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[1] Air temperature is involved in many environmental processes such as actual and
potential evapotranspiration, net radiation and species distribution. Ground meteorological
stations provide important local data of air temperature, but a continuous surface for large
and heterogeneous areas is also needed. In this paper we present a hybrid methodology
between Remote Sensing and Geographical Information Systems to retrieve daily
instantaneous, mean, maximum and minimum air temperatures (2002–2004) as well as
monthly and annual mean, maximum and minimum air temperatures (2000–2005) on a
regional scale (Catalonia, northeast of the Iberian Peninsula) by means of multiple
regression analysis and spatial interpolation techniques. To perform multiple regression
analysis we have used geographical and multiresolution remotely sensed variables as
predictors. The geographical variables we have included are altitude, latitude,
continentality and solar radiation. As remote sensing predictors, we have selected those
variables that are most closely related with air temperature such as albedo, land surface
temperature (LST) and NDVI obtained from Landsat-5 (TM), Landsat-7 (ETM+),
NOAA (AVHRR) and TERRA (MODIS) satellites. The best air temperature models are
obtained when remote sensing variables are combined with geographical variables:
averaged R2 = 0.60 and averaged root mean square error (RMSE) = 1.75�C for daily
temperatures, and averaged R2 = 0.86 and averaged RMSE = 1.00�C for monthly and
annual temperatures. The results also show that combined models appear in a higher
frequency than only geographical or only remote sensing models (87%, 11% and 2%
respectively) and that LST and NDVI are the most powerful remote sensing predictors in
air temperature modeling.

Citation: Cristóbal, J., M. Ninyerola, and X. Pons (2008), Modeling air temperature through a combination of remote sensing and

GIS data, J. Geophys. Res., 113, D13106, doi:10.1029/2007JD009318.

1. Introduction

[2] Air temperature is a primary descriptor of terrestrial
environment conditions all over the Earth and is involved in
many important ecological processes such as actual and
potential evapotranspiration, net radiation or species distri-
bution [Idso, 1981; Kustas, 1996; Prihodko and Goward,
1997; Bastiaanssen et al., 1998; Quattrochi and Luvall,
2000; Bonan, 2002; Kustas et al., 2003; Cristóbal et al.,
2005]. Furthermore, air temperature is also involved in land
surface temperature atmospheric correction algorithms [Qin
et al., 2001] and in the generation of several crop stress
indexes such as Stress Degree Day or Crop Water Stress

Index [Jackson et al., 1977; Moran et al., 1994]. Health
sciences also use air temperature as an important parameter
to model vector-borne diseases or to measure the effect of
extreme temperatures on mortality [Florio et al., 2004]. In
addition, accurate air temperature measurements are needed
to diminish error propagation in numerical models when air
temperature is an important input parameter [Burrough and
McDonell, 1998].
[3] Multiple regression analysis using geographical vari-

ables such as latitude, longitude and continentality (distance
from the sea) as predictors has been a classical approach to
modeling air temperature [Blennow, 1998; Ninyerola et al.,
2000; Monestiez et al., 2001]. However, current archives
and the availability of some satellite data such as NOAA
AVHRR (covering a period of over 30 years) or TERRA/
AQUA MODIS (covering a period of over 6 years) make it
possible to combine the geographical approach with remote
sensing data using variables related with air temperature
such as LST, NDVI or albedo.
[4] Air temperature is determined to a great extent by

surface properties that vary in both space and time [Oke,
1987] and, therefore, directly responds to local changes in
land surface [Arribas et al., 2003]. The addition of remote

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, D13106, doi:10.1029/2007JD009318, 2008

1Department of Geography, Autonomous University of Barcelona,
Cerdanyola del Vallès, Spain.

2Unit of Botany, Department of Animal Biology, Plant Biology and
Ecology, Autonomous University of Barcelona, Cerdanyola del Vallès,
Spain.

3Center for Ecological Research and Forestry Applications (CREAF),
Cerdanyola del Vallès, Spain.

Copyright 2008 by the American Geophysical Union.
0148-0227/08/2007JD009318

D13106 1 of 13

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/78526076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


sensing data (which inherently include information about
land surface characteristics in air temperature modeling)
allows us to improve our knowledge of the complex
spatiotemporal patterns of air temperature, in contrast to
models that only include geographical variables or that only
do spatial interpolation.
[5] Despite the fact that ground meteorological stations

provide important local point data, such as air temperature,
which is needed to monitor the ecosystem on a macroscale,
their spatial density is highly variable and their distribution
is usually not optimal for regional and local applications.
However, remote sensing data, due to their high sampling
rate and repetitive basis over large and heterogeneous
regions, offer us a continuous surface that provides addi-
tional information between ground meteorological stations
where there is a lack of meteorological data [Vogt et al.,
1997].
[6] Most of the studies that use remote sensing variables

