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Abstract—The recent advent of high-throughput sequencing machines producing big amounts of short reads has boosted
the interest in efficient string searching techniques. As of today, many mainstream sequence alignment software tools rely
on a special data structure, called the FM-index, which allows for fast exact searches in large genomic references. However,
such searches translate into a pseudo-random memory access pattern, thus making memory access the limiting factor of all
computation-efficient implementations, both on CPUs and GPUs. Here we show that several strategies can be put in place
to remove the memory bottleneck on the GPU: more compact indexes can be implemented by having more threads work
cooperatively on larger memory blocks, and a k-step FM-index can be used to further reduce the number of memory accesses.
The combination of those and other optimisations yields an implementation that is able to process about 2 Gbases of queries
per second on our test platform, being about 8× faster than a comparable multi-core CPU version, and about 3× to 5× faster
than the FM-index implementation on the GPU provided by the recently announced Nvidia NVBIO bioinformatics library.
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1 INTRODUCTION

THE recent advent of high-throughput sequencing
machines producing big amounts of short reads

has boosted the interest in efficient string search-
ing techniques. For instance, current Illumina HiSeq
2000/2500 sequencers can read out several billions of
short DNA strings (usually of length 100-150) during
a single run, which takes less than a week to complete.
Each machine of the announced forthcoming Illumina
HiSeq X Ten system will be able to generate 6 to
10 times more data per unit time than an Illumina
HiSeq 2000. In most cases, the sequencing reads thus
produced require subsequent alignment to a genomic
reference, i.e. an error-tolerant search able to locate
the positions in the genome the read might have
originated from. Mammalian genomic references, like
the human one, have a typical size of several Gbases.

As of today, the most effective sequence alignment
software tools (like BWA [1], CUSHAW2 [2], SOAP3
[3], Bowtie [4], and GEM [5]) rely on a special data
structure, called the FM-index, which allows for fast
exact searches into large genomic references. The cost
of the search is linear in the length of the searched
pattern, and in theory does not depend on the size
of the reference sequence (although it weakly does in
practice). In addition, the FM-index can achieve high
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compression ratios, allowing to store the 3 Gbases of
the human genome into 1-3 GB of memory space.

Low-cost GPU cards combine excellent perfor-
mance with high energetic efficiency, offering at the
same time thousands of computational cores and
high memory access throughput (although, regret-
tably, not low latency); hence they are being increas-
ingly used by big-data scientific applications to speed
up computational-intensive algorithms. In particular,
GPUs would look like ideal candidates to tackle the
problem of short-read alignment: a situation where
each read can be independently searched in the ref-
erence would seem to offer plenty of thread- and
memory-level parallelism to hide the latencies of com-
putation and memory access operations, thus showing
clear potential for an efficient GPU implementation.

In practice, however, things are not so clear-cut. The
main problem stems from the fact that exact searches
in the FM-index framework translate into a pseudo-
random memory access pattern, thus making memory
access the limiting factor of all computation-efficient
implementations, both on CPUs and GPUs. Straigh-
forward parallelisation does not solve the problem,
but rather exacerbates it. For instance, previous imple-
mentations of the FM-index on GPU ([6], [2] and [3] to
name a few) typically assign one independent search
task to each GPU thread; the result is an even more
inefficient memory access, with too many threads
requesting many relatively small data blocks spread
across distant random locations.
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In this paper we examine several strategies to
remove the memory bottleneck on the GPU. Our
contribution can be summarised as follows:
• In previous works we demonstrated that more

compact FM-indexes can be implemented by hav-
ing more threads work cooperatively on larger
memory blocks [7], and a k-step FM-index can
be used to further reduce the number of memory
accesses [8]. Here we show that the combination
of those and other optimisations yields an imple-
mentation that is able to process about 2 Gbases
of queries per second on our test platform, being
about 8× faster than a comparable multi-core
CPU version, and about 3× to 5× faster than the
FM-index implementation on the GPU provided
by the recently announced Nvidia NVBIO bioin-
formatics library [9].

• We carry out a fully detailed performance anal-
ysis of the FM-index search algorithm executed
on the GPU, for a wide range of implementa-
tions, indexing schemes and GPU platforms. Our
analysis pinpoints the demanding requirements
posed by random accesses to the memory system,
and the crucial role played by the working set
granularity. We also motivate why the effect of
the optimisations we propose is synergistic, and
why it scales well across very different GPU
systems. We expect such in-detail study should
be useful to optimise most of the applications
using the FM-index on the GPU, in particular
those employing a simple task-parallel strategy.

In detail, section 2 presents the FM-index data struc-
ture, and describes how several enhancements in its
implementation (mainly the k-step strategy and our
alternate-counters layout) lead to better performance.
In section 3 we describe GPUs and the main deter-
minants of their performance, focusing in particular
on the relation between their memory system and the
FM-index pseudo-random memory access pattern. In
section 4 we discuss our proposal of increasing data
locality by the use of a thread-cooperative approach.
In section 5 we benchmark an implementation con-
taining a combination of the optimisations proposed
thus far, and present a comparison with the results
of the FM-index implementation contained in the
NVBIO library. Section 6 discusses related work and,
finally, section 7 reports our conclusions and outlook.

