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Abstract 
 
 
We develop an analytical model capable of decomposing both intertemporal and multilateral 
cost variation.  We begin by attributing cost variation to a price effect and a quantity effect.  
We then decompose the quantity effect into a productivity effect and an activity effect.  The 
productivity effect in turn decomposes into a cost efficiency effect and, in the intertemporal 
context, a technical change effect.  We also show how the intertemporal and multilateral cost 
decompositions can be implemented, using linear programming techniques.  These 
techniques offer certain advantages over conventional econometric techniques whenever a 
substantial portion of cost variation is due to variation in cost efficiency.  We illustrate the 
two cost decompositions with a pair of benchmarking exercises based on a panel of 93 US 
electric power generating companies, in which variation in cost efficiency does play a key 
role. 
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COST AND PRODUCTIVITY* 
 
1.  Introduction 
 
 Operating cost varies through time and across producers of even a reasonably 
homogeneous product.  In such circumstances it is important for managers to be able to 
attribute both intertemporal and multilateral cost variation to its causal factors.  In this paper 
we develop an analytical model capable of attributing cost variation to a price effect, which 
identifies cost variation attributable exclusively to variation in input prices, and a quantity 
effect, which identifies cost variation attributable solely to variation in input use.  We 
continue by decomposing the quantity effect into an activity effect, which identifies cost 
variation attributable to variation in cost-efficient input use with given technology, and a 
productivity effect, which identifies cost variation attributable to variation in cost efficiency 
and, in an intertemporal context, to variation in the structure of production technology.  
Finally we decompose variation in cost efficiency into variation in productive efficiency and 
variation in the efficiency with which inputs are allocated in light of their prices.  Thus we 
decompose cost variation into five sources in the intertemporal context, and into four sources 
in the multilateral context.  These decompositions provide a useful framework within which 
to conduct a cost-based benchmarking exercise, either through time or across producers. 
 
 Our cost decomposition model is new, although it does have precedents.  It can be 
considered as an attempt to merge the concept of cost variance analysis in the cost accounting 
literature with the concept of a cost frontier in the economics literature.  In the economics 
literature both neoclassical theory and modern duality theory express minimum cost as a 
function of output quantities, input prices, and perhaps also a time trend.  Thus the potential 
is there to use economic theory to enrich cost variance analysis.  Indeed econometric models 
based on this framework, from Nerlove (1963) to the present day, have attributed cost 
variation to input price variation, scale economies and technical change.  However these 
models have imposed a symmetric error structure on the equation(s) to be estimated, and have 
been unable to incorporate variation in cost efficiency as a source of cost variation.  More 
recent stochastic cost frontier models, e.g., Greene (1980) and Stevenson (1980), incorporate 
a composed error structure and do allow for variation in cost efficiency.  However apart from 
the restrictive Cobb-Douglas case of Schmidt and Lovell (1979), these stochastic cost frontier 
models have been unable to decompose cost efficiency into its technical and allocative 
components, the purely analytical results of Kumbhakar (1997) notwithstanding.  Fortunately 
an older linear programming - based approach initiated by Afriat (1972) and Hanoch and 
Rothschild (1972) is capable of generating a complete cost variation decomposition.  
However it was not used for this purpose by these authors, who developed linear programs to 
test consistency of data with various regularity conditions and behavioral hypotheses.  Our 
objective in this paper is to exploit economic theory, and to apply linear programming 
techniques, to achieve an empirically tractable attribution of cost variation to its economic 
sources. 
 
 The paper is organized as follows.  In Section 2 we summarize a standard analytical 
framework of production and cost.  In Section 3 we exploit this analytical framework to 
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decompose intertemporal cost change into five sources.  In Section 4 we show how to 
implement the intertemporal cost change decomposition, using linear programming 
techniques.  In Section 5 we show how the analysis developed in Sections 3 and 4 simplifies 
in the multilateral context, and we show how the multilateral analysis can be employed to 
conduct a benchmarking exercise against the performance of a target producer.  In Section 6 
we illustrate the cost decomposition techniques with a pair of benchmarking exercises based 
on a panel of 93 US electric power generating companies.  Their costs vary substantially, 
both through time and across companies, and we are interested in decomposing these cost 
variations into their sources. 
 
 
2.  The Analytical Framework 
 
 We consider a producer using N resources represented by the input quantity vector x = 
(x1,...,xN) ≥ 0 to produce M products represented by the output quantity vector y = (y1,...,yM) ≥ 
0.  The producer pays resource prices represented by the input price vector w = (w1,...,wN) > 
0. The producer’s observed cost in period t is given by ct = wtTxt = Σn

N
=1wn

txn
t.  Since we are 

interested in decomposing cost change from one period to the next, (ct+1 - ct), we are not 
concerned with the revenue side of the producer’s activities, and so we ignore the prices at 
which it sells its products. 
 
