Metadata, citation and similar papers at core.ac.uk

Provided by Diposit Digital de Documents de la UAB

COST AND PRODUCTIVITY

E. Grifell-Tatjé C. A K. Lovell
Departament d’Economia de 'Empresa Departmeitcohomics
Universitat Autonoma de Barcelona UniversityGeorgia

08193 Bellaterra (Barcelona), SPAINAthens, G&O) USA
emili.grifell@uab.es knox@terry.uga.edu

This is a postprint version of the article that yasblished in

Grifell-Tatjé, E. and C.A.K. Lovell (2000), “Costnd Productivity,” Managerial and
Decision Economics vol. 21, issue 1, pages 19 — 30.

DOI: 10.1002/1099-1468(200001/02)21:1<19::AID-MDE88.0.CO;2-7

Abstract

We develop an analytical model capable of deconmgolsoth intertemporal and multilateral
cost variation. We begin by attributing cost voia to a price effect and a quantity effect.
We then decompose the quantity effect into a prindticeffect and an activity effect. The
productivity effect in turn decomposes into a cefficiency effect and, in the intertemporal
context, a technical change effect. We also show the intertemporal and multilateral cost
decompositions can be implemented, using lineargramoming techniques. These
techniques offer certain advantages over conveaitienonometric techniques whenever a
substantial portion of cost variation is due toiawn in cost efficiency. We illustrate the
two cost decompositions with a pair of benchmarlemgrcises based on a panel of 93 US
electric power generating companies, in which vemmein cost efficiency does play a key
role.
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COST AND PRODUCTIVITY*
1. Introduction

Operating cost varies through time and across yo&d of even a reasonably
homogeneous product. In such circumstances imjgrtant for managers to be able to
attribute both intertemporal and multilateral cestiation to its causal factors. In this paper
we develop an analytical model capable of attriigitost variation to a price effect, which
identifies cost variation attributable exclusivety variation in input prices, and a quantity
effect, which identifies cost variation attributabsolely to variation in input use. We
continue by decomposing the quantity effect intoaativity effect, which identifies cost
variation attributable to variation in cost-effinteinput use with given technology, and a
productivity effect, which identifies cost variati@attributable to variation in cost efficiency
and, in an intertemporal context, to variation e tstructure of production technology.
Finally we decompose variation in cost efficienatoi variation in productive efficiency and
variation in the efficiency with which inputs arboaated in light of their prices. Thus we
decompose cost variation into five sources in titeriemporal context, and into four sources
in the multilateral context. These decompositiprevide a useful framework within which
to conduct a cost-based benchmarking exercisesrglihough time or across producers.

Our cost decomposition model is new, althoughogslhave precedents. It can be
considered as an attempt to merge the conceptsbivadance analysis in the cost accounting
literature with the concept of a cost frontier e teconomics literature. In the economics
literature both neoclassical theory and modern igugieory express minimum cost as a
function of output quantities, input prices, andhag@s also a time trend. Thus the potential
is there to use economic theory to enrich costamae analysis. Indeed econometric models
based on this framework, from Nerlove (1963) to firesent day, have attributed cost
variation to input price variation, scale economa&sl technical change. However these
models have imposed a symmetric error structurthemquation(s) to be estimated, and have
been unable to incorporate variation in cost efficy as a source of cost variation. More
recent stochastic cost frontier models, e.g., Gr¢&880) and Stevenson (1980), incorporate
a composed error structure and do allow for vammin cost efficiency. However apart from
the restrictive Cobb-Douglas case of Schmidt aneklld1979), these stochastic cost frontier
models have been unable to decompose cost efficianio its technical and allocative
components, the purely analytical results of Kunkialng1997) notwithstanding. Fortunately
an older linear programming - based approach tedidoy Afriat (1972) and Hanoch and
Rothschild (1972) is capable of generating a cotapleost variation decomposition.
However it was not used for this purpose by thegkas, who developed linear programs to
test consistency of data with various regularitpdibons and behavioral hypotheses. Our
objective in this paper is to exploit economic tlyecand to apply linear programming
techniques, to achieve an empirically tractablabattion of cost variation to its economic
sources.

The paper is organized as follows. In Sectione2swmmarize a standard analytical
framework of production and cost. In Section 3 exploit this analytical framework to
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decompose intertemporal cost change into five ssurcln Section 4 we show how to
implement the intertemporal cost change decompuositiusing linear programming
techniques. In Section 5 we show how the anatisi®loped in Sections 3 and 4 simplifies
in the multilateral context, and we show how theltiateral analysis can be employed to
conduct a benchmarking exercise against the peafiocen of a target producer. In Section 6
we illustrate the cost decomposition technique$ aipair of benchmarking exercises based
on a panel of 93 US electric power generating congsa Their costs vary substantially,
both through time and across companies, and wenggeested in decomposing these cost
variations into their sources.