2 FM-INDEX: BASICS AND OPTIMISATIONS

2.1 Basic definitions

2.1.1 Exact pattern matching
Let R[1 . . . n] be a reference string over an alphabet Σ,
where R[i] is the ith symbol of the string. R[i . . . j] is
a substring of R and R[i . . . n] is a suffix of R starting
at position i. Let Q[1 . . .m] denote a query pattern,
with m � n. Solving the exact matching problem is

tantamount to finding all the occurrences of Q into
R (i.e. the positions of all substrings of R that are
equal to Q). Exact pattern search over a large reference
string can be accelerated by making use of indexing
data structures like the suffix array (SA) or the FM-
index; the time spent by creating the index can be
conveniently amortised whenever a large number of
subsequent searches needs to be performed.

2.1.2 The Suffix-Array
The Suffix-Array of R, SA[1 . . . n], stores the starting
positions of all suffixes of R′ in lexicographical order,
R′ being the original string R with an additional
symbol $ appended at the end. By convention $ is
taken to be lexicographically smaller than all other
symbols in Σ. For example, if R′=acaaacatat$ then
SA=[11, 3, 4, 1, 5, 9, 7, 2, 6, 10, 8].

We define the SA interval of a pattern Q as (l, h),
being l and h−1 the ranks of the lexicographically-
lowest and highest suffixes of R that contain Q as
a prefix, respectively (the case l=h indicates that Q
does not occur in R). A binary search algorithm can
compute the SA interval of Q[1 . . .m] using log n steps
of complexity Θ(m), and the h−l+1 occurrences of R
can subsequently be obtained from SA.

2.1.3 Burrows-Wheeler Transform and FM-index
The Burrows-Wheeler Transform [10] of a string R,
denoted BWT, is a permutation of the symbols of
R′. Each value BWT[i] stores the symbol immediately
preceding the ith smallest suffix: BWT[i]:=R′[SA[i]−1].
Hence if R′ = acaaacatat$, then BWT=tca$atcaaaa.

BWT and two auxiliary data structures, C[] and
Occ[], constitute the Ferragina-Manzini or FM-index [11]
of R. C[s] indicates the number of occurrences in BWT
(or R) of symbols that are lexicographically smaller
than symbol s. Occ[s, p] counts the number of times
symbol s appears in BWT[1 . . . p−1].

The FM-index backward search (see Algorithm 1)
computes the SA interval of Q[1 . . .m] using m steps
of complexity Θ(1), and without requiring R or SA.
This is a remarkable improvement on the SA. The
operation of computing LF := C[Q[i]]+Occ[Q[i], l]
is conventionally named LF mapping, standing for
”Last-to-First column mapping” after a fundamental
property of the BWT.

2.1.4 Sampled FM-index
A more realistic implementation of the FM-index dif-
fers from what has been presented so far in several
respects. First of all, one usually stores only a small
fraction of Occ[] [11]: a reduced table ROcc[] holds the
values for positions that are multiple of a sampling
distance d, with ROcc[s, i]=Occ[s, i×d]. The remaining
counters can then be reconstructed from the sampled
counters and BWT. Parameter d introduces a trade-off
between memory footprint and computational com-
plexity: while ROcc[] will be d times smaller than Occ,
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Algorithm 1: Exact pattern search using FM-index

input : FM: FM-index of reference R, Q: query,
n: |R|, m: |Q|

output: (l, h): SA interval of Q in R
begin

(l, h)← (1, n+ 1)
for i = m to 1 do

l ← LF (FM, Q[i], l)
h ← LF (FM, Q[i], h)

end
return (l, h)

end

the m steps of the search algorithm will now have
complexity Θ(d) each.

Second, memory locality can be improved by split-
ting the sampled FM-index into dn/de blocks of d
consecutive BWT symbols (see figure 1.a). In each
block one finds both the bitmap representation of the
symbols, encoded in d×log2 |Σ| bits (named BWT in
the figure), and |Σ| associated counters (ROcc in the
figure). C[] is memoised into ROcc to save operations.
As in most implementations the string terminator $
is not encoded; instead, its position in BWT is stored
and checked whenever an LF mapping is performed.

Third, counters can be arranged into memory-
aligned index entries (see for instance [12]). We select
sampling distances d such that entry sizes are an exact
multiple of 32 Bytes, i.e. the size of a typical cache line.
In particular a DNA string (with 4 bases A, C, G and T)
of up to 4 Gbases will require |Σ|=4 32-bit counters (or
16 Bytes) per entry. Then for instance a 32-Byte entry
will contain 16 Bytes=128 bits=2×64 bits of bitmaps,
that is d=64 encoded symbols. We mention in passing
that production setups might require alphabets with
more than 4 symbols and counters larger than 32
bits; such considerations, however, do not affect the
conclusions presented in this paper.

Algorithm 2 illustrates an LF operation on a sam-
pled FM-index. The count() function can usually be
implemented in terms of the fast bit counting instruc-
tions available on current processors. As an additional

d = sampling 
distance 

BWT:
ROcc: a) Sampled FM-index

b) 2-step FM-index

d

BWT2:
ROcc4:

c) 2-step FM-index +
alternate counters

BWT2:
ROcc2:

Fig. 1: Layouts of our FM-indexing strategies

Algorithm 2: LF operation on sampled FM-index

input : FM: sampled FM-index, s: symbol,
p: position in FM, d: sampling distance

output: p′: new position in FM
begin

idx ← p/d
offset ← p mod d
entry ←FM[idx]
cnt ← count(s, entry.BWT [0. . .offset−1])
return entry.ROcc[s] + cnt

end

optimisation, in our searches we obtain the SA inter-
val for the first 8 symbols of each query via a single
direct access to a table of modest size (256 KB). The
usual search on the FM-index restarts from the 9th

symbol of the query on.

