use phase by means of the 

assessment of a representative sample of 50 municipalities. The following specific 

objectives have been considered in the study: 

 To obtain data about the electricity and water consumption of the DWTDN as 

well as different factors affecting the environmental impacts of the supply 

network use phase. 

 To assess the data dispersion reported from GHG emissions observed in the 

literature. 

 To assess the relevance and potential connections between the main factors 

affecting the environmental impacts of the DWTDN. 
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2. Materials and methods 

2.1. Sample of municipalities and variables 

The use phase of the DWTDN was assessed through a statistical analysis based on 

data from 50 Spanish municipalities for the year 2011. These data were provided by 

Agbar (2013) through its databases CONTEC (CONTEC ©, 2012) and GISAgua 

(GISAgua ©, 2012). Because all the data come from the same database, the 

methodology for their collection is consistent for the entire sample. All data utilised 

regarding the 50 municipalities are detailed in Supplementary table A. 

In terms of size, the range of municipalities included in the sample is within the most 

common in Spain. Indeed, small to medium-sized municipalities (smaller than 50,000 

inhabitants) represent more than 98% of Spanish towns (INE, 2011). The municipalities 

belong to the two major climates in Spain according to the Köppen classification 

system: Mediterranean (the vast majority of the Spanish territory) and Oceanic (north 

and north-west). 

Table 1 shows the variables considered in the statistical analysis. Non-registered water 

is considered an approximation of water loss. However, this variable includes other 

components. As seen in Table 2, apparent losses, customer metering inaccuracies and 

unmetered consumption are also included in the non-registered water. The relative 

variables included in the statistical analysis have been divided by the inhabitants 

supplied by the network in each municipality, the length of the network (km) or the 

cubic meters of water registered at households. 

Table 1. Explanation of the variables and the clusters in the statistical assessment 

Variable* Unit Explanation 

Inhabitants 
supplied 

Number Number of permanent inhabitants supplied in the municipality. 

Length of the 
transport network 

km 
Length of network from the first water storage tank after the DWTDN to 
the water storage tank prior to the distribution network (see Figure 3). 

Length of the 
distribution network 

km 
Length of the network from the water storage tank after the transport 
network to the households (see Figure 3). 

Population density 
Inhabitant/ 

km
2
 

Number of inhabitants supplied over the total area within the legal limits 
of the municipality (km

2
). 

Seasonality - 
Population of the municipality supplied in peaks over the population 
permanently supplied (absolute number). 

Electricity 
consumption 

kWh/year 
Electricity required to pump water supplied through the network (total per 
municipality). 

CO2 emissions kg CO2 
GHG emissions derived from producing the electricity required for the 
transport of water. 

Water supplied m
3
/year 

Quantity of water metered at the exit of the water tank located after the 
DWTP (see Figure 3). 

Water registered m
3
/year 

Quantity of water measured by the flow meters installed in the 
households of the municipality. 

Non-registered 
water supplied 

m
3
/year Water supplied minus water registered. 

DWTP= drinking water treatment plant 

*All these variables are for 2011 
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Table 2. International Water Association standard water balance 

System 
input volume 

Authorised 
consumption 

Billed authorised consumption: 

 Metered 

 Unmetered (estimate, flat fee) 

Unbilled authorised consumption: 

 Metered 

 Unmetered 

Water losses 

Apparent losses: 

 Unauthorised consumption 

 Customer metering inaccuracies 

Real losses: 

 Leakages (network, tanks and connections) 

 Overflow (tanks) 

Source: Adapted from (IWA, 2003) 

2.2. Comparison of the statistical parameters by clusters 

To evaluate which factors have an influence on the environmental impacts of the 

DWTDN, a preliminary selection was done. Population size, seasonality, population 

density, climate, location and gross income per capita were selected for the 

assessment. For each of these factors, the sample was grouped according to the 

criteria stated in Table 3, and the resulting clusters were analysed through its summary 

statistics (mean, standard error) for relative variables of interest. 

Regarding population size, the distinction between small and large municipalities varies 

depending on the country and the specific area. In Spain, previous literature shows that 

the number of inhabitants considered for the grouping of cases varies depending on 

the goal and scope of the study. In this paper, municipalities below 10,000 inhabitants 

(small) and between 10,000 and 50,000 inhabitants (medium) were considered. The 

same limits were used in Goerlich & Mas (2004) and Díaz (2006). 