 We begin by defining the structure of period t technology in terms of its input sets  
 
  Lt(yt) = {x t: (xt can produce yt},     t = 1,...,T.                     (1) 
       
Input sets are assumed to be closed and convex, and to satisfy strong disposability [xt ∈ Lt(yt) 
⇒ x’ t ∈ Lt(yt), x’t ≥ xt].  The lower boundaries of input sets are their input isoquants, which 
are defined as 
 
  It(yt) = {x t: xt ∈ Lt(yt), λxt ∉ Lt(yt), λ < 1},     t = 1,...,T.                  (2) 
 
Although an input vector xt must belong to its contemporaneous input set Lt(yt), it need not 
necessarily belong to its input isoquant It(yt).  The Malmquist (1953) - Shephard (1953) input 
distance function provides a radial measure of the distance from an input vector to an input 
isoquant, and is defined as 
 
 Dt(yt,xt) = max {θ: xt/θ ∈ Lt(yt)},      t = 1,...,T.                                  (3) 
 
Dt(yt,xt) ≥ 1 since xt ∈ Lt(yt), and Dt(yt,xt) = 1 ⇔ xt ∈ It(yt).  Dual to an input distance 
function is a cost frontier, which describes the minimum cost required to produce output 
vector yt with input price vector wt and with period t technology in place.  The cost frontier is 
defined as 
 
ct(yt,wt)  =  minx {(w

tTx): x ∈ Lt(yt)}  =  minx {(w
tTx): Dt(yt,x) ≥ 1},     t = 1,...,T.    (4) 

                                 
ct(yt,wt) is nondecreasing in yt, and nondecreasing, concave and homogeneous of degree +1 in 
wt.  Since ct(yt,wt) is defined as a minimum concept, ct ≥ ct(yt,wt), with equality holding if, 
and only if, the producer is both technically and allocatively efficient. 
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 We also use an adjacent-period input set Lt+1(yt), which describes the set of input 
vectors capable of producing output vector yt with period t+1 technology, its adjacent-period 
isoquant It+1(yt), and the corresponding adjacent-period input distance function Dt+1(yt,xt).  
However since (yt,xt) may not be feasible with period t+1 technology, xt ∉ Lt+1(yt) is possible, 
and it follows that Dt+1(yt,xt) >=< 1.  Finally, an adjacent period cost frontier dual to the 
adjacent period input distance function is defined as ct+1(yt,w)  =  minx {(w

Tx): x ∈ Lt+1(yt)}  
=  minx {(w Tx): Dt+1(yt,x) ≥ 1}, where w can be either wt or wt+1.  Each of these 
adjacent-period representations of technology is defined in a similar manner to the 
contemporaneous representations in (1) - (4). 
 
 
3.  The Intertemporal Cost Change Decomposition 
 
 We are now prepared to decompose a producer’s cost change between period t and 
period t+1 into five distinct sources.  We begin by decomposing cost change resulting from a 
movement from (xt,wt,yt) to (xt+1,wt+1,yt+1) into two basic components:  a price effect 
reflecting the impact on cost of changes in input prices from wt to wt+1, holding input usage 
fixed, and a quantity effect reflecting the impact on cost of changes in input usage and output 
production from (xt,yt) to (xt+1,yt+1), holding input prices fixed.  A preliminary issue concerns 
how to hold input usage fixed in the price effect and how to hold input prices fixed in the 
quantity effect. 
 
 One possible decomposition of cost change into a price effect and a quantity effect is 
 
  ct+1 - ct = (wt+1 - wt)Txt+1 + wtT(xt+1 - xt),                (5) 
 
and another is 
 
  ct+1 - ct = (wt+1 - wt)Txt + wt+1T(xt+1 - xt).      (6) 
 
In (5) the price effect is a Paasche type of input price index (fixing input usage at xt+1) and the 
quantity effect is a Laspeyres type of input quantity index (fixing input prices at wt), both 
expressed in difference rather than ratio form.  The roles are reversed in (6), in which the 
price effect is a Laspeyres type of input price index (fixing input usage at xt) and the quantity 
effect is a Paasche type of input quantity index (fixing input prices at wt+1), both expressed in 
difference rather than ratio form.  In light of the well-known deficiencies of Paasche and 
Laspeyres types of indexes, Bennet (1920) recommended a decomposition of cost change by 
means of the arithmetic mean of (5) and (6).  This procedure generates Fisher type arithmetic 
mean input usage weights in the price index and Fisher type arithmetic mean input price 
weights in the quantity index.  More recently Diewert (1998) has shown that Bennet's input 
price and quantity indexes satisfy a number of desirable axioms, not all of which are satisfied 
by (5) or (6).1  Consequently we base our cost change decomposition on Bennet's approach, 
which leads to 
 
Proposition 1: The cost change between period t and period t+1 decomposes as 
 
  ct+1 - ct  =  wt+1Txt+1  -  wtTxt   
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   =  (1/2)(xt + xt+1)T(wt+1 - wt)                                    price effect 
 
  +  (1/2)(wt + wt+1)T(xt+1 - xt)                            quantity effect 
 

Both the price effect and the quantity effect can be computed directly from the data, 
with no analysis being required.  However a decomposition of the quantity effect requires 
economic analysis.  We begin by decomposing the quantity effect into two components: a 
productivity effect reflecting the combined impact on cost of a change in the cost efficiency of 
resource use and of a change in the structure of production technology, and an activity effect 
reflecting the impact on cost of a change in the scale of the producer’s operation.   
 