2.2 k-step FM-Index
In [8] we proposed to use a generalised BWT, denoted
k-BWT, that allows backward searches to be per-
formed in steps of k symbols at a time. k-BWT is made
of k strings, each string being the BWT of the text R′

starting at a different offset: the ith position of the jth

string is computed as k-BWT[i][j]:= R′[SA[i]−j]. For
example, the 2-BWT transform of R′ = acaaacatat$ is
{tca$atcaaaa, aactaaa$atc}.

A search step groups k consecutive symbols
s1·s2. . .sk of Q from alphabet Σ and generates a new
symbol s1..k from the alphabet Σk. The k-FM index
includes the bitmap representation of k-BWT and the
vector ROcc[s1..k, i] that counts the number of times
that s1..k appears in k-BWT[1 . . . i × d − 1]. The LF
operation on k-FM is exactly the same as that depicted
in Algorithm 2, but this time using a symbol from a
larger alphabet and larger data structures. A corner
case happens when the last search step involves less
than k symbols, say r. The solution is to aggregate all
the ROcc counters matching with the r initial symbols
of s1..k, and counting occurrences on k-BWT ignoring
the last k-r symbols.

Each entry of k-FM contains |Σ|k ROcc counters and
k·log2|Σ| bitmaps of size d. While the size dedicated to
bitmaps still grows linearly with k, the size dedicated
to counters now grows exponentially with k. Figure
1.b shows the memory layout of a 2-step FM-index.

The computational cost of each search step increases
in a fashion proportional to k: at each step k times
more bits are read from memory and need to be
counted, and the $ symbol needs to be checked in k
positions. However, since the number of search steps
is reduced by k the total amount of computational
work performed per search, and that of data read, re-
mains almost the same. The advantage of the proposal
comes from the fact that in the case of an application
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that is already bounded by random memory accesses
larger blocks can be read from memory almost for
free.

This work analyses the k-step design only for k=2.
For typical mammalian genomic references like the
human one, larger values of k require memory foot-
prints that exceed those typically available on current
GPUs. However, future improvements in the technol-
ogy might make the case k>2 practical.

2.3 Alternate counters

As we will point out in the next section, the per-
formance of random accesses drops for excessively
large memory footprints. Larger sampling distances
reduce the size of the FM-index, but also increase
the computational work. We propose another way
of reducing the memory footprint at the cost of a
small increase in computation, i.e. by dispensing with
half of the counters. More in detail we use alternate
counters as depicted in figure 1.c: odd FM entries
contain ROcc counters for the first half of the symbols,
while even FM entries contain counters for the second
half of the symbols.

Algorithm 3 illustrates an LF operation on a k-step
sampled FM-index with alternate counters. s is an
input symbol that concatenates k original symbols.
Depending on whether the identifier for the index
entry is odd or even, and on whether s belongs to
the first or second half of the symbols, the operation
is performed as usual. Otherwise, the counters of the
next FM entry must be used, and the symbols in the
BWT bitmaps must be counted backward. Counting
forward or backward has the same computational
cost, and the extra access to a contiguous FM entry
is often free, given the performance behaviour of
random accesses.

Algorithm 3: LF operation using alternate counters

input : FM: k-step FM-index, s: symbol, σ: |Σ|k,
p: position in FM, d: sampling distance

output: p′: new position in FM
begin

idx ← p/d
offset ← p mod d
entry ← FM[idx]
if ((s < σ/2) == even(idx)) then

cnt ← count-k(s, entry.BWT[0. . .offset-1])
return entry.ROcc[s mod (σ/2)] + cnt

else
nextEntry ←FM[idx+ 1]
cnt ← count-k(s, entry.BWT[offset. . .d-1])
return nextEntry.ROcc[s mod (σ/2)] - cnt

end
end

Figure 2 compares the memory footprints of the
different indexing schemes so far proposed for several
values of the sampling distance d. More compact in-
dexes come at the expense of additional computation;
however, this is usually not a major concern on the
GPUs, as there the FM-index search algorithms are
typically memory-, and not computation-, bound.

3 DETERMINANTS OF GPU PERFORMANCE

3.1 Background
Since its release in 2006, CUDA has become the
most popular architecture for general-purpose GPU
computing. The CUDA programming model defines a
computation hierarchy formed by kernels, thread blocks,
warps, and threads.

Warps are fixed size sets of threads (currently set
to 32) that advance their execution in a lockstep
synchronous way. They can be considered execution
streams of vector (SIMD) instructions, where a thread
represents a single lane of the vector instruction. Warp
instructions are the smallest scheduled work units,
and usually GPUs execute all the 32 operations in
a warp simultaneously. However, control flow di-
vergence among the threads in a warp causes the
sequential execution of the divergent paths, and hence
it must be avoided.

A thread block contains multiple warps that are exe-
cuted independently. The warp instructions from mul-
tiple blocks are scheduled for execution on a vector
processing unit called streaming multiprocessor (SM).
The excess of parallelism expressed in terms of more
warp instructions than the available computation re-
sources helps alleviating the operation latencies.

The unit of work sent from the CPU to the GPU
is called a kernel. The CPU can launch for parallel
execution several kernels, each being composed by
tens to millions of blocks. The blocks are scheduled
for independent execution on multiple SMs.
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Fig. 2: Memory footprint of our FM-index implemen-
tations for different indexing schemes and sampling
distances d= 64, 192, 448. The left Y-axis represents the
bits/base ratio, while the right Y-axis shows the index
size for the human genome.
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The GPU memory is basically organised as three
logical spaces: global, shared, and local. The global
memory is shared by all threads in a kernel and
has a capacity of several GBs. It is located in the
GDRAM of the GPU and the reuse of accessed data
is exploited via on-chip cache memory. The shared
memory is accessible by all warps belonging to the
same block, while the local memory is private to each
thread and mapped to a set of registers. Registers
have the highest bandwidth and lowest latency. The
shared memory is slower than the registers, whereas
the GDRAM has very high access latency and limited
bandwidth.