The variations in the population and, thus, in the amount of water delivered over the 

year will have an impact on the network usage and ageing. For instance, pressure 

fluctuations could occur because of the changes in the amount of water extracted from 

the network due to variations in the number of consumers, which might increase 

breakages. Seasonality has been defined as inhabitants supplied in peaks over 

permanent inhabitants supplied by a network. In Spain, highly touristic municipalities 

are expected to be seasonal because their populations increase substantially during 

summer. To group the sample in clusters, the median (1.2) was established as the limit 

between seasonal and non-seasonal. 

The effect of population density on the environmental impacts is unclear because 

although the distance to be covered is longer when the population density is low, 

higher pressures are needed to pump water to the top of buildings when the population 

density is high. Additionally, less densely populated areas usually show higher water 

consumption per inhabitant due to the higher amounts of water consumed in private 

gardens and swimming pools (Saurí and Cantó, 2008). Additionally, in this case, the 

median (90 inhabitants/km2) was considered as the limit between high and low density 

populations. 
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Additionally, 2 qualitative factors were included in the assessment: the climate 

(Mediterranean and Oceanic) and the location (coastal or inland). 

To compare the means, t-tests were conducted by adjusting the p value with the 

Bonferroni correction. Levene’s test was conducted, and homogeneity of the variance 

was not assumed when positive (<0.05). These methods are commonly used and 

accepted in statistics. For graphical representations, in order to better represent 

relations between variables, scatter plots were used for the representation of 

continuous variables (size, population density and seasonality), and box plots were 

used for nominal variables (location and climate). 

2.3. Environmental impacts 

The environmental impacts were considered through the GHG emissions derived from 

the electricity consumption of the network use phase. The emissions were calculated 

using the software Simapro 7.3 (PRé Consultants, 2010) and the calculation method 

CML 2 baseline 2000 (Guinée et al. 2001) for the global warming potential impact 

category. The environmental information from Ecoinvent 2.2 (Ecoinvent, 2009) was 

used, adapting the Spanish electricity mix for 2011 (IEA, 2014). 

2.4. Correlation between variables and regression models 

Pearson correlations between the variables considered (Table 1) were calculated. 

When values were higher than 0.3, the variables were considered to hold a certain 

correlation between them. 

Based on the results obtained for the correlations, regression models were defined with 

the main variables influencing the environmental impacts of the DWTDN as dependent 

variables. The significance was tested through one-way ANOVA, which is a commonly 

used method. 

To validate the models, each equation was applied by utilising data from the cases of 

the sample. The estimations obtained were compared with the real values, and the 

resulting errors were calculated.  
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3. Results and discussion 

3.1. Clusters by size, location, climate, density, seasonality and income 

per capita 

Table 3 shows a comparison of the mean values and the standard errors obtained by 

grouping the data into clusters for relative variables that were considered relevant for 

the environmental impacts of the network. The criteria for the aggrupation of the cases 

were stated in section 3.2. 

The results show that size, location and density might have an influence on the relative 

electricity consumption of the DWTDN, because the means of their clusters are 

significantly different. Similarly, seasonality would have some influence on the 

registered water consumption per inhabitant. Despite not being statistically significant, 

the mean values of climate clusters present great differences for the relative electricity 

consumption, and their assessment can also be of interest. 

To see the relations between clusters showing significant differences more clearly, they 

were represented graphically. The resulting graphs are shown in Figure 4. 

Regarding the clusters by size, it can be observed that small municipalities have nearly 

14 times higher average electricity consumption than medium-sized municipalities, 

which indicates that population size most likely has an influence on the electricity 

consumption of the network. The scatter plot in Figure 4 shows that all medium 

municipalities (from 10,000 to 50,000 inhabitants) have an annual value below 3.79E-3 

kWh/m3 of registered water·km of network. In contrast, small municipalities present a 

much wider range of values, with the mean value being 3 times higher than that of 

medium municipalities. This might indicate that the relative consumption tends towards 

a narrower range of values, which is altered in small-sized towns by case-specific 

factors. These factors would lose relevance in medium municipalities due to the larger 

quantity of water demanded, which dilutes these alterations. Additionally, higher energy 

consumptions in smaller municipalities might be explained by a scale economy effect; a 

higher number of inhabitants would then imply a relatively more efficient use of 

resources. 

Towns with a low population density present a relative electricity consumption 7 times 

higher than towns with a high population density. The scatter plot in Figure 4 shows 

that all the municipalities with high consumptions have relatively low population 

densities. Note that cases above 1E-1 kWh/m3·km are the same as those observed in 

the number of inhabitants-relative electricity consumption scatter plot. This is because 

population density holds a certain correlation with the number of inhabitants (Table 4), 

meaning that within the sample, larger towns are usually more densely populated.  