Proposition 2: The quantity effect between period t and period t+1 decomposes as 
 
 (1/2)(wt + wt+1)T(xt+1 - xt)  = 
 
  (1/2)(wt + wt+1)T[(x t+1 - xB)  -  (xt - xE)]                 productivity effect 
 
        +  (1/2)(wt + wt+1)T(xB - xE)                                   activity effect 
 
 Figure 1 illustrates the decomposition of the quantity effect into a productivity effect 
and an activity effect.  Two cost frontiers are drawn, with ct+1(y,wt+1) located beneath 
ct(y,wt), on the assumptions that technical progress has occurred between period t and period 
t+1, and that the impact of wt+1 ≥ wt does not swamp the impact of technical progress, 
although neither of these assumptions is necessary in the analysis.  Observed period t cost ct 
> ct(y,wt), and observed period t+1 cost ct+1 > ct+1(y,wt+1), the assumption being that resource 
use is inefficient in each period.  Finally, eliminating the price effect in order to focus on the 
quantity effect leads to an upward displacement of ct to c*t = (1/2)(xt + xt+1)Twt and to a 
downward displacement of ct+1 to c*t+1 = (1/2)(xt + xt+1)Twt+1, the assumption being that xt+1 ≥ 
xt. 
 

With the price effect out of the way, we can focus on decomposing the quantity effect.  
We begin by noting that xB is a cost minimizing input vector for (yt+1,wt+1) and period t+1 
technology, and so xB = ∇wt+1c

t+1(yt+1,wt+1).  Similarly xE is a cost minimizing input vector 
for (yt,wt+1) and period t+1 technology, and so xE = ∇wt+1c

t+1(yt,wt+1).  Consequently the 
productivity effect measures the excess cost of operating above the period t+1 cost frontier 
ct+1(y,wt+1) in period t+1, less the excess cost of operating above the period t+1 cost frontier 
ct+1(y,wt+1) in period t, with both excess costs being evaluated at the arithmetic mean of 
period t and period t+1 input prices.  The productivity effect contributes to a reduction (an 
increase) in cost from period t to period t+1 according as [(1/2)(wt + wt+1)T(xt - xE)] > (<) 
[(1/2)(wt + wt+1)T(xt+1 - xB)].   
 

The activity effect measures the cost change between period t and period t+1 resulting 
from a change in the scale of the business from xE ∈ It+1(yt) to xB ∈ It+1(yt+1), with both excess 
costs being evaluated at the arithmetic mean of period t and period t+1 input prices.  The 
activity effect contributes to a reduction (an increase) in cost from period t to period t+1 
according as [(1/2)(wt + wt+1)T(xB - xE)] < (>) 0.2 

 



Grifell-Tatjé, E. and C.A.K. Lovell (2000), “Cost and Productivity,” Managerial and 
Decision Economics vol. 21, issue 1, pages 19 – 30. 
DOI: 10.1002/1099-1468(200001/02)21:1<19::AID-MDE962>3.0.CO;2-7 

 5

 It should be apparent from Figure 1 that the productivity effect has cost efficiency 
change and technical change components.  Accordingly we next decompose the productivity 
effect into a technical efficiency effect, an allocative efficiency effect and a technical change 
effect. 
 
 
Proposition 3: The productivity effect between period t and period t+1 decomposes as 
 
 (1/2)(wt + wt+1)T[(x t+1 - xB)  -  (xt - xE)]  = 
 
           (1/2)(wt + wt+1)T[(x t+1 - xD) - (xt - xC)]           technical efficiency effect 
 
 +  (1/2)(wt + wt+1)T[(xD - xB)  -  (xC - xA)]            allocative efficiency effect 
 
 +  (1/2)(wt + wt+1)T(xE - xA)                               technical change effect 
 
 The decomposition of the productivity effect is illustrated in Figure 2.  xt is 
technically inefficient, since xC = θtxt ∈ It(yt), where θt = [Dt(yt,xt)]-1 < 1.  In addition, xC is 
allocatively inefficient for wt, employing too much x1 and too little x2, relative to the 
cost-efficient input vector xA.  xt+1 is also technically inefficient, since xD = θt+1xt+1 ∈ 
It+1(yt+1), where θt+1 = [Dt+1(yt+1,xt+1)]-1 < 1.  In addition, xD is allocatively inefficient for wt+1, 
employing too much x1 and too little x2 relative to the cost-efficient input vector xB.  The 
technical efficiency effect measures the impact on cost (evaluated at the arithmetic mean of 
period t and period t+1 input prices) of any change in technical efficiency between period t 
and period t+1, and appears in Figure 2 and the second line of Proposition 3 as (1/2)(wt + 
wt+1)T[(x t+1 - xD) - (xt - xC)].  The allocative efficiency effect measures the impact on cost 
(evaluated at the arithmetic mean of period t and period t+1 input prices) of any change in 
allocative efficiency between period t and period t+1, and appears in Figure 2 and the third 
line of Proposition 3 as (1/2)(wt + wt+1)T[(xD - xB) - (xC - xA)].  The sum of the two efficiency 
effects appears in Figure 1 as [(xt+1 - xB) - (xt - xA)], both differences being evaluated at the 
arithmetic mean of period t and period t+1 input prices. 
 