for air temperature modeling are based on a statistical
approach, whereas air temperature modeling techniques
based on a physical approach are less frequent due to their
complexity [Sun et al., 2005]. The temperature/vegetation
index (TVX) has been widely employed to model daily air
temperature using NOAA AVHRR images [Goward et al.,
1994; Czajkowski et al., 1997, 2000; Prihodko and Goward,
1997; Prince et al., 1998; Chokmani and Viau, 2006;
Riddering and Queen, 2006]. TVX assumes that the surface
temperature of a closed canopy is equal to the air temper-
ature and was developed from the empirical observation that
when LST and NDVI measurements are compared, they
generally display a linear and negative correlation [Prince et
al., 1998; Quattrochi and Luvall, 2000]. In order to obtain
air temperature, this methodology fits a linear regression to
the LST/NDVI relationship using a mobile convolution
matrix of 9 � 9 pixels and extends the regression model
established from the meteorological stations to a full canopy
[Quattrochi and Luvall, 2000]. However, the spatial reso-
lution of the air temperature layer obtained is coarser than
the images used to fit the model because the spatial
resolution is changed to increase the information used to
apply the model [Prince et al., 1998].
[7] Other statistical methodologies establish a linear re-

gression between LST and air temperature. These method-
ologies offer better spatial resolution of outcome air
temperature layers because they do not need to change the
spatial resolution. In this way, Vogt et al. [1997] used LST
obtained from NOAA AVHRR to perform a simple linear
regression between daily maximum temperature and LST
over a Mediterranean region (Andalusia, in the south of the
Iberian Peninsula) and Recondo and Pérez-Morandeira
[2002] also performed a linear regression to model daily
and monthly mean and daily maximum air temperature over
an Atlantic region (Asturias, in the north of the Iberian
Peninsula). Furthermore, Florio et al. [2004] compared
multiple regression analysis with kriging interpolation in-
troducing both geographical and remote sensing variables to
model daily air temperature by also using LST from NOAA
AVHRR satellite and obtaining better results with kriging
models.
[8] This paper takes these previous studies into account

but also aims to introduce the combination of remote

sensing variables with geographical variables together with
a long meteorological series and a comparison among the
different spatial resolutions of the different air temperature
models.
[9] In previous studies [Ninyerola et al., 2000; Ninyerola

et al., 2007a, 2007b] we employed an optimal methodology
using multiple linear regression to model Iberian Peninsula
air temperature and precipitation for monthly and annual
periods using only geographical variables. The current
study has two main objectives.
[10] (1) To quantify the improvement in adding multi-

resolution data obtained from the Landsat, MODIS and
NOAA satellites between 2002 and 2004 on a regional scale
over a large and heterogeneous area (Catalonia, in the north-
east of the Iberian Peninsula) to the classical air temperature
models (that only use geographical predictors) in instanta-
neous (at the time of the satellite overpass) and daily air
temperature models using a multiple linear regression
approach.
[11] (2) To analyze the role of remote sensing and

geographical variables in air temperature modeling using
MODIS composites from 2000 to 2005 in the same area and
applying the same methodology used for the first objective.
In this case, however, only monthly and annual air temper-
ature will be modeled.

2. Study Area

[12] The geographical boundary of the study area corre-
sponds to Catalonia (in the north-east of the Iberian Penin-
sula) and is defined by the following UTM-31 N
coordinates (in km): 260 (minimum X coordinate), 528
(maximum X coordinate), 4489 (minimum Y coordinate),
and 4749 (maximum Y coordinate) with a total area of
approximately 32,000 km2 (see Figure 1).
[13] Catalonia is composed by three main vegetation

units. The first is the Mediterranean vegetation, which
covers most of Catalan surface and is dominated by
evergreen forests and shrublands ranging from sea level
to 600/900 m. The second is the Eurosiberian vegetation
dominated by deciduous broad-leaved forests ranging from
600/900 to 1600 m. The third is the Boreoalpine vegetation
dominated by grasslands and mainly located in the Pyrenees
and the Montseny mountains, ranging from 1600 to 3200 m
[Nuet et al., 1991].
[14] Almost the 38% of the surface of Catalonia is

covered by forests (including evergreen forests, deciduous
broadleaved forests and mixed forests). Another important
category is crops, representing the 34.4% of the surface.
The third most abundant cover is shrublands (16.4%)
followed by grassland (4%), urban (3 %), inland water
(1.6%), and other minor categories such as roads, bare soils,
etc. (2.6%) [Ibàñez and Burriel, 2006].
[15] The climate of Catalonia is typically Mediterranean,

with many hours of sunshine, mild in winter and warm in
summer. The Pyrenees and the neighboring areas have a
high-altitude climate, with abundant snow and minimum
temperatures below 0�C in winter, and annual rainfall above
1000 mm. Along the coast, the climate is mild and temper-
ate with temperatures increasing from north to south, while
the rain behaves the opposite gradient. The hinterland has a
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continental Mediterranean climate, with cold winters and
very hot days [Clavero et al., 1996].