2. TheAnalytical Framework

We consider a producer using N resources repesdytthe input quantity vector x =
(Xg,...,%) = 0 to produce M products represented by the oufpantity vector y = (y...,\) =
0. The producer pays resource prices represegtételnput price vector w = (W..,Ww) >
0. The producer’s observed cost in period t ismibge ¢ = w'x' = =, ".;wix,. Since we are
interested in decomposing cost change from oneged the next, (€ - ¢), we are not
concerned with the revenue side of the producetiviies, and so we ignore the prices at
which it sells its products.

We begin by defining the structure of period tiemlogy in terms of itsnput sets
L'(y") = {x": (x' can produce'y, t=1,..T. (1)

Input sets are assumed to be closed and convexpaatisfy strong disposability [ L'(y")
= x"'0LYy"), x'2x]. The lower boundaries of input sets are thaiut isoquants, which
are defined as

y) = {x" X' OL'Y), A OLy),A<1}, t=1,..,T. (2)

Although an input vector'>must belong to its contemporaneous input §gf)Lit need not
necessarily belong to its input isoqudfy). The Malmquist (1953) - Shephard (195%ut
distance function provides a radial measure of the distance fromnantivector to an input
isoquant, and is defined as

D'(y",x") = max {8: x/6 O L'(y")}, t=1,.,T. (3)

D'(y',x") = 1 since X0 L'(y"), and D(y'x) = 1 = x' O I'y). Dual to an input distance
function is acost frontier, which describes the minimum cost required to poedoutput
vector y with input price vector hand with period t technology in place. The coshfier is
defined as

cy'w) = min{wx): xOL'GY)} = min {w): D'y'\x)=1}, t=1,..T. (4)
c'(y",w) is nondecreasing irt,yand nondecreasing, concave and homogeneous iefeded in

w'.  Since Ky'w) is defined as a minimum concept>cc(y,w)), with equality holding if,
and only if, the producer is both technically atidaatively efficient.
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We also use an adjacent-period input s&t(}), which describes the set of input
vectors capable of producing output vectbwigh period t+1 technology, its adjacent-period
isoquant T*(y"), and the corresponding adjacent-period inputadis function B(y',x").
However since (yx') may not be feasible with period t+1 technolody;, 1 x."*(y") is possible,
and it follows that B'(y',x") >=< 1. Finally, an adjacent period cost frontitral to the
adjacent period input distance function is definedt™(y,w) = min {(w'x): x O L™ (y")}
= min, {(Ww'x): D*y',x) = 1}, where w can be either 'wvor W, Each of these
adjacent-period representations of technology ifine@ in a similar manner to the
contemporaneous representations in (1) - (4).

3. Thelntertemporal Cost Change Decomposition

We are now prepared to decompose a producer’'scbasige between period t and
period t+1 into five distinct sources. We begind®&composing cost change resulting from a
movement from (w'y) to (*Lw*y*Y) into two basic components: price effect
reflecting the impact on cost of changes in inpitgs from wWto w*, holding input usage
fixed, and aguantity effect reflecting the impact on cost of changes in inmage and output
production from (ky) to (¢**,y**1), holding input prices fixed. A preliminary issaencerns
how to hold input usage fixed in the price effentldow to hold input prices fixed in the
guantity effect.

One possible decomposition of cost change intoca pffect and a quantity effect is
dlod= (\Nt+1 } VVI)TXt+1 + WtT(Xt+1 ) Xt), (5)
and another is
dlod= (\Nt+1 } VVt)TXt + \Nt+1T(Xt+1 ) Xt). (6)

In (5) the price effect is a Paasche type of inpide index (fixing input usage af'® and the
quantity effect is a Laspeyres type of input qugnitidex (fixing input prices at \y both
expressed in difference rather than ratio form.e Toles are reversed in (6), in which the
price effect is a Laspeyres type of input pricesidfixing input usage at'xand the quantity
effect is a Paasche type of input quantity indéir(@ input prices at W), both expressed in
difference rather than ratio form. In light of tiaeell-known deficiencies of Paasche and
Laspeyres types of indexes, Bennet (1920) recometeaddecomposition of cost change by
means of the arithmetic mean of (5) and (6). Phexedure generates Fisher type arithmetic
mean input usage weights in the price index antidrisype arithmetic mean input price
weights in the quantity index. More recently DietMd998) has shown that Bennet's input
price and quantity indexes satisfy a number ofrdbi axioms, not all of which are satisfied
by (5) or (6)' Consequently we base our cost change decompositiBennet's approach,
which leads to