 We now turn to the impact on cost of technical change.  In Figure 2 the cost-efficient 
input vector xA ∈ It(yt), and so wtTxA = ct(yt,wt).  The cost-efficient input vector xE ∈ It+1(yt), 
and so wt+1TxE = ct+1(yt,wt+1).  Thus the movement from xA to xE represents the impact on 
cost of technical progress.  Since xE is not necessarily a radial contraction of xA, technical 
progress is not restricted to be input-neutral, and the nature of the bias can be determined by 
comparing the input mix at xE with the input mix at xA.  In addition, since xA and xE are 
cost-efficient for different input price vectors, we evaluate the cost saving impact of technical 
progress at the arithmetic mean of period t and period t+1 input prices.  Thus the technical 
change effect appears in Figures 1 and 2 and the final line of Proposition 3 as (1/2)(wt + 
wt+1)T(xE - xA).   
 
 
4.  Implementing the Intertemporal Cost Change Decomposition 
  
 The measurement of intertemporal cost change requires information on (yt,xt,wt) and 
(yt+1,xt+1,wt+1), and all of these data are (potentially) observable.  However the decomposition 
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of intertemporal cost change requires that the unobserved input quantity vectors 
(xA,xB,xC,xD,xE) be identified so that Propositions 2 and 3 can be implemented.  We now 
show how to use linear programming techniques to calculate each of the unobserved input 
quantity vectors.  We assume that we have a sample consisting of I producers, indexed i = 
1,...,I, each being observed over a sequence of T time periods, indexed t = 1,...,T.  In the 
following analysis we decompose cost change for producer “o”, where “o” is a member of I.3 
 
 Consider first the calculation of the technical efficiency effect in Proposition 3.  This 
requires the identification of the input quantity vectors xC in period t and xD in period t+1.  
Since xC is a radial contraction of xt, xC = θCxt = xt/Dt(yt,xt), with θC ≤ 1.  The scalar θC is 
determined as the solution to the linear programming problem  
 
  [Dt(yot,xot)]-1  =   min   θC                                           (7) 

        θC,λt 
 
           subject to     θCxn

ot  ≥  Σi
I
=1λi

txn
it,     n = 1,...,N 

 
                     Σi

I
=1λi

tym
it

  ≥  ym
ot,     m = 1,...,M 

 
           λi

t  ≥  0,     i = 1,...,I 
 
               Σi

I
=1λi

t  =  1. 
 
The constraints of this program guarantee that xoC = θCxot ∈ It(yot), as it does in Figure 2.   
 
 Since xD is a radial contraction of xt+1, xD = θDxt+1 = xt+1/Dt+1(yt+1,xt+1), with θD ≤ 1.  
The scalar θD is determined as the solution to a linear programming problem identical in form 
to (7), with period t data (xit,yit,xot,yot) being replaced with period t+1 data 
(xit+1,yit+1,xot+1,yot+1).  The constraints of this program guarantee that xoD = θDxot+1 ∈ 
It+1(yot+1), as it does in Figure 2.     
 
 Consider next the calculation of the allocative efficiency effect in Proposition 3.  This 
requires the indentification of the input quantity vectors xA in period t and xB in period t+1.  
Since xA minimizes the cost of producing outputs yt when input prices are wt and period t 
technology is in place, xA can be identified as the solution to the linear programming problem 
 
  ct(yot,wot)  =  min wotTx                                               (8) 
                                            x,λt 
  

  subject to        xn  ≥  Σi
I
=1λi

txn
it,     n = 1,...,N 

 
             Σi

I
=1λi

tym
it  ≥  ym

ot,     m = 1,...,M 
 
              λi

t  ≥  0,     i = 1,...,I 
 
        Σi

I
=1λi

t  =  1. 
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The constraints of this program guarantee that wotTxoA = ct(yot,wot), as it does in Figures 1 and 
2.   
 
 Since xB minimizes the cost of producing outputs yt+1 when input prices are wt+1 and 
period t+1 technology is in place, xB can be identified as the solution to a linear programming 
problem identical in form to (8), with period t data (xit,yit,yot,wot) being replaced with period 
t+1 data (xit+1,yit+1,yot+1,wot+1).  The constraints of this program guarantee that wot+1TxoB = 
ct+1(yot+1,wot+1), as it does in Figures 1 and 2. 
 
 Finally we identify the input quantity vector xE which, together with xB and xA, 
enables us to identify both the activity effect in Proposition 2 and the technical change effect 
in Proposition 3.  Since xE minimizes the cost of producing output yt when input prices are 
wt+1 and period t+1 technology is in place, xE can be identified as the solution to a linear 
programming problem identical in form to (8), with period t data (xit,yit,yot,wot) being replaced 
with mixed-period data (xit+1,yit+1,yot,wot+1).  The constraints of this program guarantee that 
wot+1TxE = ct+1(yot,wot+1), as it does in Figures 1 and 2. 
 