On the one hand, higher electricity requirements in less densely populated cases might 

be attributed to the necessity of covering longer distances. On the other hand, more 

densely populated areas also need extra energy to pump the water to the tops of 

buildings. Judging by the results, it appears that the first statement has greater 

relevance than the second. Additionally, in low density towns, the location of buildings 

within the topography could have a greater effect on the overall electricity consumption, 

which can result in larger electricity consumption values. 
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Table 3. Summary statistics for the sample of small to medium municipalities by cluster for 2011 

    
 

N 

Electricity 
consumption (kWh/ 
m

3
 registered water· 
km of network

1
) 

kg CO2 
emissions/ 
inhabitant· 

year 

Registered 
water 

(m
3
/inhabitant) 

Non-registered 
water (m

3
/ m

3
 of 

water registered) 

Size 

Small (< 10,000 
inhabitants) 

µ 
31 

1.15E-02** 7.47E+00 7.65E+01 7.30E-01 

SEM 2.70E-03 2.21E+00 7.90E+00 6.80E-02 

Medium 
(10,000-50,000 

inhabitants) 

µ 
19 

8.30E-04** 2.37E+00 6.96E+01 6.35E-01 

SEM 2.44E-04 6.25E-01 5.08E+00 7.16E-02 

Seasonality 

Low (≤ 1.2) 
µ 

24 
4.12E-03 3.19E+00 6.19E+01* 6.77E-01 

SEM 1.32E-03 6.89E-01 3.71E+00 5.28E-02 

High (> 1.2) 
µ 

26 
1.05E-02 7.69E+00 8.50E+01* 7.10E-01 

SEM 3.21E-03 2.62E+00 9.04E+00 8.41E-02 

Population 
density 

Low (< 90 
inhabitants/km

2
) 

µ 
25 

1.31E-02** 8.28E+00 7.78E+01 7.67E-01 

SEM 3.24E-03 2.66E+00 9.65E+00 7.87E-02 

High (≥ 90 
inhabitants/km

2
) 

µ 
25 

1.79E-03** 2.78E+00 7.00E+01 6.21E-01 

SEM 6.41E-04 7.66E-01 4.23E+00 6.01E-02 

Climate 

Mediterranean 
µ 

46 
8.00E-03 5.75E+00 7.25E+01 7.07E-01 

SEM 1.96E-03 1.54E+00 4.90E+00 5.38E-02 

Oceanic 
µ 

4 
1.16E-03 3.00E+00 9.03E+01 5.50E-01 

SEM 7.25E-04 1.23E+00 3.71E+01 7.15E-02 

Location 

Coast 
µ 

10 
1.32E-03** 2.94E+00 1.05E+02 7.58E-01 

SEM 5.86E-04 7.34E-01 2.08E+01 1.37E-01 

Inland 
µ 

40 
8.99E-03** 6.18E+00 6.61E+01 6.78E-01 

SEM 2.22E-03 1.76E+00 3.23E+00 5.31E-02 

Gross 
income per 

capita
2
 

Low 
µ 

19 
1.16E-02 8.16E+00 7.38E+01 7.33E-01 

SEM 4.07E-03 3.47E+00 1.05E+01 8.83E-02 

High 
µ 

21 
4.28E-03 4.22E+00 7.30E+01 7.31E-01 

SEM 1.94E-03 1.17E+00 5.09E+00 8.06E-02 

All cases 

µ 

50 

7.45E-03 5.53E+00 7.39E+01 6.94E-01 

SEM 1.83E-03 1.42E+00 5.24E+00 5.01E-02 

Min. 3.70E-06 5.00E-03 3.90E+01 1.30E-01 

Max. 7.39E-02 6.78E+01 2.45E+02 1.63E+00 

*p value < 0.05, **p value < 0.01 
1
distribution network, 

2
value not available for 20% of the municipalities, µ= mean, SEM= standard error of the 

mean, Min.=Minimum, Max.=Maximum 

For a hypothetical network 20 km in length, the average electricity consumption for 

water distribution would represent 3 and 33% of the energy consumption of drinking 

water with reverse osmosis and ultrafiltration as treatments, respectively (Vince et al., 

2008; pumping not considered). For the case presented in Racoviceanu et al. (2007), 

the electricity consumption for water distribution would reach 50% (not considering 

pumping). This shows that the distribution of water can account for a significant 

percentage of the water supply electricity consumption. 
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No significant differences were observed regarding the water demand, although 

previous literature has proved that higher consumptions occur with less densely 

populated areas (Saurí and Cantó, 2008). This relation might have been found if 

smaller areas of clearly low and high population densities were analysed instead of the 

average value of the municipality, given that a municipality can be heterogeneously 

distributed along the territory. 