3.2 Why the task-parallel approach fails
Independently searching billions of short DNA strings
in a large genomic reference is a problem that can
be solved by resorting to the simplest parallel pro-
gramming pattern, the map pattern [13]: an elemental
function is applied in parallel to all the elements
of the input set, usually producing an output set
with the same shape as the input. A straightforward
map GPU implementation would make each thread
read its input data, perform the elemental function,
and generate the output data. While this task-parallel
approach is very effective on multicore CPUs, it can be
problematic on GPUs due to some of their exclusive
architecture features:

1) Accesses to global memory must be coalesced to
achieve high efficiency. Coalesced accesses occur
when all the threads in a warp address memory
positions belonging to the same memory blocks.

2) The ratio of available on-chip memory per exe-
cuting thread is very small; for example, Nvidia
Kepler and Maxwell architectures provide a ra-
tio of just 24-32 and 128 Bytes per thread for
the shared memory and register storage, respec-
tively.

A task working set is the aggregate active data
set that must be kept in memory during the task
execution. Due to feature (1), a simple task-parallel
approach is inefficient on the GPU when each single
task has to access a relatively large amount of input or
output data. When a GPU task working set becomes
large, on the other hand, due to feature (2) one has
to face two possible performance problems. If the
working set is placed on local registers or the shared
memory, the excessive capacity requirements will ulti-
mately reduce the maximum number of threads being
executed in parallel (defined as the GPU occupancy),
thus exposing the latencies of the computation. If the
working set is placed in global memory, then the on-
chip L2 cache will probably be overflown, and a high
GDRAM traffic generated. While the latter effect is
similar to what happens on the CPU, its relevance
on the GPU is much bigger due to the much bigger
number of threads involved.
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Fig. 3: Memory bandwidth for random accesses on the
Titan GPU (6GB GDRAM)

3.3 Performance of random memory accesses

GPUs provide very high memory access bandwidth
(more than 200 GB/s) for sequential coalesced ac-
cesses along relatively large contiguous portions of
memory. However, performance suffers very much
when a program accesses relatively small data blocks
located at random memory addresses. Unfortunately,
the FM-index search algorithm happens to show a
pseudo-random hash table-like memory access pat-
tern [14]. In fact, the FM-index search can be described
as a loop that successively (1) loads a memory block
from a given memory address, and then (2) calculates
the address of the next needed memory block using
the data just read. The generated set of memory
addresses is fairly unpredictable, and uniformly dis-
tributed along the whole memory footprint.

On the top of that, the empirical GPU memory per-
formance is far from being easily predictable. Figure 3
depicts the peak memory bandwidth achieved by our
best GPU FM-index implementations (with coalesced
accesses) on our test machine, for different block sizes
and index sizes (memory footprint). Two main results
can be read from the plot:

• Large blocks are free: accessing small blocks (32
Bytes) at random positions achieves suboptimal
bandwidth; one can read larger blocks at the
same cost without saturating the memory system.

• Memory footprint size matters: performance drops
heavily as accesses are scattered along a large
memory region; two clear inflection points ex-
ist for memory footprints of 0.5 GB and 2.5
GB. In particular, the 2.5 GB threshold cannot
be easily explained by any architectural feature
documented by the manufacturer, albeit it seems
to appear on several GPUs (see section 5.4). A
plausible explanation for this behavior might be
the undisclosed existence of TLBs on the GPU,
which has been put forth for instance in [15].
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Fig. 4: GPU parallelisation alternatives: a) task-parallel: each thread performs independent LF operations;
b) memory-cooperative: threads cooperate on reading data from index; and c) full-cooperative: threads co-
operate both on reading data and on counting symbol occurrences. Each search step comprises 16 queries;
the case d=448 is considered. We depict all the 32 threads in a warp participating in the execution of 32 LF
operations. Memory read operations are shown in blue, and computation on the data (basically, counting
symbols) in red.

4 DESIGNS FOR GPU FM-INDEX SEARCH

4.1 Task-parallel designs

As mentioned before, most published GPU FM-index
implementations are based on straightforward task-
parallel approaches, where each task corresponds to
searching a different query in a shared FM-index.
Each GPU thread independently processes a task, and
operates on a complete SA interval, both on the l
and h positions. The performance of the task-parallel
scheme is suboptimal due to the 32 threads of a
warp requesting data words from different scattered
memory locations; this access pattern forces the GPU
to re-issue the load instruction for each non-coalesced
memory block, making the L2 cache the main perfor-
mance bottleneck.

As shown in [7] and in the benchmark section, a
simple way of enhancing this design can be achieved
by using two separate threads to operate on each
SA interval; each thread applies LF operations to
either the previous l or the previous h position of
the interval. Most of the time the extrema of the
SA interval of a query are mapped to the same
index entry and hence half of the threads in a warp
are requesting the same data as the other half. This

improves the coalescing process performed by the
GPU when handling the memory requests of a warp.
Figure 4.a provides a representation of the improved
task-parallel execution flow. In the figure, each thread
executes multiple memory load instructions to read
a full index entry from global memory and then
executes the corresponding counting instructions.

In spite of those improvements, the task-parallel
design is bound to become worse when each thread
needs to read a larger memory block, as is the case
for large sampling distances d or the k-step approach.