 Solving each of the five linear programming problems of forms (7) and (8) I times, 
once for each producer in the sample, generates all the information required to identify the 
five unobserved input quantity vectors (xA,xB,xC,xD,xE).  When combined with the observed 
input quantity vectors (xt,xt+1), and with the observed input price vectors (wt,wt+1), the 
observed cost change (ct+1 - ct) can be decomposed into its five sources by means of 
Propositions 1-3.    
 
 
5.  Conducting a Cross - Sectional Benchmarking Exercise 
 
 Businesses frequently evaluate their performance by benchmarking against some 
target performance.  Although such a benchmarking exercise is typically conducted on the 
basis of key financial ratios, such as return on assets, it can perhaps more usefully be 
conducted on the basis of the economic determinants, rather than the financial consequences, 
of performance variation.  We now show how the techniques developed in Sections 3 and 4 
can be adapted for use in a cross-sectional framework for the purpose of conducting a 
benchmarking exercise. 
 
 Suppose that we observe a sample of I producers, indexed i = 1,...,I as before, but 
during a single time period, so we dispense with the time index.  The previous cost change 
decomposition exercise now becomes a cost gap or cost variance decomposition exercise, the 
objective being to decompose the gap between the cost of a producer, co, and the cost of a 
benchmark target, c*.  Although the benchmark can be determined in a number of ways, we 
consider two possibilities.  The first possibility is to define the benchmark as the producer 
having the lowest unit cost (c/y) in the sample.  We refer to this model as the “low-cost 
benchmark” model.  This model is easy to implement in the single output case, although it 
requires the construction of an output quantity index in the multiple output case.  The second 
possibility is to define the benchmark as a producer identified as being cost-efficient, being 
located on rather than above the cost frontier c(y,w).  We refer to this model as the 
“cost-efficient benchmark” model.  This model is easy to implement even in the multiple 
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output case.  In both models we associate the benchmarking producer “o” with period t, and 
the benchmark target producer “*” with period t+1, in Figures 1 and 2. 
 
5.1  The Low-Cost Benchmark Model 
 
 As in Section 3, the cost frontier c(y,w) provides an analytical foundation for the cost 
gap analysis.  In constrast to Section 3, we have only one time period and one cost frontier, 
and so the technical change effect disappears with the time index.4  In Figures 1 and 2 the 
absence of technical change means that xE = xA.  The benchmarking producer has observed 
cost woTxo ≥ c(yo,wo), and the low-cost benchmark has observed cost w*Tx* ≥ c(y*,w*).  The 
low-cost benchmark is not necessarily cost-efficient, since its low cost may be due to 
relatively low input prices.  We are interested in the cost gap co - c* = (woTxo - w*Tx*).  
Adaptation of Propositions 1 - 3 suggests that the cost gap may be due to any of four factors: 
 
 i) the price effect [(1/2)(xo + x*)T(w* - wo)] measures that part of the cost gap 
attributable to input price differences between the two producers; 
   
 ii) the technical efficiency effect [(1/2)(wo + w*)T(x* - xD) - (1/2)(wo + w*)T(xo - xC)] 
measures that part of the cost gap attributable to the difference between the technical 
inefficiency of the two producers; 
 
 iii) the allocative efficiency effect [(1/2)(wo + w*)T(xD - xB) - (1/2)(wo + w*)T(xC - xA)] 
measures that part of the cost gap attributable to the difference between the allocative 
inefficiency of the two producers; 
 
 iv) the activity effect [(1/2)(wo + w*)T(xB - xA)] measures that part of the cost gap 
attributable to difference between the cost-efficient size of the two producers. 
 
 The cost gap analysis is based on observed data (yo,xo,wo) and (y*,x*,w*), and also on 
unobserved data (xD,xB) and (xC,xA).  The four unobserved input quantity vectors can be 
retrieved by solving a pair of atemporal versions of the two linear programming problems (7) 
and (8) in Section 4.  The corresponding unobserved costs are then obtained by multiplying 
each respective input quantity vector by (1/2)(wo + w*).  In this manner a complete 
decomposition of the cost gap is obtained, for each benchmarking producer and the low-cost 
benchmark. 
 
5.2  The Cost-Efficient Benchmark Model 
 
 The analysis simplifies considerably when the benchmark is cost-efficient.  This is 
because, as can readily be determined from Figures 1 and 2, the benchmark has x* = xD = xB.  
In this case the price effect is unchanged from its version in Section 5.1, but the technical 
efficiency effect becomes [(1/2)(wo + w*)T(xo - xC)], the allocative efficiency effect becomes 
[(1/2)(wo + w*)T(xC - xA)], and the activity effect becomes [(1/2)(wo + w*)T(x* - xA)].  In this 
model the observed data remain (yo,xo,wo) and (y*,x*,w*), but the unobserved data which must 
be retrieved reduce to (xC,xA).  Consequently only two linear programming problems need to 
be solved: atemporal versions of (7) and (8).  Substituting the solutions to these problems 
into the four effects generates a complete decomposition of the cost gap between each 
benchmarking producer and the cost-efficient benchmark. 
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6.  An Empirical Application to US Electric Power Generation 
 
 Our data set consists of a balanced panel of 93 problem-free investor-owned electric 
power generating companies observed in 1977, 1982, 1987 and 1992.  The variables include 
total generating cost (current dollars), a single output (net volume, in Mwh, of electricity 
generated), and quantities and nominal prices of three inputs, labor, fuel and capital.  The 
quantity of labor is the total (full time plus one half of part time) number of employees 
engaged in generation activities, and the price of labor is calculated as the ratio of total labor 
cost to the total number of employees.  The quantity of fuel is measured in MBTU of coal, 
oil, natural gas and nuclear fuel, and the price of fuel is the delivered cost (in cents) per 
MBTU.  The quantity and price of capital are measured as multilateral Törnqvist indexes of 
the quantities and prices of capital services employed in various generation activities. 
 