Proposition 1. Thecost change between period t and period t+1 decomposes as

c:t+1 _ Ct — V\}+1Txt+1 _ V\}TXt
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= (L2)0k+ X)W - w) price effect
+ (22)W+ wHT(x™ - X quantity effect

Both the price effect and the quantity effect cancbmputed directly from the data,
with no analysis being required. However a decaitjpm of the quantity effect requires
economic analysis. We begin by decomposing thentgyaeffect into two components: a
productivity effect reflecting the combined impact on cost of a changbe cost efficiency of
resource use and of a change in the structureoafuption technology, and attivity effect
reflecting the impact on cost of a change in tlaesof the producer’s operation.

Proposition 2: Thequantity effect between period t and period t+1 decomposes as
@r)w+whHTx*-x) =
@2)w + wWhHT*-xB) - - x5)] productivity effect
+  (U2)(W+ WX - xF) activity effect

Figure 1 illustrates the decomposition of the diaeffect into a productivity effect
and an activity effect. Two cost frontiers are vama with ¢*(y,w"?) located beneath
c'(y,w"), on the assumptions that technical progress basred between period t and period
t+1, and that the impact of ' = w' does not swamp the impact of technical progress,
although neither of these assumptions is necessahe analysis. Observed period t cdst ¢
> d(y,w'), and observed period t+1 cot'e ¢*(y,w*?), the assumption being that resource
use is inefficient in each period. Finally, eliratimg the price effect in order to focus on the
quantity effect leads to an upward displacement'ab c* = (1/2)(X + X*)™w' and to a
dtownward displacement of'tto c*** = (1/2)(X + X)W, the assumption being thdte
X.

With the price effect out of the way, we can foousdecomposing the quantity effect.
We begin by noting that®is a cost minimizing input vector for{§;w"*") and period t+1
technology, and so®x= Owac (Y™ W),  Similarly >E is a cost minimizing input vector
for (y,w"™% and period t+1 technology, and sb x D1 (Y, W*Y). Consequently the
productivity effect measures the excess cost ofatimg above the period t+1 cost frontier
cy,w*Y) in period t+1, less the excess cost of operaingye the period t+1 cost frontier
c*y,w*Y) in period t, with both excess costs being evaliat the arithmetic mean of
period t and period t+1 input prices. The produttieffect contributes to a reduction (an
increase) in cost from period t to period t+1 adawy as [(1/2)(W+ W) (x' - XF)] > (<)
[(L2)(W + W T(x™ - xO)].

The activity effect measures the cost change betwegod t and period t+1 resulting
from a change in the scale of the business from K™(y") to »& O 1"}(y"*%), with both excess
costs being evaluated at the arithmetic mean abgédrand period t+1 input prices. The
activity effect contributes to a reduction (an g®se) in cost from period t to period t+1
according as [(1/2)( w*)T(x® - XB)] < (>) 02
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It should be apparent from Figure 1 that the petidity effect has cost efficiency
change and technical change components. Accoydglnext decompose the productivity
effect into atechnical efficiency effect, anallocative efficiency effect and aechnical change
effect.

Proposition 3: Theproductivity effect between period t and period t+1 decomposes as

@2)(wW + W% - (-] =

(272)(W+ WHT[(x"* - xP) - (X - x9)] technical efficiency effect
+ (U2)W+ WD -xB) - (E-xY) allocative efficiency effect
+  (12)(W + WHT(XE - xY) technical change effect

The decomposition of the productivity effect isuditrated in Figure 2. ‘xis

technically inefficient, since= 0" O I'(y"), where®' = [D'(y",x)]™* < 1. In addition, X is
allocatively inefficient for W employing too much xand too little ¥, relative to the
cost-efficient input vector ’x x*! is also technically inefficient, since®x= 6"x"*! O
1"y, where®™ ! = [D"(y"* x*1]? < 1. In addition, R is allocatively inefficient for W,
employing too much xand too little x relative to the cost-efficient input vecto?.x The
technical efficiency effect measures the impactost (evaluated at the arithmetic mean of
period t and period t+1 input prices) of any chamgéechnical efficiency between period t
and period t+1, and appears in Figure 2 and thensetine of Proposition 3 as (1/2)(w
WYX - XP) - (X - X9)]. The allocative efficiency effect measures iimpact on cost
(evaluated at the arithmetic mean of period t amdog t+1 input prices) of any change in
allocative efficiency between period t and peried,tand appears in Figure 2 and the third
line of Proposition 3 as (1/2)tw W*)T[(x® - xB) - (x° - ¥*)]. The sum of the two efficiency
effects appears in Figure 1 as'Ttx xF) - (X' - x)], both differences being evaluated at the
arithmetic mean of period t and period t+1 inputes.