3. Material

3.1. Meteorological Data

[16] Half-hourly meteorological data have been down-
loaded from the Catalan Meteorological Service (SMC) web
(meteorological data are available at (http://ww.meteocat.
com). SMC currently manages three meteorological ground
station networks located in Catalonia. Ground meteorolog-
ical stations are mainly located in crop areas (64%) but also
in natural vegetation (24%) and urban areas (12%). Figure 1
shows the spatial distribution of these three meteorological
networks over the study area. The first is the Agroclimatic
Network which includes 90 meteorological ground stations
mainly covering crop field areas and its height ranges from
0 to 1571 m. The second is the Automatic Station Network
which includes 56 automatic meteorological ground stations
covering natural vegetation and urban areas, ranging from 0
to 1971 m. The third is the Snow Meteorological Network
which includes 8 automatic meteorological ground stations
located over grasslands and covering high altitudes from
2200 to 2540 m. From a total of 154 meteorological ground
stations corresponding to these three nets we have selected
136 meteorological stations applying a filter criterion con-

sisting in the selection of those stations which have been in
service for at least 5 years, a length which is coherent with
the remote sensing data used in this study.

3.2. Remote Sensing Data

[17] A set of 52 Landsat images (16 Landsat-5 TM and 36
Landsat-7 ETM+ from path 197 and 198 and rows 31 and
32), 52 NOAA AVHRR images and 52 TERRA MODIS
images, between 2002 and 2004 and with a different
percentage of cloudiness (ranging from 3% to 35%), have
been selected to perform instantaneous and daily multiple
regression analysis. Dates have been selected with the aim
of covering all months of the year to take into account
different daily situations. In addition, in order to compare
instantaneous and daily air temperature models using dif-
ferent satellite data we have chosen images of the same date.
[18] To perform monthly and annual multiple regression

analysis we have used 8 d and 16 d MODIS composites
over the 2000 to 2005 period.
[19] TERRA MODIS images have been downloaded

from the EOS Gateway (remote sensing data are available
at http://edcimswww.cr.usgs.gov/pub/imswelcome/). We
have selected three different types of products which contain
the remote sensing variables we have used to perform air
temperature modeling: MOD11A1 and MOD11A2 (con-
taining daily and 8 d LST), MOD09GHK and MOD09A1

Figure 1. General view of Catalonia, in Universal Transversal Mercator (UTM) projection and
geographical location of the filtered meteorological stations from the Catalan Meteorological Service
(UTM coordinates are expressed in kilometers).
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(containing daily and 8 d calibrated reflectances) and
MOD43B3 (containing 16 d albedo). NOAA AVHRR
images products (LST, albedo and NDVI) have been
requested from the remote sensing Laboratory of the
University of Valladolid (LATUV).
[20] Although image time acquisition is different for each

satellite, Landsat and MODIS satellites pass over Catalonia
at a similar time, between 9:30 and 11:30 local solar time.
On the other hand, NOAA passes over the same area, but
between 12:30 and 14:30 local solar time.

4. Methodology

4.1. Regression Model and Model Selection

[21] The methodology that has been applied to retrieve air
temperature (Ta) is based on the methodology proposed by
Ninyerola et al. [2000]. This performs a multiple regression
analysis with spatial interpolation of residual errors of
ground meteorological station data using only geographical
variables as predictors (altitude, latitude, continentality and
solar radiation). Spatial interpolation of the residuals has
been computed using the Inverse Distance Weighted inter-
polation because this interpolator offers better results than
other methodologies, at least in the case of air temperature
modeling [Ninyerola et al., 2000]. This methodology has
been applied to produce the Digital Climatic Atlas of the
Iberian Peninsula which includes mean, minimum and
maximum monthly and annual temperature layers; obtain-
ing a RMSE of less than 1�C in all months [Ninyerola et al.,
2007a].
[22] In order to analyze the importance of remote sensing

in air temperature modeling we have used a combined
approach introducing geographical multiresolution remotely
sensed variables as predictors in the multiple regression
analysis.
[23] In order to quantify the improvement resulting from

the inclusion of remote sensing variables in air temperature
modeling, we have also performed multiple regression
analysis using only geographical variables.
[24] Model selection has been carried out by means of

Mallows’ Cp best subsets to select which multiple regres-
sion model best describes the data and which variables
should be included in the analysis [Draper and Smith,
1981]. Mallows’ Cp usually performs better than other
forward stepwise methods, especially when collinearity is
present and it forces the analyst to examine the full model
fit, which is the only fit providing accurate standard errors,

error mean square, and P-values [Harrell, 2001]. All the
calculations are based on a = 0.05.
[25] As a result of the statistical analysis, resulting models

can be classified into three groups depending on their
predictors.
[26] (1) Geographical models, which only include geo-

graphical predictors.
[27] (2) Remote sensing models, which only include

remote sensing predictors.
[28] (3) Combined models, which include both geograph-

ical and remote sensing predictors.