4.2 Memory-cooperative design

Again along the lines of [7], one can obtain some
further improvement by using thread cooperation in
order to coalesce multiple data requests of differ-
ent distant blocks of memory. Figure 4.b shows the
execution flow of a memory-cooperative design: the
threads in the warp jointly request multiple complete
index entries. The example depicted in the figure uses
a warp of 4×8 threads to retrieve from memory 4
complete entries (of 128 Bytes each) with a single 16-
Byte load instruction (the best performing option), for
a total of 32×16= 512 Bytes. The process iterates (8
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times in the example) to copy the 32 entries from main
memory into shared memory. Finally, each thread
can efficiently access the shared memory to read the
data corresponding to its entry to perform the LF
operation, avoiding the costly non-coalesced accesses
to the GDRAM and L2 cache.

The main drawback of the memory-cooperative
scheme is that all the index entries read by a warp
must fit simultaneously into shared memory. A rel-
atively large sampling distance d coupled with a k-
step strategy puts pressure on the capacity of the
shared memory, and may ultimately lead to a sig-
nificant reduction of thread occupancy. Experiments
shown in the next section reveal a severe performance
degradation for index entries of 128 Bytes or larger.

4.3 Full-cooperative design
Using registers instead of shared memory helps im-
proving the thread occupancy, but is not a scalable so-
lution. Instead, following [7], a much better approach
is to reduce the working set of each thread (and
hence of the whole application) by making threads
also cooperate on the computational part of the algo-
rithm (counting symbol occurrences and generating
the output SA intervals), not only on reading data.
Figure 4.c presents the full-cooperative design: in the
example shown there the threads belonging to a warp
cooperate to read 4 index entries, and then process the
entries to generate 4 outputs. As in [16], this approach
allows adjusting the working set of each thread to
a given target size with the objective of maximising
actual GPU occupation. Comparing figures 4.b and
4.c we notice that the full-cooperative scheme must si-
multaneously keep only four index entries (512 Bytes)
in fast memory instead of 32 (4096 Bytes). In other
words, the granularity of the work assigned to each
warp can be maintained constant even when the entry
size is increased.

Since all cooperative operations proposed in our
design are performed at the warp level, there is no
need of costly explicit synchronisation: through shuf-
fle instructions Kepler and later CUDA architectures
provide support for cooperating at the register level,
which is faster and more efficient than cooperating
using the shared memory. In detail, based on shuffle
instructions we implemented the following commu-
nication patterns:

1) Multicast among threads l and h values
2) Generate a single cooperative memory load
3) Multicast among threads the symbol that must

be applied to an LF operation
4) Parallel symbol counting by all threads
5) Parallel reduction of partial counters by groups

of threads
6) Parallel gather of results.
A drawback of the cooperative design with respect

to a task parallel one is that it increases the amount of

executed instructions. As explained before, however,
the choice of diverting part of the vast amount of
computational power provided by the GPUs into
solutions designed to improve memory performance
happens to pay off in terms of the overall computa-
tional efficiency of the implementation.

5 EXPERIMENTAL RESULTS

In this section we benchmark the exact searches per-
formed with our implementations of the FM-index on
one CPU and several GPU platforms. After presenting
the experimental methodology, we describe the over-
all performance results. Then we present a detailed
performance analysis of all considered solutions (task-
parallel design, thread-cooperative design, 2-step ap-
proach and NVBIO library). Finally we examine how
performance and energetic efficiency vary with the
GPU model.

5.1 Experimental setup and methodology
The experimentation platform is a heterogeneous
CPU-GPU node. The CPU is a dual-socket Intel Xeon
E5-2650, with eight 2-way hyperthreaded cores per
socket providing a memory bandwidth of 102 GB/s.
Unless explicitly noted the GPU results shown in the
following figures were obtained on our best card, a
Nvidia GTX Titan with 2688 Kepler CUDA cores and
6 GB of main memory providing 288 GB/s. In order
to perform comparative GPU analysis (section 5.4) we
also used a Kepler K20 card and a Maxwell GTX750Ti
card. Table 1 gathers all platforms hardware specs as
declared by the manufacturer.

The input of our tests was a set of 10 million input
DNA queries produced with widely used simulation
tools ( [17] and [18]) following standard procedures;
input queries were searched in the human genome
reference GRCh37. Experiments that test the effect of
smaller reference sizes use a trimmed down version of
the same genome. Before starting measurements we
always made sure that the FM-index and the reads
were already residing in the CPU or GPU memory.
Performance results are expressed in terms of the
number of query bases searched in the index per time
unit.

Our multicore CPU implementation uses 16×2
threads (via OpenMP) to exploit hyperthreading, and
memory access is optimised by using prefetching
instructions. The sampling rate d is set to 64 for the
CPU. Our GPU implementations set thread -number
and -block sizes to values providing the highest per-
formance.

The Nvidia NVBIO library [9] contains a suite of
components to build new bioinformatics applications
for massively parallel architectures. It offers meth-
ods for performing exact searches (via the match
primitive) on a sampled FM-index both for GPU
and CPU. On the GPU a different search will be
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TABLE 1: Hardware specifications of the experimentation platforms

Architecture Cores Hardware Frequency Bandwitdh Main Memory TDP
threads (Ghz) (GB/s) (GBytes) (watts)

Nvidia Kepler K20 2nd Kepler 2496 26624 0.71 208 5 225
Nvidia GTX Titan 2nd Kepler 2688 28672 0.84 288 6 250
Nvidia GTX 750Ti 1st Maxwell 640 10240 1.02 88 2 60
2×Intel Xeon E5-2650 Sandy Bridge 16 32 2.00 102 256 190
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Fig. 5: Best FM-index search performance results on
CPU and GPU

executed by each of the threads in a kernel using a
task-parallel approach. For the NVBIO code we have
selected the best-performing FM-index configuration,
with a sampling distance d=64 and a decoupled SA
(partial FM-index). In some tests we also adapted
the GPU implementation of NVBIO to control the
thread occupancy, as explained below. The NVBIO
library version 0.9.7 used in our experiments was
compiled with release-mode settings. Code for CPU
was generated with GCC version 4.8, and code for
GPU with Nvidia compiler v6.0.