We now turn to the impact on cost of technicalngea In Figure 2 the cost-efficient
input vector £ O I(y"), and so Wx* = ¢(y",w'). The cost-efficient input vectof xJ 1™}y,
and so W'xF = ¢*{(y,w"?Y). Thus the movement fronf*xo >E represents the impact on
cost of technical progress. Sinceig not necessarily a radial contraction 6f technical
progress is not restricted to be input-neutral, #tyednature of the bias can be determined by
comparing the input mix atSwith the input mix at X In addition, since xand X are
cost-efficient for different input price vectorsewvaluate the cost saving impact of technical
progress at the arithmetic mean of period t antbg@dr1 input prices. Thus the technical
change effect appears in Figures 1 and 2 and tta line of Proposition 3 as (1/2){(w

WHYTOE - x4,

4. Implementing the Intertemporal Cost Change Decomposition

The measurement of intertemporal cost change requires informaton(y,x',w") and

(1 x*wY), and all of these data are (potentially) obseerialHowever thelecomposition
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of intertemporal cost change requires that the seoded input quantity vectors
(x* xB x xP xF) be identified so that Propositions 2 and 3 carinbglemented. We now

show how to use linear programming techniques toutate each of the unobserved input
guantity vectors. We assume that we have a saoapisisting of | producers, indexed i =
1,...,l, each being observed over a sequence ah@& periods, indexed t = 1,...,T. In the
following analysis we decompose cost change fodpeer “0”, where “0” is a member of I.

Consider first the calculation of the technicdicg#ncy effect in Proposition 3. This
requires the identification of the input quantityctors X in period t and X in period t+1.
Since X is a radial contraction of xx“ = 8x' = X/D'(y",x"), with 8 < 1. The scalaf® is
determined as the solution to the linear prograngrproblem

[Dt(yot’xot)] -1 — m|n eC (7)
RPN

subject to %%, = =i, n=1,...,N

oAM=y, m=1,..M

Zilzl)\it = 1.
The constraints of this program guarantee tAate0°x O I'(y*), as it does in Figure 2.

Since X is a radial contraction of %, x° = 8°x"* = XD (y** x*1), with 6° < 1.
The scala® is determined as the solution to a linear progrargmroblem identical in form
to (7), with period t data {y"x*y") being replaced with period t+1 data
LY XLy The constraints of this program guarantee #f8t = 6°x°** O

1"Y(y°™*Y), as it does in Figure 2.

Consider next the calculation of the allocativiecedncy effect in Proposition 3. This
requires the indentification of the input quantictors £ in period t and X in period t+1.
Since X' minimizes the cost of producing outpufswhen input prices are'vand period t
technology is in place,"xcan be identified as the solution to the lineagpamming problem

Sy w® = min w'x (8)
A,

subject to X = oA, n=1,..,N
SoAYmt 2y, m=1,..M

A

\Y;
©

I
P

Zilzl)\it = 1.
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The constraints of this program guarantee tHPax%' = ¢(y*,w®), as it does in Figures 1 and
2.

Since ® minimizes the cost of producing output§ yhen input prices are{and
period t+1 technology is in place® kan be identified as the solution to a linear progming
problem identical in form to (8), with period t dafX',y",y*,w®) being replaced with period
t+1 data (XYY" Lw™Y). The constraints of this program guarantee W4t ™x°® =
Ayt wPY), as it does in Figures 1 and 2.

Finally we identify the input quantity vectof swhich, together with % and X,
enables us to identify both the activity effectAroposition 2 and the technical change effect
in Proposition 3. SinceSminimizes the cost of producing outptitwwhen input prices are
w"tand period t+1 technology is in plac€, ean be identified as the solution to a linear
programming problem identical in form to (8), wjgkriod t data (ky",y*,w®) being replaced
with mixed-period data (X',y"**,y*,w**%). The constraints of this program guarantee that

WO IXE = iy w™), as it does in Figures 1 and 2.

Solving each of the five linear programming proléeof forms (7) and (8) | times,
once for each producer in the sample, generatabalinformation required to identify the
five unobserved input quantity vectors' 6€,x%,x°,xF).  When combined with the observed
input quantity vectors {x'*!), and with the observed input price vectors i), the
observed cost change'fc- ¢) can be decomposed into its five sources by medns
Propositions 1-3.