The clusters by location show that although inland municipalities have, on average, 

higher electricity consumption than coastal municipalities (nearly 7 times higher), their 

mean values (Figure 4) do not show clear differences. The coastal cluster presents a 

much lower dispersion, most likely due to the relatively smaller number of cases (10 

coastal, 40 inland). Thus, the assessment of a large sample would clarify whether this 

difference is truly significant. One main explanation for these lower consumptions in 

coastal municipalities would be a more common application of gravity for the transport 

of water, which would reduce the need for electricity to transport water. Additionally, 

coastal towns are usually settled in flatter locations (frequently in alluvial plains), and 

thus, less energy is required to pump the water to the households. 

Similarly, the Mediterranean climate municipalities show a relative electricity 

consumption nearly 7 times higher than that of the Oceanic municipalities. This could 

be explained by the higher availability of water in Atlantic areas, which would allow the 

supply of water from more accessible places. However, the box plot in Figure 4 also 

shows that the clusters’ medians are similar in this case. The Oceanic cluster has a 

smaller dispersion, most likely due to the lower number of cases (4 Oceanic, 46 

Mediterranean). The assessment of a greater number of municipalities with an Oceanic 

climate would again allow the confirmation or dismissal the differences observed. 

The average GHG emissions derived from the network electricity consumption (5.53 

kg/inhabitant·year) would represent between 2 and 3% of the UWC emissions in the 

case study in Sharma et al. (2008) and between 11 and 18% of the case study in 

Friedrich et al. (2009). These percentages are reasonably consistent with the range of 

values found in other studies analysing the whole UWC. Venkatesh & Brattebø (2011) 

found that water pumping represented 17% of the UWC energy consumption. Lemos et 

al. (2013) and Amores et al. (2013) found higher percentages for the contribution of the 

supply network to the environmental impacts of the UWC (between 20 and 40%), which 

can partially be explained because these studies also included the network 

infrastructure. However, considering the lowest and highest values found in the 

sample, the resulting percentages of the UWC GHG emissions for the prior case 

studies might vary from less than 1% to more than twice the UWC emissions. 

Thus, the differences among the results found in previous literature are consistent with 

the values observed in this study and are due to the wide range of electricity 

consumptions that can be found for different cases. Apart from the variables under 

study, which might affect the electricity consumption, there is an inherent variability due 

to the specific conditions of each case. As stated in section 1.2, apart from the location 

of the elements within the territory, urban planning also influences the energy 

consumption of the network (Filion et al., 2004; 2008) as well as its development along 

time. 
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A 50% higher water consumption value was found for seasonal municipalities (those 

with a large difference between the population supplied in peaks and permanently 

supplied) compared with the non-seasonal municipalities. This might be due to the 

presence of more water demanding activities in more seasonal municipalities linked 

with tourism. The scatter plot in Figure 4 shows that most of the cases with a 

seasonality value above 1.3 hold higher water consumptions. Additionally, when the 10 

cases farther from the regression line are excluded, the main cloud shows a certain 

linear relation between the two variables considered (R2=0.45). Therefore, there is 

weak evidence of a link between water consumption and seasonality. Further studies 

on the issue might clarify this relation. 

The rest of the clusters analysed do not show significant differences in the water 

registered per inhabitant. This shows that the water demand might not be affected by 

the variables considered (population size, seasonality, population density, climate, 

location and gross income per capita). Indeed, the water consumption in dwellings and 

other facilities depends mostly on its residents’ decisions rather than on the 

characteristics of the municipality where they are located. Nevertheless, some public 

policies can encourage water savings among the population in areas suffering from 

drought. In this case, Mediterranean and Oceanic climates present nearly equal water 

consumptions, although the Mediterranean areas are prone to drought. 