5.2 Overall performance results

Figure 5 summarises the main results of our exper-
iments, where we benchmark exact searches in the
human genome (size 3 Gbases). The results presented
correspond to the best-performing configuration for
each implementation, both in the case of NVBIO and
of our proposals (1-step, and 2-step with alternate
counters). For comparison purposes we also include
the timings achieved by the NVBIO code after the
improvements we obtained by tweaking it: configur-
ing NVBIO with a surprisingly low thread occupancy
(9%) improves performance about 1.6× with respect
to a configuration with maximal occupancy. We’ll
show next that this is due to its underlying task-
parallel design.

The figure shows a clear speedup of our best pro-
posals compared to the NVBIO library, both on the
CPU (2.0×) and on the GPU (3.1× when considering

the tweaked NVBIO code, and 4.9× versus the stock
version of NVBIO distributed by NVIDIA).

The 2-step design outperforms the simple FM-index
by 1.8× on the GPU and by 1.4× on the CPU. As
previously discussed, the moderate speedup on the
CPU is due to the higher computational cost of the
new design. However, such increased cost has a very
limited impact on the GPU, where excess computa-
tional power is available to be used.

Finally, our best-performing implementation on the
GPU (which in absolute terms delivers almost 2 Giga-
bases of query searched per second) is 8.1× faster than
our best implementation on the CPU. Interestingly,
this speed-up is higher than the ratio of the raw
bandwidths for sequential memory access delivered
by the two platforms (which is around 3 times faster
on the GPU than on the CPU). This fact confirms that
our implementation strategies aimed at obtaining a
better performance for random memory accesses are
particularly effective on the GPU.

5.3 Performance analysis
5.3.1 Task-parallel versus cooperative schemes
In this section we analyse the inefficiencies of the task-
parallel (section 4.1) and memory-cooperative strate-
gies (section 4.2) as opposed to the full-cooperative
solution (section 4.3). Since the 2-step FM-index im-
plementation exhibits a similar behaviour, we restrict
our analysis to the classical sampled FM-index.

Performance versus number of active threads
In figure 6 we benchmark the cooperative version,
three different implementations of the task-parallel
scheme, and the NVBIO implementation, showing
their performance as a function of the number of
threads used. The naive task-parallel versions assign
two LF operations to each thread, both using 4-Byte
(”naive”) and 16-Byte memory accesses (”naive+16
Bytes”). The task-parallel approach labelled as ”im-
proved” uses 16-Byte memory loads and assigns a
single LF operation per thread, which is a limited
form of cooperation (see section 4.1). In all cases
we use a sampling distance d=64, which is the most
favourable for the task-parallel strategy.

The task-parallel schemes exhibit the problems an-
ticipated in the previous section: performance first
increases with more active threads, and then sud-
denly drops and flattens. The performance peak is
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Fig. 6: Thread scalability for our proposals (sampled
FM-index with d=64) and the Nvidia NVBIO imple-
mentation.

located at some specific, relatively small number of
active threads. The NVBIO implementation, which
also uses a task-parallel approach, suffers from the
same problem. On the other hand the performance
behaviour of our cooperative version is very robust,
scaling gracefully up to 4 thousand active threads.
Eventually, as more threads are executed, a larger
number of requests are issued that end up saturating
the memory system.

The origin of the observed behaviour cannot lie in
the GDRAM system, since searches in small indexes
that fit into the L2 cache and require no data transfer
from GDRAM show the same performance anomaly
(data not shown). Instead the reason is due to the
fact that the data transfer mechanism between the L2
cache and the executing units is strongly optimised
to favour spatial locality and coalesced accesses, and
its scarce temporary storage becomes easily saturated
when many threads compete to request data from the
L2 cache. This is why the implementation issuing 16-
Byte loads performs better than the one issuing 4-Byte
loads. Consistently, the ”improved” version achieves
better results because it issues less load instructions.

Performance versus sampling distance d

Figure 7 shows the performance of the proposed
parallelisation schemes as a function of the sam-
pling distance d, displaying the best results for each
case. The task-parallel scheme is only competitive for
d=64; larger values of d worsen the problem of non-
coalesced accesses. Similarly, the memory-cooperative
scheme does not scale to d>192, as the shared memory
capacity becomes exhausted by the requirements of
too many threads. For d=448, the GPU occupancy
is 12% of the maximum number of active threads,
and there is not enough parallelism to hide memory
latencies. As expected, the full-cooperative design
outperforms the other two in all cases.
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Fig. 8: Performance effect of varying reference size n
and sampling distance d on FM-index.

5.3.2 Performance versus reference size

In this section we analyse the empirical dependence
of the FM-index on the size of the reference (which
in turn stems from the empirical performance of
random memory accesses on the GPU seen in section
3.3). Then we examine how the combination of our
thread-cooperative design (section 4.3) and our k-step
indexing strategy (section 2.2) can lead to the best
performance results shown in section 5.2.