5. Conducting a Cross - Sectional Benchmarking Exercise

Businesses frequently evaluate their performangebdnchmarking against some
target performance. Although such a benchmarkiegogse is typically conducted on the
basis of key financial ratios, such as return osets it can perhaps more usefully be
conducted on the basis of te@nomic determinants, rather than th&nancial consequences,
of performance variation. We now show how the mégphes developed in Sections 3 and 4
can be adapted for use in a cross-sectional framke¥ay the purpose of conducting a
benchmarking exercise.

Suppose that we observe a sample of | produacsdexed i = 1,...,1 as before, but
during a single time period, so we dispense withttme index. The previous cost change
decomposition exercise now become®st gap or cost variance decomposition exercise, the
objective being to decompose the gap between theafca producer,°c and the cost of a
benchmark target, ¢ Although the benchmark can be determined inraber of ways, we
consider two possibilities. The first possibilis/to define the benchmark as the producer
having the lowest unit cost (cly) in the sample.e Veéfer to this model as the “low-cost
benchmark” model. This model is easy to implemarthe single output case, although it
requires the construction of an output quantityeah the multiple output case. The second
possibility is to define the benchmark as a produdentified as being cost-efficient, being
located on rather than above the cost frontierwg(y, We refer to this model as the
“cost-efficient benchmark” model. This model issgdo implement even in the multiple
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output case. In both models we associate the bem#ing producer® with period t, and
the benchmark target producer “*” with period t#iFigures 1 and 2.

5.1 TheLow-Cost Benchmark Mod€

As in Section 3, the cost frontier c(y,w) providesanalytical foundation for the cost
gap analysis. In constrast to Section 3, we hae @ne time period and one cost frontier,
and so the technical change effect disappears thétttime indeX. In Figures 1 and 2 the
absence of technical change means that x*. The benchmarking producer has observed
cost Wx° = ¢(y’,w°), and the low-cost benchmark has observed cdst & c(y ,w’). The
low-cost benchmark is not necessarily cost-effigiesince its low cost may be due to
relatively low input prices. We are interestedtii® cost gap - ¢ = (W°'x° - w'x).
Adaptation of Propositions 1 - 3 suggests thattst gap may be due to any of four factors:

i) the price effect [(1/2)(€ + x*)T(W* - w°)] measures that part of the cost gap
attributable to input price differences betweenttixe producers;

ii) the technical efficiency effect [(1/2)(W° + w)T(x* - x°) - (1/2)(W + w)(x° - x°)]
measures that part of the cost gap attributableéh&o difference between the technical
inefficiency of the two producers;

iii) the allocative efficiency effect [(1/2)(W° + w)T(x° - xB) - (1/2)(W + w)T(x® - x*)]
measures that part of the cost gap attributabléhéo difference between the allocative
inefficiency of the two producers;

iv) the activity effect [(1/2)(W° + w)'(x® - xX*)] measures that part of the cost gap
attributable to difference between the cost-effitize of the two producers.

The cost gap analysis is based on observed da8 ) and (y,x ,w), and also on
unobserved data {x®) and (Xx*). The four unobserved input quantity vectors ban
retrieved by solving a pair of atemporal versiohthe two linear programming problems (7)
and (8) in Section 4. The corresponding unobsecestls are then obtained by multiplying
each respective input quantity vector by (1/2)(w w*). In this manner a complete
decomposition of the cost gap is obtained, for dsmichmarking producer and the low-cost
benchmark.

5.2 The Cost-Efficient Benchmark M oddl

The analysis simplifies considerably when the bemark is cost-efficient. This is
because, as can readily be determined from Figueesl 2, the benchmark has x* 2 x x°.
In this case therice effect is unchanged from its version in Section 5.1, tkttechnical
efficiency effect becomes [(1/2)(fv+ w)T(x° - x°)], the allocative efficiency effect becomes
[(L/2)(W° + w)T(x® - x¥)], and theactivity effect becomes [(1/2)(f+ w)T(x* - x™)]. In this
model the observed data remaifix§;w°) and (y,x ,w’), but the unobserved data which must
be retrieved reduce to{(x*). Consequently only two linear programming profseneed to
be solved: atemporal versions of (7) and (8). S8uwitsg the solutions to these problems
into the four effects generates a complete decoiiposof the cost gap between each
benchmarking producer and the cost-efficient beraskm
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6. An Empirical Application to US Electric Power Generation

Our data set consists of a balanced panel of 8Blgm-free investor-owned electric
power generating companies observed in 1977, 10827 and 1992. The variables include
total generating cost (current dollars), a singlgpat (net volume, in Mwh, of electricity
generated), and quantities and nominal prices m@etlinputs, labor, fuel and capital. The
guantity of labor is the total (full time plus omalf of part time) number of employees
engaged in generation activities, and the pricldr is calculated as the ratio of total labor
cost to the total number of employees. The quanfitfuel is measured in MBTU of coal,
oil, natural gas and nuclear fuel, and the pricduef is the delivered cost (in cents) per
MBTU. The quantity and price of capital are meaduas multilateral Tornqvist indexes of
the quantities and prices of capital services eggulon various generation activities.