For non-registered water, no significant differences were found for any of the factors 

assessed. As stated in section 3.1, non-registered water can be affected by different 

elements, such as inaccuracies in the flow metering and illegal connections to the 

network. Thus, although there might be differences between the clusters regarding the 

water loss, these differences would be diluted. In fact, the average value for m3 of non-

registered/m3 of registered water is approximately 0.7, which means the water loss 

should be approximately 40%. This result contrasts with other values found in the 

literature that indicate a 20% loss for Spanish municipalities (European Environmental 

Agency, 2003). Therefore, there is every likelihood that other factors, such as un-

metered consumption, influence non-registered water (Table 2). 
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Figure 4. Scatter and box plots representing the relative electricity consumption in relation to the number of inhabitants supplied, population density, climate and location 

variables 

Water consumption – Seasonality Electricity consumption – Number of inhabitants Electricity consumption – Population density 

Electricity consumption – Location Electricity consumption – Climate 
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3.2. Correlations between variables 

Table 4 shows the correlations between the variables included in the study. 

The results show that the amount of registered water is highly correlated with 

population density (0.57). However, as stated in section 4.1, population density is also 

related to the number of inhabitants (larger cities are usually more densely populated). 

Thus, the correlation with registered water would only mean that more densely 

populated municipalities tend to be larger and have greater demands. Indeed, it can be 

observed that population density also has a certain correlation with the number of 

inhabitants supplied.  

Regarding the length of the network, two different variables were considered: the 

transport length and the distribution network length (see Figure 3 and section 3.1). The 

distribution network shows a high correlation with the number of inhabitants, which is 

logical because this network carries water to households, and thus, many divisions will 

be required to reach the streets of municipalities. A similar correlation can be observed 

between the distribution network and the water registered. This is due to the high 

correlation between the number of inhabitants and the registered water (0.91) stated 

above. 

In contrast, the transport network does not show significant correlations with any of the 

variables considered, with the registered water or with the population supplied. This 

length depends, in fact, on the location of the municipality in relation to the DWTP 

because its function is to transport water from this plant to the distribution network. 

Hence, this lack of correlation can be considered reasonable. 

It can be observed that electricity consumption is not correlated with the number of 

inhabitants supplied or with the length of the network. This means that larger 

populations (with larger networks) do not necessarily have greater electricity demands, 

even though they do have larger networks and greater water consumptions. As seen in 

section 4.1, small and less densely populated municipalities tend to present a wide 

range of relative electricity consumptions due to their specific circumstances, usually 

linked with the location of the elements of the network in the territory, thus justifying this 

general lack of correlation. 

No significant correlations were found for seasonality, non-registered water and gross 

income per capita. The correlation between non-registered water and other variables 

can be explained by its high correlation with registered water. Apart from that, these 

variables would not be influenced by any of the others included in the study. 
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Table 4. Pearson correlation for the variables in the statistical assessment 
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Inhabitants supplied -.01 .73** .50** .20 .27 .91** .81** .37* 

Transport network 
(km) 

 .10 -.15 -.01 .04 .01 .03 -.21 

Distribution network 
(km) 

 
 

.38** .22 .11 .77** .66** .33* 

Population density 
(inhabitant/km

2
) 

 
  

.10 .17 .57** .61** .45** 

Seasonality  
   

.24 .45** .25 .20 

Electricity 
consumption (kWh) 

 
    

.25 .33* .09 

Registered water 
(m

3
) 

 
     

.86** .48** 

Non-registered 
water (m

3
) 

 
      

.56** 

*p<0.05. **p<0.01 

Coloured-shaded cells indicate significant correlation: light grey (0.3≤|r|≤0.5). dark grey (0.5<|r|≤0.65). black (|r|>0.65) 

3.3. Regression models 

This section presents regression models for the prediction of registered water (m3), the 

length of the distribution network (km) and electricity consumption (kWh) based on the 

results of the previous section. These are relevant variables that influence the 

environmental impacts of the DWTDN. 

Registered water is highly correlated with the number of inhabitants, which is an easily 

accessible value in any municipality. For this reason, a regression model, linear in this 

case, was defined for the prediction of registered water (RW), with the number of 

inhabitants (NI) as the independent variable (1). 

RW = 67.1 [m3] · NI (1) 

The overall model is significant (p<0.01), and the coefficient of determination (R2) is 

0.82. The regression line was forced to cross the (0.0) coordinates because the 

constant was not significant (p>0.05) and to improve accuracy. 

For the estimation of the distribution network length (km; LN), two possible variables 

could be used for being highly correlated with the prior: number of inhabitants (NI) and 

registered water (m3; RW). Two models were created, one with each of these variables 

(2; 3). 