 The data underlying the analysis are summarized in Table 1, which reports annual 
means and standard deviations of all variables used in the analysis.  The first striking feature 
of the data is the pattern of intertemporal variation in mean generating cost.  Mean 
generating cost more than doubled from 1977 to 1982, despite a mere one percent increase in 
mean electricity generation.  Mean generating cost increases moderated from 1982 to 1987 
(23%), and from 1987 to 1992 (5%), and were much more in line with mean electricity 
generation increases during these periods (17% and 7% respectively).  There is thus an 
intertemporal cost variation story to be told, and not all of the explanation lies with variation 
in mean fuel prices, which varied wildly as a consequence of both political and economic 
developments in international petroleum markets (the oil price shocks of the 1970s), and 
domestic regulatory developments (the 1977 Amendment to the 1970 Clean Air Act).   
 
 The second striking feature of the data is the large variation in generating cost across 
firms within each year.  In each of the four years of the panel the standard deviation of 
generating cost is virtually the same as the mean generating cost itself.  It appears that much 
of this cost variation is attributable to size variation, since in each year the standard deviations 
of output and the three inputs are nearly as large as the means of output and the three inputs, 
although there remains plenty of room for alternative explanations, and thus for interesting 
benchmarking exercises. 
 
 The third feature of the data is the considerable amount of input substitution that has 
occurred in the industry.  The mean capital/fuel and capital/labor ratios both increased over 
six-fold during the period, whereas the mean labor/fuel ratio, after increasing by 15% from 
1977 to 1982, declined thereafter and increased by barely four percent during the entire 
period.  The extent to which these substitution patterns were driven by input price changes or 
by changing regulatory requirements is a matter of speculation, although our cost 
decomposition will shed light on the question. 
 
6.1  The Intertemporal Cost Change Decomposition 
 
 We begin by running the data through the sequence of five linear programming 
problems specified in (7) and (8).  We then insert calculated values of the unobserved input 
quantity vectors (xA,xB,xC,xD,xE) into the intertemporal cost change decompositions in 
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Propositions 1 - 3.  This enables us to decompose intertemporal cost change for each utility.  
Means and standard deviations of calculated cost change and its sources appear in Table 2. 
 
 Between 1977 and 1982 cost increased by an average of $344.2 million, or by an 
average of 150%.  Three effects contributed the lion’s share of the mean cost increase.  Over 
40% of the cost increase was attributable to the price effect, which resulted from a 64% 
increase in the input price index.  Nearly one third of the cost increase was attributable to the 
technical change effect, which resulted from a 48% increase in cost-efficient input usage (xA - 
xE).  The technical change effect provides a measure of the cost of a deterioration in best 
practice performance.  This deterioration was likely a combination of rate-base padding in 
response to rate of return regulation and investment in pollution abatement capital equipment 
in response to environmental regulation.5  As a result, the mean capital input nearly 
quintupled from 1977 to 1982.  Nearly one fourth of the cost increase was attributable to the 
technical efficiency effect, which resulted from a 35% increase in the divergence between 
actual and technically efficient input use [(xt+1 - xD) - (xt - xC)].6  The allocative efficiency 
effect made a very small contribution to the cost increase; this is evident from Table 1, where 
it is clear that utilities substituted capital for fuel and, to a lesser extent, for labor, in response 
to changing input price ratios.7  The activity effect made virtually no contribution to the cost 
increase; this can be explained by the fact that mean output barely changed, and so 
cost-efficient input use (xB - xE) barely changed (despite the fact that actual input use 
increased substantially). 
 
 The nature of the cost change and its decomposition changed dramatically during the 
second and third periods.  Cost increases abated, due primarily to declines in the input price 
index driven by substantial declines in fuel prices.  Mean cost efficiency also improved 
between 1982 and 1987, and declined only marginally between 1987 and 1992.8  The 
primary driver of cost increases in the two latter periods was the activity effect, reflecting 
increases in cost-efficient input usage in response to steady increases in electricity demand.  
Finally, the technical change effect contributed to cost increases through 1987, reflecting the 
continuing installation of costly pollution abatement capital equipment, although this process 
seems to have been completed by 1987.9 
 
6.2  A Pair of Multilateral Benchmarking Exercises 
 
 We now conduct a pair of benchmarking exercises using 1992 data, one against the 
low-cost utility and the other against a cost-efficient utility.  The former exercise requires 
identifying the low-cost utility, which in 1992 was Kentucky Power, with an average 
generating cost of $18/Mwh, less than half the sample mean of $43/Mwh.  We then ran the 
1992 data through four linear programming problems (7) and (8) and inserted the solutions 
into Propositions 1 - 3 to obtain a decomposition of the cost gap between each benchmarking 
utility and the low-cost benchmark.  Results of this exercise are summarized in Table 3, 
which reports means and standard deviations of the cost gap and its four components.   
 