The data underlying the analysis are summarize@aiole 1, which reports annual
means and standard deviations of all variables us#te analysis. The first striking feature
of the data is the pattern of intertemporal vavatin mean generating cost. Mean
generating cost more than doubled from 1977 to 188&pite a mere one percent increase in
mean electricity generation. Mean generating custases moderated from 1982 to 1987
(23%), and from 1987 to 1992 (5%), and were muchiemo line with mean electricity
generation increases during these periods (17%78adrespectively). There is thus an
intertemporal cost variation story to be told, aad all of the explanation lies with variation
in mean fuel prices, which varied wildly as a capssnce of both political and economic
developments in international petroleum markete @i price shocks of the 1970s), and
domestic regulatory developments (the 1977 Amendmoethe 1970 Clean Air Act).

The second striking feature of the data is thgelarariation in generating cost across
firms within each year. In each of the four yeafsthe panel the standard deviation of
generating cost is virtually the same as the meaemting cost itself. It appears that much
of this cost variation is attributable to size a#ion, since in each year the standard deviations
of output and the three inputs are nearly as laggthe means of output and the three inputs,
although there remains plenty of room for alten&texplanations, and thus for interesting
benchmarking exercises.

The third feature of the data is the considerabi®unt of input substitution that has
occurred in the industry. The mean capital/fual aapital/labor ratios both increased over
six-fold during the period, whereas the mean ldbel/ratio, after increasing by 15% from
1977 to 1982, declined thereafter and increasedbdrgly four percent during the entire
period. The extent to which these substitutiongoas were driven by input price changes or
by changing regulatory requirements is a matter speculation, although our cost
decomposition will shed light on the question.

6.1 Thelntertemporal Cost Change Decomposition
We begin by running the data through the sequericBve linear programming

problems specified in (7) and (8). We then insattulated values of the unobserved input
quantity vectors (XxZx°x°xF) into the intertemporal cost change decompositioms
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Propositions 1 - 3. This enables us to decompuseteémporal cost change for each utility.
Means and standard deviations of calculated castg#hand its sources appear in Table 2.

Between 1977 and 1982 cost increased by an avefa§@44.2 million, or by an
average of 150%. Three effects contributed th@&dishare of the mean cost increase. Over
40% of the cost increase was attributable to theepeffect, which resulted from a 64%
increase in the input price index. Nearly onediuf the cost increase was attributable to the
technical change effect, which resulted from a 48étease in cost-efficient input usagé (x
xF). The technical change effect provides a measfithe cost of a deterioration in best
practice performance. This deterioration was Jike&lcombination of rate-base padding in
response to rate of return regulation and investnmepollution abatement capital equipment
in response to environmental regulaton.As a result, the mean capital input nearly
quintupled from 1977 to 1982. Nearly one fourtitled cost increase was attributable to the
technical efficiency effect, which resulted fron38% increase in the divergence between
actual and technically efficient input use'[fx- x°) - (X' - xX9)].° The allocative efficiency
effect made a very small contribution to the costease; this is evident from Table 1, where
it is clear that utilities substituted capital foel and, to a lesser extent, for labor, in respons
to changing input price ratids. The activity effect made virtually no contributito the cost
increase; this can be explained by the fact thaarmeutput barely changed, and so
cost-efficient input use B- xF) barely changed (despite the fact that actual tinmse
increased substantially).

The nature of the cost change and its decompnsitianged dramatically during the
second and third periods. Cost increases abatiedpimarily to declines in the input price
index driven by substantial declines in fuel priceMean cost efficiency also improved
between 1982 and 1987, and declined only marginadiyveen 1987 and 1982. The
primary driver of cost increases in the two lageriods was the activity effect, reflecting
increases in cost-efficient input usage in respdasgeady increases in electricity demand.
Finally, the technical change effect contributedast increases through 1987, reflecting the
continuing installation of costly pollution abatemeapital equipment, although this process
seems to have been completed by 1987.

6.2 A Pair of Multilateral Benchmarking Exercises

We now conduct a pair of benchmarking exerciséisgu$992 data, one against the
low-cost utility and the other against a cost-édint utility. The former exercise requires
identifying the low-cost utility, which in 1992 wakentucky Power, with an average
generating cost of $18/Mwh, less than half the dampean of $43/Mwh. We then ran the
1992 data through four linear programming probld€if)sand (8) and inserted the solutions
into Propositions 1 - 3 to obtain a decompositibthe cost gap between each benchmarking
utility and the low-cost benchmark. Results ofstlexercise are summarized in Table 3,
which reports means and standard deviations adkegap and its four components.