LN = 5.73E-3 [km/inhabitants] · NI  (2)* 
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LN = 8.09E-5 [km/m3] · RW   (3)* 

*Cases S, AF and AP were excluded as outliers 

Both models are significant (p<0.01) and show a coefficient of determination (R2) of 

0.68. As seen in model 1, the regression line in models 2 and 3 was forced to cross the 

(0.0) coordinates because none of the constants were significant.  

Regarding the electricity consumption, as stated in section 3.2, a direct correlation was 

not found for any of the variables considered. The relation between the relative 

electricity consumption (kWh/m3 of registered water·km of network) and the number of 

inhabitants supplied (represented in Figure 4) was used to provide a model for the 

prediction of the electricity consumption. A power curve regression model was defined 

with the relative electricity consumption (REC) as the dependent variable and the 

inhabitants (NI) supplied as the independent variable (4) (Figure 5). 

REC = 12.7 [kWh/m3·km] · NI
-1.064  (4)** 

**Case AE was excluded as an outlier 

The model is significant, as is the coefficient (p<0.01). A coefficient of determination 

(R2) of 0.41 was reached. To predict the electricity consumption (EC), these results 

must be multiplied by the length of the network (LN; km) and the registered water (RW; 

m3) (5). These two variables can be replaced by the previously stated equations 1 and 

2, resulting in one unique model with the number of inhabitants as the only 

independent variable (6). 

EC = 12.7 [kWh/m3·km] · NI
-1.064 

· RW · LN  (5)** 

EC = 12.7 [kWh/m3·km] · NI
-1.064 · 67.1 [m3] · NI · 5.73E-3 [km/inhabitants] · NI 

 (6)** 
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Figure 5. Representation of the power curve estimation model for the relative electricity consumption 

prediction 

 

3.4. Validation of the models 

To assess the accuracy of the models proposed in section 4.3, a model validation was 

conducted using the original data from the cases under study (section 3.3; 

Supplementary table A). The results of the validation are shown in Table 5. 

It can be observed that for model 1 (prediction of water demand), the error is below 

50% for 90% of the cases included in the sample. The validation of models 2 and 3 

(prediction of the network length) resulted in approximately 60% of the cases having an 

error below 50% and nearly all the cases having an error below 90%. 

Models 4 and 6 present significantly higher errors. Only 20 and 30% of the cases, 

respectively, show an error below 50%. For both models, an error below 70% was 

found for 40% of the cases, and an error below 90% was found for 70% of the cases. 

This shows that these models might be useful to obtain a rough estimation of the value, 

but its accuracy is limited. Estimations resulting in values higher than 7.4E-2 

kWh/m3·km or 1.8E6 kWh for small municipalities and 3.8E-3 kWh/m3·km or 8.9E5 kWh 

for medium municipalities should not be considered valid, because such values have 

not been observed in the sample under assessment. 
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Table 5. Results of the validation of models 1 to 6. 

 Error < 50% Error < 70% Error < 90% 

 

N % N % N % 

Model 1 45 90 48 96 50 100 

Model 2 28 56 40 80 47 94 

Model 3 29 58 43 86 47 94 

Model 4 10 20 18 36 33 66 

Model 6 16 32 22 44 36 72 

Electricity is a more difficult element to measure than water, and the measurement 

errors can be greater, which can lead to higher differences among the cases. 

Moreover, electricity can present a wider range of values, including municipalities 

transporting water by gravity with nearly zero consumption. These characteristics make 

modelling electricity consumption difficult. 

To facilitate future statistical studies for the provision of more accurate data and 

models, a protocol for data collection in water supply networks should be implemented 

by organisations managing the water supply. This protocol should include all the 

variables considered in the study as well as others potentially affecting the 

environmental impacts of the network. 

A thorough assessment of some case studies might provide more accurate information 

about the relation between energy consumption and other variables and might be able 

to successfully model these relations. However, this task falls outside the scope of this 

study, which aims to make a top-down assessment of and provide general information 

about drinking water supply networks from a representative sample of cases. 
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4. Conclusions 

This study obtained average values of electricity consumption, GHG emissions and 

water demand in municipalities below 50,000 inhabitants (e.g., 7.45E-3 kWh/m3 

registered water·km of network, 5.53 kg CO2 emissions/inhabitant·year, 73.9 

m3/inhabitant) for the DWTDN operational phase. These data will be useful in future 

studies, especially for contrasting the environmental impacts of the supply network 

operational phase with those of UWC case specific studies or assessments of other 

UWC stages. 

The analysis also provided information about the potential influence of factors such as 

population size and density on the environmental impacts of the DWTDN operational 

phase. 