 Somewhat surprisingly, the low-cost utility serves as a useful benchmark.  Less than 
20% of the enormous mean cost gap of $619 million can be attributed to the price effect; the 
benchmark is low-cost only partly because it faces relatively low input prices.  The main 
reason the benchmark is low-cost is its relatively small size; 42% of the mean cost gap is 
attributable to the activity effect.  Although benchmarking utilities can learn nothing of value 



Grifell-Tatjé, E. and C.A.K. Lovell (2000), “Cost and Productivity,” Managerial and 
Decision Economics vol. 21, issue 1, pages 19 – 30. 
DOI: 10.1002/1099-1468(200001/02)21:1<19::AID-MDE962>3.0.CO;2-7 

 11

from the benchmark’s small size, and little from its favorable input price structure, the 
benchmark’s superior cost efficiency does provide ample opportunity for learning.  Nearly 
40% of the mean cost gap is attributable to the technical and allocative efficiency effects; 
since these effects are presumably under the control of management, significant cost savings 
are available to benchmarking utilities. 
 
 The latter exercise requires identifying a cost-efficient utility against which to 
benchmark.  Program (8) identified a total of six cost-efficient utilities in 1992, and so we 
somewhat arbitrarily selected the largest, Texas Utilities Electric, as the cost-efficient 
benchmark.  We then ran the 1992 data through the two linear programming problems (7) 
and (8) and inserted the solutions into Propositions 1 - 3 to obtain a decomposition of the cost 
gap between each benchmarking utility and the cost-efficient benchmark.  The results of this 
exercise are summarized in Table 4, which reports means and standard deviations of the cost 
gap and its four components. 
 
 The cost-efficient utility also serves as a useful benchmark, but in a different way.  
The large negative mean cost gap is due primarily to the fact that the benchmark is large, and 
partly to the fact that it faces relatively high input prices.  Once again, benchmarking utilities 
have little if anything to learn from these components of the mean cost gap.  However the 
unfavorable mean cost efficiency effect is over four times as large as the favorable mean price 
effect, once again suggesting ample opportunity for benchmarking utilities to find significant 
cost savings through waste elimination and resource reallocation.   
 
 
7.  Summary and Conclusions 
 
 We have developed a theory-based decomposition of variation in operating cost, both 
through time and across producers.  This decomposition draws from, and extends, 
approaches developed in the linear programming literature.  A virtue of this decomposition is 
that it distinguishes sources of cost variation which are arguably beyond management’s 
control from those which are deserving of management’s attention.  The decomposition is 
based on observed and unobserved input quantity vectors, and we have shown how to derive 
the unobserved input quantity vectors from the observed input quantity vectors. 
 
 We have applied our cost decomposition analysis to a panel of US electric power 
generating companies, and we found substantial variation in operating cost, both through time 
and across producers.  In an intertemporal cost decomposition exercise we identified two 
effects as having been the primary cost drivers: the input price effect and the technical change 
effect, the latter of which we associated with regulatory change.  In a pair of multilateral 
benchmarking exercises we attributed a significant portion of the mean cost gap with the 
superior cost efficiency of both the low-cost benchmark and the cost-efficient benchmark.  
This finding suggests that benchmarking can be a profitable exercise for utilities, since not all 
of the mean cost gap is due to exogenous factors beyond the control of their managements. 
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Footnotes 

 
* A previous version of this paper was presented at the Fifth European Workshop on 
Efficiency and Productivity Analysis held at the Royal Veterinary and Agricultural 
University, Copenhagen, Denmark, October 9-11, 1997.  We are grateful to Comisión del 
Sistema Eléctrico Nacional (CSEN) and DGICYT PB94-0708, DGES PB95-0616 and 
Generalitat de Catalunya 19965GR 00113 for generous financial support, to Dr. Herbert 
Thompson for providing the data used in this study, to Julie Millington and Yih Pin Tang for 
their exceptional research assistance, and to two referees whose comments we found 
unusually helpful. 
 
1.  Just as a Fisher index is defined as a geometric mean of Paasche and Laspeyres indexes 
when the latter are expressed in ratio form, a Bennet index is defined as an arithmetic mean of 
Paasche and Laspeyres indexes when the latter are expressed in difference form.  In addition, 
just as a Fisher index is a superlative index, Diewert (1998) calls a Bennet index a 
"pseudosuperlative" index because it has the same first and second partial derivatives as a 
superlative index around an equal price and quantity vector. 
 
2.  When M = 1 the nature of scale economies along the path from xE to xB can be inferred 
from the ratio R = [(1/2)(wt + wt+1)T(xB/yt+1) / (1/2)(wt + wt+1)T(xE/yt)].  Returns to scale are 
locally decreasing, constant or increasing along this path according as R >=< 1.  If M > 1 yt 
must be replaced with an output quantity index. 
 