4.2. Multiple Regression Variables

[29] The geographical variables we have included
are those previously used in other studies [Ninyerola
et al., 2000; Cristóbal et al., 2006] such as altitude,
latitude, continentality and solar radiation. In these studies,
this methodology has been useful to obtain monthly
temperature.
[30] The remote sensing predictors we have selected are

those variables that could be related with air temperature
such as albedo, LST and NDVI. LST and NDVI are often
selected as predictors in air temperature modeling literature
because of their direct relationship with air temperature
[Goward et al., 1994; Czajkowski et al., 1997, 2000;
Prihodko and Goward, 1997; Vogt et al., 1997; Prince et
al., 1998; Recondo and Pérez-Morandeira, 2002; Chokmani
and Viau, 2006; Cristóbal et al., 2006; Riddering and
Queen, 2006]. Furthermore, we can also suppose that
albedo is related with air temperature due to its role in the
energy budget.

4.3. Model Validation

[31] For each of the models we have used 60% of the data
to fit the multiple regression model and the remaining 40%
to test the final model. Table 1 shows the altitude range and
the land cover type where the fit and test meteorological
ground stations are placed.
[32] The selection of fit and test sets of ground meteoro-

logical stations has been done randomly. In monthly and
annual air temperature models the same random fit and test
sets have been always used. Nevertheless, in the case of
instantaneous and daily air temperature modeling, and due
to the different level of image cloudiness, we cannot use the
same set, which is reflected in Tables 2 and 7, where the
number of samples (n) is lower. However, in monthly and
annual modeling all ground meteorological stations have

Table 1. Land Cover Type and Altitude Classes of the Fit (60%) and Test (40%) Meteorological Stations Used

in Instantaneous, Daily and Monthly air Temperature Modeling

Instantaneous and
Daily Modeling Monthly Modeling

Fit Stations,
%

Test Stations,
%

Fit Stations,
%

Test Stations,
%

Land use type natural vegetation 22 20 21 19
crop areas 64 63 62 68
urban areas 14 17 17 13

Altitude classes, m 0–500 77 71 74 67
500–1000 18 22 19 26
1000–1500 4 5 5 5

>2000 1 2 2 2
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been used because is possible to obtain a monthly and
annual free cloud image using more images.
[33] Last, we have computed the coefficient of determi-

nation (R2) and the root mean square error (RMSE) for each
model.

4.4. Processing of Geographical Variables

[34] Latitude has been approached through the distance of
the stations to the Equator because the study area has a
small latitudinal range and it is not necessary to use a more
precise computation; so we can use the direct UTM-Y
coordinate in this case. Altitude has been extracted from a
digital elevation model from the Cartographic Institute of
Catalonia with 30 m of spatial resolution. Continentality has
been defined as the distance from the sea. Finally, instan-
taneous, daily and monthly solar radiation has been
extracted from a potential radiation model proposed by
Pons [1996].

4.5. Landsat-5 TM and Landsat-7 ETM+ Data
Processing

[35] The computation of the Landsat-5 TM and Landsat-7
ETM+ data used in air temperature modeling has been
carried out by means of the following methodologies.
[36] (1) Geometric correction: images have been cor-

rected using conventional techniques based on first order
polynomials taking into account the effect of the relief of
the land surface using a Digital Elevation Model [Palà and
Pons, 1995] obtaining a RMSE of less than 30 m even in
the most extreme altitudes. The DEM used to correct the
images have a vertical accuracy of 8 m. The spatial resolution
of Landsat-7 ETM+ and Landsat-5 TM bands has been
resampled to Landsat-5 TM thermal band spatial resolution,
120 m, by means of nearest neighbor resampling.
[37] (2) Radiometric correction (nonthermal bands):

radiometric correction has been carried out following the
methodology proposed by Pons and Solé-Sugrañes [1994]
which allows us to reduce the number of undesired artifacts
that are due to the effects of the atmosphere or to differen-
tial illumination which is, in turn, due to the time of the day,
the location on the Earth and the relief (some zones are
more illuminated than others, cast shadows, etc). Conver-
sion from digital numbers to radiances has been carried out
by means of image header parameters taking into account
the considerations put forward by Cristóbal et al. [2004].
[38] (3) LST: due to the lack of atmospheric profiles at