Somewhat surprisingly, the low-cost utility senassa useful benchmark. Less than
20% of the enormous mean cost gap of $619 millenmlwe attributed to the price effect; the
benchmark is low-cost only partly because it facdatively low input prices. The main
reason the benchmark is low-cost is its relatihall size; 42% of the mean cost gap is
attributable to the activity effect. Although béntarking utilities can learn nothing of value

10
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from the benchmark’s small size, and little frors favorable input price structure, the
benchmark’s superior cost efficiency does providela opportunity for learning. Nearly

40% of the mean cost gap is attributable to thértieal and allocative efficiency effects;

since these effects are presumably under the dmftrnanagement, significant cost savings
are available to benchmarking utilities.

The latter exercise requires identifying a coftieint utility against which to
benchmark. Program (8) identified a total of sosteefficient utilities in 1992, and so we
somewhat arbitrarily selected the largest, Texas#ities Electric, as the cost-efficient
benchmark. We then ran the 1992 data throughwtoelinear programming problems (7)
and (8) and inserted the solutions into Proposstibn 3 to obtain a decomposition of the cost
gap between each benchmarking utility and the effistient benchmark. The results of this
exercise are summarized in Table 4, which repodanms and standard deviations of the cost
gap and its four components.

The cost-efficient utility also serves as a usdfehchmark, but in a different way.
The large negative mean cost gap is due primarithé¢ fact that the benchmark is large, and
partly to the fact that it faces relatively higlput prices. Once again, benchmarking utilities
have little if anything to learn from these compuaiseof the mean cost gap. However the
unfavorable mean cost efficiency effect is over fiomes as large as the favorable mean price
effect, once again suggesting ample opportunityparchmarking utilities to find significant
cost savings through waste elimination and resowakocation.

7. Summary and Conclusions

We have developed a theory-based decompositiearaition in operating cost, both
through time and across producers. This decomepositiraws from, and extends,
approaches developed in the linear programmingatitee. A virtue of this decomposition is
that it distinguishes sources of cost variation cuhare arguably beyond management’s
control from those which are deserving of manageimeitention. The decomposition is
based on observed and unobserved input quantitprge@nd we have shown how to derive
the unobserved input quantity vectors from the nlegkinput quantity vectors.

We have applied our cost decomposition analysia fmanel of US electric power
generating companies, and we found substantishtiami in operating cost, both through time
and across producers. In an intertemporal cosbrdposition exercise we identified two
effects as having been the primary cost driveesirput price effect and the technical change
effect, the latter of which we associated with tatpry change. In a pair of multilateral
benchmarking exercises we attributed a signifigamtion of the mean cost gap with the
superior cost efficiency of both the low-cost banehnk and the cost-efficient benchmark.
This finding suggests that benchmarking can beofitable exercise for utilities, since not all
of the mean cost gap is due to exogenous factgmnbehe control of their managements.

11
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Footnotes

* A previous version of this paper was presentedhat Fifth European Workshop on
Efficiency and Productivity Analysis held at the yRb Veterinary and Agricultural
University, Copenhagen, Denmark, October 9-11, 199Ve are grateful to Comision del
Sistema Eléctrico Nacional (CSEN) and DGICYT PB99® DGES PB95-0616 and
Generalitat de Catalunya 19965GR 00113 for genefimasicial support, to Dr. Herbert
Thompson for providing the data used in this stadylulie Millington and Yih Pin Tang for
their exceptional research assistance, and to ®¥erees whose comments we found
unusually helpful.

1. Just as a Fisher index is defined as a geamatan of Paasche and Laspeyres indexes
when the latter are expressed in ratio form, a Beimuex is defined as an arithmetic mean of
Paasche and Laspeyres indexes when the lattexpressed in difference form. In addition,
just as a Fisher index is a superlative index, Biew(1998) calls a Bennet index a
"pseudosuperlative” index because it has the samsteahd second partial derivatives as a
superlative index around an equal price and queveittor.

2. When M = 1 the nature of scale economies athagpath from & to X can be inferred
from the ratio R = [(1/2)(W+ W*HTOBN™Y 1 (@2)(wW + wT(xEYY].  Returns to scale are
locally decreasing, constant or increasing alorig plath accordingas R >=< 1. IfM>1y
must be replaced with an output quantity index.

3. These linear programming techniques were dpeeldy Banker et al (1984) and Fare et
al (1985).

4. As areferee has correctly noted, differemhéican have different technologies in a given
year, so in principle a technical change effegassible. As a practical matter, however, it
is not possible to construct different cost frorgtiéor different firms in a given year, since

there is only one observation on each firm in @giyear.