Because small municipalities (<10,000 inhabitants) have lower absolute water and 

energy demands, case specific factors affecting their electricity consumption have a 

greater relative weight. Thus, the size of the municipality can affect its relative 

electricity consumption, which is bound to be higher in small compared with medium 

municipalities (10,000-50,000 inhabitants). In the sample, small municipalities present 

values, on average, nearly 14 times larger than those of medium municipalities (1.15E-

2 as opposed to 8.3E-4 kWh/m3 registered water·km of network). A similar relation was 

found for population density. Due to the relatively longer distances water has to cover, 

less densely populated municipalities present higher relative electricity consumption 

(on average, approximately 7 times higher).  

The quantity of GHG emissions derived from the electricity consumption of the sample 

cases are consistent with the values found in previous literature. Although varied, the 

results from previous articles (Sharma et al., 2008; Friedrich et al., 2009; Venkatesh & 

Brattebø, 2011; Lemos et al., 2013; Amores et al., 2013) are within the range of values 

observed in this study. The differences among these results can be explained by the 

specificity of each case study; this paper provides average values that can be used in 

future studies to avoid considering such specific conditions. 

Additionally, six models were defined for the prediction of water demand, length of the 

network and electricity consumption. In contrast with water and length of the network, 

only a rough approximation was reached with the model for the prediction of electricity 

consumption (R2=0.41), because electricity is more difficult to measure and presents a 

wider range of values. In the future, companies managing water supply should 

implement a protocol for the collection of data in order to model this variable more 

accurately. 

For location (cost or inland) and climate (Mediterranean or Oceanic) variables, some 

indications of a relation with electricity consumption were found. Certain differences 

were observed between the clusters, but the evidence was not strong enough to reach 

solid conclusions. Similarly, a slight correlation between the seasonality (number of 

inhabitants supplied in peaks over inhabitants permanently supplied) and water 

registered variables was found but were not significant enough. These results show 

tendencies that might be further assessed in future studies. 
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Finally, the relation between water loss and other variables should be assessed in a 

more thorough bottom-up study, as it is believed that external factors stated by IWA 

(2003), such as un-metered connections, dilute the water losses.  
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Supplementary table A can be found in the attached excel file. 

 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

References 

Agbar ©. <http://www.agbar.es/en/home.html> [Accessed on September 2013] 

Amores, M. J., Meneses, M., Pasqualino, J., Antón, A., & Castells, F. (2013). 

Environmental assessment of urban water cycle on Mediterranean conditions by 

LCA approach. Journal of Cleaner Production, 43, 84-92. 

 CONTEC, Control Técnico del Ciclo Integral del Agua, 2012 © Aqualogy Services 

Company 

Del Borghi, A., Strazza, C., Gallo, M., Messineo, S., & Naso, M. (2013). Water supply 

and sustainability: life cycle assessment of water collection, treatment and 

distribution service. The International Journal of Life Cycle Assessment, 18(5), 

1158-1168. 

Mahgoub, M.E.-S.M., Van der Steen, N.P., Abu-Zeid, K., Vairavamoorthy, K., 2010. 

Towards sustainability in urban water: a life cycle analysis of the urban water 

system of Alexandria City, Egypt. Journal of Cleaner Production 18, 1100–1106 

Ecoinvent (2009) Swiss Centre for Life Cycle Inventories. Ecoinvent database v3.0. 

Technical report. http://www.ecoinvent.ch/ Accessed March 2014. 

 European Environmental Agency. (2003). (WQ06) Water use efficiency (in cities): 

leakage. [PDF Document] <http://www.eea.europa.eu/data-and-

maps/indicators/water-use-efficiency-in-cities-leakage/water-use-efficiency-in-

cities-leakage/at_download/file> 

Filion, Y. R., MacLean, H. L., & Karney, B. W. (2004). Life-cycle energy analysis of a 

water distribution system. Journal of Infrastructure Systems, 10(3), 120-130. 

Filion, Y. R. (2008). Impact of urban form on energy use in water distribution systems. 

Journal of Infrastructure Systems, 14(4), 337-346. 

Friedrich, E., Pillay, S., & Buckley, C. A. (2009). Carbon footprint analysis for 

increasing water supply and sanitation in South Africa: a case study. Journal of 

Cleaner Production, 17(1), 1-12. 

 GISAgua. 2012. © Aqualogy Services Company 

Goerlich, F. J., & Mas, M. (2004). Distribución personal de la renta en España. 1973-

2001. 