satellite pass in Catalonia to compute Landsat-7 ETM+ and
Landsat-5 TM thermal band atmospheric correction by
means of MODTRAN [Kneisys et al., 1995], thermal band
has only been corrected by emissivity effects according to

the methodology proposed by Hurtado et al. [1996] and
Valor et al. [2000]. Apparent brightness temperature used in
the LST retrieval has been computed using the methodology
proposed by Markham and Barker [1986] and Irish [2003]
for Landsat-5 TM and Landsat-7 ETM+, respectively, using
the conversion parameters included in the original image
metadata. Emissivity has been computed following the
methodology proposed by Valor and Caselles [1996]. This
methodology calculates surface emissivity values by means
of the NDVI-emissivity relation [van de Griend and Owe,
1993] and field and laboratory emissivity values [Salisbury
and D’Aria, 1992].
[39] (4) Albedo: broadband albedo has been calculated

following the methodology proposed by Dubayah [1992]
by means of a weighted sum of visible, near infrared and
medium infrared bands (1, 2, 3, 4, 5, 7 Landsat-5 TM and
Landsat-7 ETM+ bands) using the radiometrically corrected
images.
[40] (5) Cloud removal: this has been carried out using

the methodology proposed by Cea et al. [2005]. This
methodology is based on an automatic detection of clouds
and cloud shadows for Landsat-7 ETM+ and Landsat-5 TM
images. Cloud shadows are discriminated by an ISODATA
classification (unsupervised classification proposed in 1973)
while clouds are detected by means of the response on the
thermal band and by several filters based on Irish [2000]
methodology but including an albedo filter.

4.6. MODIS Data Processing

[41] To compute monthly and annual LST, albedo and
NDVI, we have used 8 d LST, 16 d albedo and 8 d
calibrated reflectance composites, respectively. MODIS
LST composites include both night and day LST which
can be useful in minimum and maximum air temperature
modeling. Moreover, we have computed a mean LST using
night and day data in order to introduce a variable that could
be more suitable to perform mean air temperature modeling.
Daily albedo has been obtained using daily calibrated
reflectance following the methodology proposed by Liang
et al. [1999]. Daily NDVI has been computed using daily
calibrated reflectances.

4.7. NOAA Data Processing

[42] NOAA AVHRR LST, albedo and NDVI images have
been requested from the Remote Sensing Laboratory of the
University of Valladolid (LATUV) and from the Centre of
Reception, Processing, Archiving and Dissemination of
Earth Observation Data (CREPAD). Images have been
corrected geometrically by means of a hybrid methodology
using ground control points and orbital parameters.

Table 2. Mean Air Temperature (T) RMSE and R2 of Daily Models From 2002 to 2004, Obtained From the Test Seta

T Ins T Mean T Min T Max n

RMSE (�C) R2 RMSE (�C) R2 RMSE (�C) R2 RMSE (�C) R2 n Fit, 60% n Test, 40%

Landsat daily 1.84 0.59 1.35 0.67 2.41 0.46 1.55 0.63 70 42
NOAA daily 1.52 0.61 1.17 0.71 2.12 0.54 1.71 0.67 73 40
MODIS daily 1.93 0.55 1.28 0.66 2.28 0.54 1.82 0.57 70 42
Daily model average 1.76 0.58 1.27 0.68 2.27 0.51 1.69 0.62 71 41

aIns, instantaneous; min, minimum and max, maximum; n fit (60% of meteorological stations), averaged number of stations used to fit all models; n test
(40% of meteorological stations), averaged number of stations used to test all models.
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Atmospheric correction has been carried out following
Justice et al. [1991] and Vermote et al. [1997] method-
ologies. Last, LST temperature has been computed by
using a split-window algorithm [Sobrino et al., 1991].

5. Results and Discussion

[43] This section is organized according to the air tem-
perature modeling period: daily (instantaneous and daily air
temperature modeling) or monthly and annual. Thus we
have aggregated daily models and monthly models sepa-
rately including, in each section, instantaneous (only in
daily results), mean, minimum and maximum temperature
results. In order to explain the behavior of different daily air
temperatures, we have monthly aggregated daily results for
the period between 2002 and 2004.
[44] In sections 5.1, 5.2, 5.3, and 5.4 we present the

results concerning to the quantification of the improvement
in adding multiresolution remote sensing data to the classi-
cal models (geographical models). In sections 5.5 and 5.6
we analyze the role of remote sensing and geographical
variables in air temperature modeling.