5. Gollop and Roberts (1983) found similar reguiatimpacts on a sample of 56 utilities
during the 1973-1979 period. They found that eminental regulations were capital-using,
and forced utilities to substitute high-cost lowksufuel for low-cost high-sulfur fuel. Both
effects had a dampening impact on growth ratesnduthe period. More recently
Yaisawarng and Klein (1994) found sulfur dioxidentols to have dampened productivity
growth in the 1980s.

6. Although the divergence between actual andniealy efficient input use increased,
technical efficiency itself actually improved, from1977 mean of 0.623 to a 1982 mean of
0.644. This apparent anomoly is due to the faat the technical efficiency effect is based
on differences, while technical efficiency is aoat

7. Many studies (e.g., Gollop and Karlson (19/kinson and Halvorsen (1980)) have

found evidence of substantial allocative ineffi@grduring the 1970s, and have attributed
these inefficiencies to rate base padding and ubkddjustment mechanisms. Our finding

12
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suggests that the degree of input misallocationsemmed only marginally during the
1977-1982 period.

8. The post-1982 improvement in cost efficiencyswa doubt driven in part by the Public
Utilities Regulatory Policies Act of 1978, which reanced competition in electricity
generation.

9. The regulatory factors we have associated wwithnical regress were costly, contributing
nearly one third of the mean cost increase betvi®ait and 1982, and contributing nearly
150% of the mean cost increase between 1982 aritl 198ey were also biased with respect
to their input requirements. Cost-efficient cafisbor ratios increased fivefold, and
cost-efficient capital/fuel ratios increased folgfcon average between 1977 and 1982. The
biases diminished in magnitude, and changed direstibetween 1982 and 1987.

13
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1977 1982 1987 1992
Total Cost [Mean 229.79 573.98 707.01 744.70
($ million) [SD 237.99 545.71 689.12 760.06
Output Mean 13.70 13.86 16.18 17.27
(million Mwh) [SD 13.11 12.98 15.16 16.25
Labor (x;) |Mean 1,373 1,797 1,995 2,021
# SD 1,412 1,751 2,115 2,206
Fuel (xy) Mean 1,288.29 1,440.61 1,677.43 1,823.54
(000 MBTU) [SD 1,186.28 1,430.77 1,538.72 1,643.46
Capital (x3) [Mean 44,756 211,622 371,041 396,386
SD 41,807 183,817 385,629 442,892
Wy Mean 14,208 22,594 31,233 39,949
($) SD 2,508 3,845 5,384 8,399
Wy Mean 125 226 162 144
(cents) SD 49 113 46 44
W3 Average 1,028 1,004 1,002 1,005
SD 214 84 86 109

Table 1. Data
Summary
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1982-1977 1987-1982 1992-1987
$ million %| $ million %| $ million %
Cost Change Mean 344.2 149.79 133.0 23.18 37.7 5.33
SD 355.1 318.5 181.5
Price Effect Mean 147.8 64.26 -101.0 -17.59 -14.2 -2.00
SD 205.0 238.2 46.1
Activity Effect Mean 0.4 0.15 84.4 14.69 54.0 7.63
SD 45.1 190.4 225.9
Technical Efficiency Effect |[Mean 81.4 35.50 -40.8 -7.12 43.1 6.09
SD 142.3 226.5 145.9
Allocative Efficiency Effect [Mean 4.6 1.95 -11.2 -1.95 -39.2 -5.54
SD 69.5 237.4 192.5
Technical Change Effect |Mean 110.0 47.93 201.6 35.11 -6.1 -0.86
SD 88.7 315.1 116.0
Table 2. Intertemporal Cost Change
Decomposition
$ million %
Cost Gap Mean 619.3 494.08
SD 760.1
Price Effect Mean 115.8 92.37
SD 154.0
Activity Effect Mean 259.2 206.75
SD 526.3
Technical Efficiency Effect [Mean 164.5 131.20
SD 169.1
Allocative Efficiency Effect [Mean 79.9 63.77
SD 113.1

Table 3. 1992 Cost Gap Decomposition Using the Low-Cost Benchmark

$ million %

Cost Gap Mean | -2,524.0 -77.22
SD 760.1

Price Effect Mean -74.7 -2.28
SD 107.6

Activity Effect Mean | -2,764.6 -84.58
SD 679.1

Technical Efficiency Effect [Mean 2145 6.56
SD 218.5

Allocative Efficiency Effect [Mean 100.8 3.08
SD 141.6

Table 4. 1992 Cost Gap Decomposition Using a Cost-Efficient

Benchmark
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