Classical 1-step sampled FM-index

As mentioned in section 2.1.3, in theory the complex-
ity of the FM-index search is independent of index
size n. Quite to the contrary, figure 8 shows that in
practice index size is a relevant parameter for the
classical 1-step sampled FM-index of section 2.1.4:
when the index size grows, performance decreases for
all the values of sampling distance d. This effect is due
to the underlying performance of random memory
accesses on the GPU, and is a direct consequence of
figure 3.
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Fig. 9: Performance effect of varying reference size n and sampling distance d on different indexing schemes

For large indexes (n bigger than 1.5 Gbases) per-
formance reaches saturation due to random memory
accesses, leading to similar results for all the three
compression ratios analysed. In other words, one can
compress the index (as per figure 2) without any
performance penalty, as described in more detail in
[8]. In fact, for some genome sizes a more compressed
index also provides better performance: for instance,
for n=0.7 Gbases, the choice d=192 is better than
d=64. In contrast, for smaller indexes where n is
below 0.5 Gbases the performance is always better
for smaller values of d. This happens because in this
case the search is always computation-bound (data
not shown).

2-step FM-index and alternate counters
The k-step strategy trades reading less blocks for
reading bigger blocks, and also benefits from the
first performance principle seen in section 3.3: large
blocks are free for random-access memory patterns.
Its drawback, though, is a larger memory footprint
that can be detrimental if the index size goes beyond
the empirical limit of 2.3 GB (see fig. 3). For instance,
this is what happens in the case of the human genome
when a 2-step approach with distances d=64 or 192
is used: the indexes thus generated will require 4.5
and 2.5 GB, respectively. However, the use of alternate
counters reduces the index sizes to 3 GB and 2 GB,
respectively, thus restoring the efficiency of the choice
k=2, d=192.

Figure 9 allows us to compare performance for
different reference sizes, sampling distances and FM-
index configurations. According to our previous ob-
servation, the performance drop of the 2-step config-
urations occurs when the index size exceeds the 2.3
GB limit. In addition, the configuration k=2, d=192
and alternate counters turns out to be the best option
for references larger than 1 Gbases and smaller than
3.5 Gbases. For bigger references, the 2-step design
generates an index that is too large. For references
smaller than 1 Gbases the GPU provides higher

memory bandwidths and the execution may become
computation-bound, similar to what happens for the
case k=1; the most effective solution for such reference
sizes is to reduce the compression rate in order to
reduce the computational burden.

5.3.3 Computational cost
Table 2 measures the computational cost of our in-
dexing schemes. The number of executed instructions
collected from our benchmarks confirms that indeed
the computational cost of the cooperative design on
the GPU is significantly (2.5×) higher than that of the
task-parallel design. Also, the cost of compressing the
FM-index (higher d) grows as expected from the def-
inition of section 2.2: doubling the entry size doubles
the number of instructions (and the amount of Bytes
read from memory). Finally, the last two rows of table
2 show that with respect to the 1-step strategy the 2-
step strategy incurs only a moderate computational
overhead (10% to 18%), which is negligible for large
indexes but can be detrimental for short indexes.
Overall, the complete lack of correlation between the
entries of this table and the corresponding perfor-
mance values confirms the predominant role played
by memory effect when exact searches are performed
on the FM-index.

5.4 Comparison of GPU architectures
In this section we want to describe how the perfor-
mance of the proposed algorithms varies on three
different GPUs: two Kepler cards (GTX Titan and
K20c) and a recent Maxwell card (GTX 750Ti).

TABLE 2: Warp instructions executed per query base

Sampling distance d=64 d=192 d=448
Task-parallel FM-index 3.08 6.15 12.14
Full-cooperative FM-index 7.68 15.63 31.43
2-step FM-index 8.49 17.70 35.10
2-step FM-index + alt. counters 8.89 17.10 37.10
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Fig. 10: Performance of random memory accesses for
different GPUs (index entry size is 128 Bytes)

First of all, in figure 10 we extend figure 3 and
compare the random memory access bandwidth of the
three cards. Quite surprisingly the largest bandwidth
is provided by the commodity GTX Titan; the profes-
sional Tesla K20c shows a similar performance profile,
but with about 30% less performance. In particular,
at 2.3 GB the two cards share the same sweet spot
that maximises the product of bandwidth and mem-
ory footprint. The low profile Maxwell card gets its
maximum throughput with 1GB memory footprints.
As its cost and power consumption are only a fraction
of those of the other professional GPUs, this card can
still be appropriate for small genomes, or to process
bigger genomes on multiple cards.

In figure 11 left panel we compare the performance
of the proposed algorithms for the case of the human
genome. The Titan and K20c GPUs show similar per-
formance profiles for the different algorithms; since
the search algorithm is memory-bound, the observed
throughput reflects well the memory bandwidth pro-
file of each GPU depicted in figure 10. On the other
hand, on the GTX 750Ti the human genome can be
indexed only with k=1 due to the smaller memory
size available. In spite of this fact, the performance
is still quite good (only 40% worse than that of the
k=1 version on the Titan, and about 2.5× worse than
that of the best 2-step version on the Titan). However,
when comparing the nominal energetic efficiencies
(figure 11 right panel, obtained from the performances
and table 1) one notes that the GTX 750Ti stands out
among all other platforms in terms of the number
of queried bases/joule. Compared with the CPU, the
GTX 750Ti has 8.5× better energetic efficiency, while
still providing a 2.6× better performance. All the
GPUs considered in this study are far more energeti-
cally efficient than the CPU (from 4.8× to 8.5× if the
best implementations are considered).