5.1. Predictor Selection

[45] In section 4.1 we have noted that as a result of the
model selection analysis predictors are grouped in
geographical models, remote sensing models or combined
models. The results obtained using Mallows’ Cp model
selector in daily, monthly and annual air temperature mod-
eling show that models combining remote sensing and
geographical predictors (combined models) are statistically
selected in a higher frequency than only geographical or only
remote sensing models (87%, 11% and 2%, respectively, for
the whole set of models). Therefore remote sensing
variables have been shown to improve air temperature
modeling and are statistically significant in 89% of the
models.
[46] In the case of daily models this percentage is similar

obtaining 86.4% of combined models, 11.4% of geograph-
ical models and 2.2% of remote sensing models, respec-
tively. Therefore these results show that are some days in
which remote sensing variables do not improve the models
and only geographical variables are selected. On the other
hand, although in a minor percentage, there are some days
in which geographical variables are not statistically signif-
icant and only remote sensing models are selected.
[47] In the case of monthly and annual air temperature

modeling all models include geographical and remote
sensing predictors.
[48] To quantify the improvement in the addition of

remote sensing variables to daily and monthly air temper-
ature models that only use geographical variables, only
combined and remote sensing models have been taken into
account. Moreover, in order to assess map accuracy in daily
models we have averaged the R2 and the RMSE of the test
set (40% of the meteorological stations).

5.2. Daily Models

[49] Table 2 shows daily results of instantaneous, mean,
minimum and maximum air temperature modeling for
Landsat, MODIS and NOAA cases. Best mean daily air
temperature models are obtained when remote sensing

variables are combined with geographical variables: aver-
aged test R2 = 0.68 and averaged RMSE = 1.27�C.
However, in all cases, minimum and maximum air temper-
ature offer worse results than mean air temperature due to
the fact that extreme values are often more difficult to
predict than mean values.
[50] Figures 2, 3, 4, and 5 shows monthly mean RMSE

for instantaneous, mean, minimum and maximum daily air
temperature modeling from 2002 to 2004. Mean RMSE of
modeled temperatures range between 1.47�C and 2.17�C,
0.91�C and 1.69�C, 1.72�C and 2.64�C, 1.3�C and 2.36�C
in instantaneous, mean, minimum and maximum cases,
respectively. Although in daily minimum and maximum
cases the RMSE pattern is not clear, in daily instantaneous
and mean cases, winter months seem to present higher
RMSE values than in other months. This is possibly
because the Sun is not so high in the sky so producing a
situation more difficult to model (more shadows, lower
Lambertian reflection, etc.) on a daily base. However, the
number of days analyzed in winter months (10) do not
allows us to establish a clear pattern or conclusion.
[51] Tables 3, 4, 5, and 6, show the descriptive statistics

for instantaneous, mean, minimum and maximum daily air
temperature modeling from 2002 to 2004. Minimum and
maximum RMSE values are lower in instantaneous and
mean than in minimum and maximum air temperature
modeling. This fact also suggests that extreme values are
often more difficult to predict than mean values that offer
lower RMSE values.
[52] Regarding daily mean temperature, Goward et al.

[1994], Czajkowski et al. [1997, 2000], Prihodko and
Goward [1997], Prince et al. [1998], Chokmani and Viau
[2006], and Riddering and Queen [2006] reported a RMSE
ranging from 2.08�C to 5.4�C using TVX methodology.
Recondo and Pérez-Morandeira [2002] reported a mean
RMSE of 2.2�C using a simple linear regression and Sun et
al. [2005] obtained a mean RMSE of 3�C at more than 80%
of the locations processed using a physical approach.
[53] In the case of daily maximum temperature, Vogt et al.

[1997] and Recondo and Pérez-Morandeira [2002] obtained
a RMSE ranging from 2 to 2.6�C using a simple linear
regression.
[54] In both cases, our results offer a lower RMSE of

1.27�C in the case of daily mean temperatures and a mean
RMSE of 1.69�C in the case of daily maximum temper-
atures (see Table 2).
[55] Spatial resolution comparison among the different

satellites has shown that lower resolution daily air temper-
ature models give better results than the obtained with the
high resolution ones (see Figures 3, 4, 5 and 6, and Table 2).
This could be explained by the fact that ground meteoro-
logical station measures are ‘‘buffered’’ by the air itself and
so it is a mixed air temperature beyond the meteorological
station. When comparing between similar spatial resolu-
tions, we have found that there are differences between
NOAA and MODIS air temperature models: NOAA models
always give slightly better results than MODIS models. This
can be explained by the fact that noon images could be more
representative of air temperature than midmorning images.
Furthermore, MODIS only offers better results than Landsat
in mean and minimum air temperatures.
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Figure 2. Monthly aggregated RMSE values of instantaneous air temperature modeling from 2002 to
2004. All data computed from 40% of independent meteorological stations (test set).