Griffiths-sattenspiel, B. & Wilson, W. (2009). The Carbon Footprint of Water. A River 

Network Report. [PDF Document] 

<http://www.csu.edu/cerc/researchreports/documents/CarbonFootprintofWater-

RiverNetwork-2009.pdf> 

Guinée, J.B. (ed), et al. (2001) Life cycle assessment: an operational guide to the ISO 

standards. Parts 1 and 2. Ministry of Housing, Spatial Planning and Environment 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

(VROM) and Centre of Environmental Science (CML), Den Haag (Guinée JB, 

final editor) 

Instituto Nacional de Estadística. (2011). Cifras de población y censos demográficos. 

<http://www.ine.es/inebmenu/mnu_cifraspob.htm> 

Institute of Water Association. (2003) The IWA water loss task force. Water 21 - 

Article No 2 Assessing Non-Revenue Water and its Components: A Practical 

Approach. [PDF Document] 

<http://www.studiomarcofantozzi.it/Water%2021%20-

%20Article%20No.%202%20-%20Assessing%20NRW.pdf> 

International Energy Agency (IEA). 

<http://www.iea.org/statistics/statisticssearch/report/?&country=SPAIN&year=201

1&product=ElectricityandHeat> [Accessed on March 2014] 

Kennedy, C., Pincetl, S., & Bunje, P. (2011). The study of urban metabolism and its 

applications to urban planning and design. Environmental pollution, 159(8), 1965-

1973. 

 Lemos, D.; Dias, A. C.; Gabarrell, X. & Arroja. L. (2013). Environmental assessment 

of an urban water system. Journal of Cleaner Production. 

doi:10.1016/j.jclepro.2013.04.029 

Mohapatra, P., Siebel, M., Gijzen, H., Van der Hoek, J., & Groot, C. (2002). Improving 

eco-efficiency of Amsterdam water supply: A LCA approach. Aqua, 51, 217-227. 

Muñoz, I., Milà-i-Canals, L., & Fernández-Alba, A. R. (2010). Life cycle assessment of 

water supply plans in Mediterranean Spain. Journal of Industrial Ecology, 14(6), 

902-918. 

 Díaz, A. P. (2006). Los pequeños municipios ante los retos del desarrollo. Norba. 

Revista de geografía, (11), 183-197. 

Piratla, K. R.; Asce, S. M.; Ariaratnam, S. T.; Asce, M. & Cohen. A. (2012). Estimation 

of CO 2 Emissions from the Life Cycle of a Potable Water Pipeline Project. 

Journal of Managing in Engineering 2012.28:22-30. 

doi:10.1061/(ASCE)ME.1943-5479.0000069. 

Sanjuan-Delmás, D. et al.. Environmental assessment of different pipelines for drinking 

water transport and distribution network in small to medium cities: a case from 

Betanzos. Spain. Journal of Cleaner Production (2013). 

http://dx.doi.org/10.1016/j.jclepro.2013.10.055 

Sharma, A. K., Grant, A. L., Grant, T., Pamminger, F., & Opray, L. (2008). 

Environmental and economic assessment of urban water services for a greenfield 

development. Environmental Engineering Science, 26(5), 921-934. 

 Stokes, J. & Horvath, A. (2006). Life Cycle Energy Assessment of Alternative Water 

Supply Systems. International Journal of LCA. 11(5). 335–343. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

UNESCO. J. Marsalek, B.E. Jiménez-Cisneros, P.-A. Malmquist, M. Karamouz, J. 

Goldenfum & B. Chocat (2006). Urban water cycle processes and interactions. 

International hydrological programme. [PDF Document] 

<http://www.bvsde.paho.org/bvsacd/cd63/149460E.pdf > 

Venkatesh, G., & Brattebø, H. (2011). Energy consumption, costs and environmental 

impacts for urban water cycle services: Case study of Oslo (Norway). Energy, 

36(2), 792-800. 

Venkatesh, G., & Brattebø, H. (2012). Assessment of environmental impacts of an 

aging and stagnating water supply pipeline network. Journal of Industrial Ecology, 

16(5), 722-734. 



Figure 1. DWTDN within the urban water cycle. 

Figure 2 Diagram of the DWTDN life cycle stages 

Figure 3 Diagram of the DWTDN with the system boundaries of the study. 

Figure 4. Scatter and box plots representing the relative electricity consumption in 

relation to the number of inhabitants supplied, population density, climate and location 

variables 

Figure 5. Representation of the power curve estimation model for the relative electricity 

consumption prediction 
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