We conclude that while the profile that correlates in-
dex footprint size and memory bandwidth for random
accesses varies on different GPUs, it will anyway be

one of the strongest determinants of the performance
of our best FM-index search implementation. Hence
it will be necessary to adapt the indexing scheme to
the target GPU and the reference genome of interest.
Luckily, in our framework performance can be easily
optimized by selecting suitable values for parameters
k and d. We anticipate that this feature of our algo-
rithm is going to be more and more relevant for the
forthcoming GPU systems.

6 RELATED WORK

Over the last few years many CPU short-read map-
pers have been developed, like Bowtie [4], BWA [1]
or GEM [5] to name a few. There have been many
attempts to use GPUs for computational genomics
(reviewed in [19]) and read mapping in particular
(see for instance [20], [21] or [22]). In this context, the
impact of pseudo-random memory access patterns on
the GPU was well described in [14].

Several GPU implementations of the FM-index
have been developed as the core component of fully
fledged short-read mappers. Some examples are pro-
vided by CUSHAW (see [2], [12], [23]), BarraCUDA
[6] and SOAP3 (see [24], [3]). Apart from the fact
that they all use a task parallel approach to query
the index, those implementations are quite sophisti-
cated: for instance, SOAP3-dp [3] is based on a one-
level sampling FM-Index with 64-Bytes aligned block
entries, has an interleaved layout of input sequences
to improve coalescing memory accesses, implements
an overlapped CPU/GPU algorithm and determines
at runtime the sampling rate to take full advantage of
the memory available.

It is important to note that performing meaning-
ful comparisons between a “pure” FM-index imple-
mentation and implementations embedded into more
complicated applications is extremely difficult. When
considering realistic short-read mapping setups, not
only is it very hard to determine the time that
each program spends querying the index; one should
also consider that index access will be coupled with
other calculations, which makes benchmarks inher-
ently blurry. This is why in this paper we do not
directly compare our method with FM-index imple-
mentations used by short-read mapping programs.
However, all such implementations published so far
share the same task-parallel approach, and hence they
are all likely to benefit from the ideas and techniques
presented in this paper.

Finally, the work described here stems from sev-
eral preliminary studies we performed in the past.
We had already proposed and evaluated the k-step
generalisation of the FM-index algorithm for the CPU
in [8]. How to engineer GPU performance by reducing
the working set of the application and selecting the
appropriate granularity of the work assigned to each
thread in a warp had been described in [16], and
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Fig. 11: Performance comparison (left) and energetic efficiency (right) of our thread-cooperative strategy on
different CPU/GPU architectures

we had presented an early version of a cooperative
scheme to reduce the memory footprint of the FM-
index in [7].

7 CONCLUSIONS AND OUTLOOK

Technological improvements in memory performance
are mostly achieved by incrementing the size of the
data transfer bursts between main memory and the
CPU/GPU. While this feature can greatly improve the
performance of algorithms accessing large blocks of
sequential data, it is neutral for algorithms request-
ing relatively small data blocks spread across distant
random locations. In fact we are expecting to see
that, in terms of efficiency, pseudo-random memory
access patterns like those shown by straightforward
FM-index implementations will steadily lag behind
sequential access patterns even in upcoming next-
generation memory systems. In such a scenario, the
performance cost is determined by the total num-
ber of blocks accessed and not by the amount of
data accessed. Therefore, we must favour algorithmic
variations that access similar amounts of data but
concentrated on less and bigger data blocks, even at
the expense of more computation. This is precisely
what our k-step FM-indexing strategy does: it trades
reading less blocks for reading bigger blocks.

On the other hand, the working set granularity
plays a crucial role in GPU performance. In fact,
a simple task-parallel approach to FM-indexing is
inefficient because the addition of more threads will
turn into a larger and larger working set. However,
when threads cooperate on a single task the work-
ing set is distributed among the cooperating threads.
This allows us to efficiently process the bigger index
entries produced by the k-step strategy. The increase
in computational cost due to cooperation has a lim-
ited impact on the GPU, where excess computational
power is available to be used, and overall our solution
turns out to be successfully trading more work for less
memory accesses.

The combination of all those optimisations yields an
easily tunable implementation that is able to process

about 2 Gbases of queries per second on our test plat-
form, being about 8× faster than a comparable multi-
core CPU version, and about 3× to 5× faster than the
FM-index implementation on the GPU provided by
the recently announced Nvidia NVBIO bioinformatics
library.

Some relatively straightforward future develop-
ments of our technique can be foreseen. First, we
plan to build an automatic system that characterises
a target GPU memory system, and then tunes the
FM-indexing strategies in order to achieve a specified
goal (either improving performance or achieving a
given memory limit). Second, we intend to analyse
the performance of our implementation on multi-
GPU platforms, exploring the potential use of several
energy-effective low-end GPUs to replace a high-
end GPU. Finally, we will integrate the techniques
described in the present article into the GEM mapper
[5], leveraging the power of GPUs in order to provide
a hopefully faster and more energy-efficient solution
to the approximate string matching problem.
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sitat Autònoma de Barcelona (UAB) a BSc
degree in computer science in 2011, and
a MSc in high performance computing and
information theory in 2012. He is currently
a PhD student in high performance comput-
ing at the UAB, working to implement on
GPUs several algorithms that are the building
blocks for a number of bioinformatic appli-
cations. His research interests include com-
puter architecture and parallel optimizations

for heterogeneous HPC systems.

Santiago Marco Sola received his BSc de-
gree in computer engineering from the Uni-
versidad de Zaragoza in 2010, and a MSc
degree in computer science from the Uni-
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