Figure 3. Monthly aggregated values of mean air temperature modeling from 2002 to 2004. All data
computed from 40% of independent meteorological stations (test set).
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Figure 5. Monthly aggregated RMSE values of maximum air temperature modeling from 2002 to 2004.
All data computed from 40% of independent meteorological stations (test set).

Figure 4. Monthly aggregated RMSE values of minimum air temperature modeling from 2002 to 2004.
All data computed from 40% of independent meteorological stations (test set).
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[56] Finally, and because of their low RMSE, these air
temperature maps are useful to reduce error propagation in
other numerical models that introduce air temperature as an
input variable.

5.3. Monthly and Annual Models

[57] Table 7 shows the mean RMSE computed for
monthly air temperature models. As in daily models, best
mean monthly air temperature models are obtained when
remote sensing variables are combined with geographical
variables: averaged test R2 = 0.86 and averaged RMSE =
1.00�C for all monthly temperatures. Furthermore, best
results have been obtained when mean LST is introduced
instead of night or day LST. For minimum air temperature
modeling, best results haven been obtained introducing only
night LST, while for maximum temperature modeling, best
results have been obtained introducing only day LST. Mean
air temperature models present lower mean values of RMSE
than minimum and maximum air temperature models and,
as we have noted in the case of the daily models, extreme
values are often more difficult to predict than mean values,
which offer lower RMSE values.
[58] Figure 6 shows the monthly evolution of RMSE for

mean, minimum and maximum monthly air temperature
modeling from 2000 to 2005. Modeled mean temperatures
range between 0.65�C and 0.93�C, 1.06�C and 1.46�C and
0.86�C and 1.30�C for mean, minimum and maximum
monthly cases, respectively.
[59] As in the daily case, our results offer a lower mean

RMSE of 1.09�C in the case of maximum monthly air
temperature modeling (see Table 7) than that reported by
Recondo and Pérez-Morandeira [2002], who obtained a
RMSE of 1.8�C performing a simple linear regression.

[60] Furthermore, as we have noted in the case of the
daily air temperature modeling, the low RMSE obtained
produces air temperature maps that are useful to reduce
error propagation in other numerical models that introduce
air temperature as an input variable.

5.4. Analysis of the Inclusion of Remote Sensing
Predictors in Classical Air Temperature Modeling

[61] In order to quantify the improvement of the inclusion
of remote sensing variables in the classical air temperature
modeling, we have also carried out a daily (instantaneous,
mean, maximum, and minimum air temperature) and
monthly (mean, maximum, and minimum air temperature)
modeling using geographical predictors. We have computed
geographical models only in daily or monthly models when
remote sensing predictors were significant (the 89 % of the
analyzed models). Then, we have computed the difference
of test RMSE between the Geographical models and
models that include remote sensing variables (Combined
and Remote sensing).
[62] Table 8 shows these results depending on the remote

sensing predictors source (Landsat, NOAA or MODIS) for
each one of the analyzed air temperatures (instantaneous,
mean, maximum or minimum). A negative value indicates
that there has been an improvement in air temperature
modeling by the inclusion of remote sensing variables in
the model. In 75% of the models compared, best air
temperature results have been obtained when remote sens-
ing predictors were present. All values obtained are negative
and the difference with regard to the geographical models
are around 0.1�C. Florio et al. [2004] also reported an
improvement of 0.06�C in daily mean air temperature
modeling when remote sensing variables were introduced
in the analysis.

Table 3. Descriptive Statistics of Accuracy Measurements of

Instantaneous Air Temperature Modeling From 2002 to 2004a

T Ins

Min Max s

RMSE (�C) R2 RMSE (�C) R2 RMSE (�C) R2

Landsat daily 0.91 0.24 3.09 0.92 0.55 0.21
NOAA daily 0.75 0.23 2.13 0.87 0.33 0.16
MODIS daily 1.06 0.11 2.83 0.82 0.44 0.21
Daily model average 0.90 0.19 2.68 0.87 0.44 0.19

aMin, minimum value; max, maximum value; s, standard deviation.
All data computed from 40% of independent meteorological stations
(test set).

Table 4. Descriptive Statistics of Accuracy Measurements of

Mean Air Temperature Modeling From 2002 to 2004a

T Mean

Min Max s

RMSE (�C) R2 RMSE (�C) R2 RMSE (�C) R2

Landsat daily 0.65 0.20 2.07 0.96 0.49 0.25
NOAA daily 0.72 0.26 1.70 0.90 0.47 0.20
MODIS daily 0.69 0.27 2.09 0.95 0.46 0.24
Daily model average 0.69 0.24 1.95 0.94 0.47 0.23

aMin, minimum value; max, maximum value; s, standard deviation.
All data computed from 40% of independent meteorological stations
(test set).