3.  These linear programming techniques were developed by Banker et al (1984) and Färe et 
al (1985). 
 
4.  As a referee has correctly noted, different firms can have different technologies in a given 
year, so in principle a technical change effect is possible.  As a practical matter, however, it 
is not possible to construct different cost frontiers for different firms in a given year, since 
there is only one observation on each firm in a given year. 
 
5.  Gollop and Roberts (1983) found similar regulatory impacts on a sample of 56 utilities 
during the 1973-1979 period.  They found that environmental regulations were capital-using, 
and forced utilities to substitute high-cost low-sulfur fuel for low-cost high-sulfur fuel.  Both 
effects had a dampening impact on growth rates during the period.  More recently 
Yaisawarng and Klein (1994) found sulfur dioxide controls to have dampened productivity 
growth in the 1980s.  
 
6.  Although the divergence between actual and technically efficient input use increased, 
technical efficiency itself actually improved, from a 1977 mean of 0.623 to a 1982 mean of 
0.644.  This apparent anomoly is due to the fact that the technical efficiency effect is based 
on differences, while technical efficiency is a ratio. 
 
7.  Many studies (e.g., Gollop and Karlson (1978), Atkinson and Halvorsen (1980)) have 
found evidence of substantial allocative inefficiency during the 1970s, and have attributed 
these inefficiencies to rate base padding and the fuel adjustment mechanisms.  Our finding 
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suggests that the degree of input misallocation worsened only marginally during the 
1977-1982 period.   
 
8.  The post-1982 improvement in cost efficiency was no doubt driven in part by the Public 
Utilities Regulatory Policies Act of 1978, which enhanced competition in electricity 
generation. 
 
9.  The regulatory factors we have associated with technical regress were costly, contributing 
nearly one third of the mean cost increase between 1977 and 1982, and contributing nearly 
150% of the mean cost increase between 1982 and 1987.  They were also biased with respect 
to their input requirements.  Cost-efficient capital/labor ratios increased fivefold, and 
cost-efficient capital/fuel ratios increased fourfold, on average between 1977 and 1982.  The 
biases diminished in magnitude, and changed directions, between 1982 and 1987.  
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  1977 1982 1987 1992 

Total Cost  Mean 229.79 573.98 707.01 744.70 

($ million) SD 237.99 545.71 689.12 760.06 

Output Mean 13.70 13.86 16.18 17.27 

(million Mwh) SD 13.11 12.98 15.16 16.25 

Labor (x1) Mean 1,373 1,797 1,995 2,021 

(#) SD 1,412 1,751 2,115 2,206 

Fuel (x2) Mean 1,288.29 1,440.61 1,677.43 1,823.54 

(000 MBTU) SD 1,186.28 1,430.77 1,538.72 1,643.46 

Capital (x3) Mean 44,756 211,622 371,041 396,386 

 SD 41,807 183,817 385,629 442,892 

w1  Mean 14,208 22,594 31,233 39,949 

($) SD 2,508 3,845 5,384 8,399 

w2  Mean 125 226 162 144 

(cents) SD 49 113 46 44 

w3  Average 1,028 1,004 1,002 1,005 

 SD 214 84 86 109 

   
 

   

        Table 1. Data 
Summary 
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         1982-1977        1987-1982        1992-1987 
  $ million  % $ million  % $ million  % 

Cost Change Mean 344.2 149.79 133.0 23.18 37.7 5.33 
 SD 355.1  318.5  181.5  

Price Effect Mean 147.8 64.26 -101.0 -17.59 -14.2 -2.00 
 SD 205.0  238.2  46.1  

Activity Effect Mean 0.4 0.15 84.4 14.69 54.0 7.63 
 SD 45.1  190.4  225.9  

Technical Efficiency Effect Mean 81.4 35.50 -40.8 -7.12 43.1 6.09 
 SD 142.3  226.5  145.9  

Allocative Efficiency Effect Mean 4.6 1.95 -11.2 -1.95 -39.2 -5.54 
 SD 69.5  237.4  192.5  

Technical Change Effect Mean 110.0 47.93 201.6 35.11 -6.1 -0.86 
 SD 88.7  315.1  116.0  
        

  Table 2.  Intertemporal Cost Change 
Decomposition 

    

 
 

   $ million  %  
 Cost Gap Mean 619.3 494.08  
  SD 760.1   
 Price Effect Mean 115.8 92.37  
  SD 154.0   
 Activity Effect Mean 259.2 206.75  
  SD 526.3   
 Technical Efficiency Effect Mean 164.5 131.20  
  SD 169.1   
 Allocative Efficiency Effect Mean 79.9 63.77  
  SD 113.1   
      

Table 3.  1992 Cost Gap Decomposition Using the Low-Cost Benchmark 
 
 

   $ million  %  
 Cost Gap Mean -2,524.0 -77.22  
  SD 760.1   
 Price Effect Mean -74.7 -2.28  
  SD 107.6   
 Activity Effect Mean -2,764.6 -84.58  
  SD 679.1   
 Technical Efficiency Effect Mean 214.5 6.56  
  SD 218.5   
 Allocative Efficiency Effect Mean 100.8 3.08  
  SD 141.6   
      

Table 4.  1992 Cost Gap Decomposition Using a Cost-Efficient 
Benchmark 
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