Table 5. Descriptive Statistics of Accuracy Measurements of

Minimum Air Temperature Modeling From 2002 to 2004a

T Min

Min Max s

RMSE (�C) R2 RMSE (�C) R2 RMSE (�C) R2

Landsat daily 0.99 0.23 3.51 0.74 0.71 0.22
NOAA daily 1.35 0.24 3.14 0.81 0.66 0.20
MODIS daily 1.18 0.24 2.96 0.90 0.65 0.22
Daily model average 1.17 0.24 3.20 0.82 0.67 0.21

aMin, minimum value; max, maximum value; s, standard deviation.
All data computed from 40% of independent meteorological stations
(test set).

Table 6. Descriptive Statistics of Accuracy Measurements of

Maximum Air Temperature Modeling From 2002 to 2004a

T Max

Min Max s

RMSE (�C) R2 RMSE (�C) R2 RMSE (�C) R2

Landsat daily 0.77 0.23 2.35 0.94 0.79 0.25
NOAA daily 0.78 0.24 3.20 0.93 0.75 0.25
MODIS daily 0.73 0.23 3.99 0.91 0.79 0.27
Daily model average 0.76 0.23 3.18 0.93 0.78 0.26

aMax, maximum value; s, standard deviation. All data computed from
40% of independent meteorological stations (test set).
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[63] Despite the fact that the improvement of air temper-
ature modeling using remote sensing variables is modest, it
should be taken into account that including remote sensing
variables in air temperature modeling gives more robust
models than only including geographical predictors, accord-
ing to the Mallows’ Cp results in our study. This is
consistent with Oke [1987], that asserts that air temperature
is strongly determined by surface properties, which are
included in remote sensing variables but not in geographical
variables. In addition, it should be noted that the improve-
ment in monthly models is greater than in daily models
because of the length of the meteorological series analyzed.

[64] Daily instantaneous air temperature differences dis-
play higher values of difference followed by mean, maxi-
mum and minimum air temperature differences because
daily instantaneous air temperature correlates better with
remote sensing images that are taken at the same time. Daily
mean and maximum differences are higher than minimum
ones. This can be explained by the fact that minimum
temperatures usually occur during the night, when no
remote sensing variables have been selected. In this case
we have used night LST which has improved minimum air
temperature modeling results compared with daily mean
and maximum air temperature models.

5.5. Statistical Significance of the Predictors

[65] Regarding the percentage of significant variables in
combined models, these behave differently depending on

Figure 6. Mean air temperature RMSE of monthly models (MODIS) from 2000 to 2005. min:
minimum and max: maximum. All data computed from 40% of independent meteorological stations (test
set).

Table 7. Descriptive Statistics of Accuracy of Monthly and

Annual Air Temperature (T) Modeling Using MODIS Data From

2000 to 2005, Obtained From the Test Set Mina

T Mean T Min T Max n

RMSE,
(�C)

R2 RMSE,
(�C)

R2 RMSE,
(�C)

R2 n fit,
60%

n test,
40%

Monthly mean 0.78 0.90 1.22 0.78 1.09 0.79 82 54
Monthly min 0.65 0.75 1.06 0.65 0.86 0.67 82 54
Monthly max 0.93 0.94 1.46 0.83 1.29 0.85 82 54
Monthly s 0.09 0.05 0.13 0.09 0.13 0.08 82 54
Annual 0.78 0.92 1.1 0.85 1.02 0.89 82 54

aMinimum; max, maximum; s, standard deviation; n fit (60% of
meteorological stations), averaged number of stations used to fit all models;
n test (40% of meteorological stations), averaged number of stations used to
test all models.

Table 8. Mean of the Test Set RMSE Differences Between

Geographical Models and Models That Include Remote Sensing

Predictors (Combined and Remote Sensing) in Daily (From 2002 to

2004) and Monthly (From 2000 to 2005) Casesa

�C T Ins T Mean T Min T Max

Landsat daily �0.11 �0.07 �0.01 �0.07
NOAA daily �0.16 �0.11 �0.01 �0.10
MODIS daily �0.18 �0.11 �0.04 �0.10
Daily model average �0.15 �0.10 �0.02 �0.09
MODIS monthly �0.10 �0.10 �0.13

aResults are grouped depending on the remote sensing predictor satellite.
Ins, instantaneous; min, minimum and max, maximum.
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time resolution (daily, monthly and annual). In the case of
geographical variables, altitude and continentality are the
most important variables (included in 79% and 67% of the
models, respectively) followed by latitude and solar radia-
tion (included in 55% and 32% of the models respectively)
for daily models. In the case of monthly models, continen-
tality and altitude are the most important variables (included
in 87% and 71% of the models, respectively) followed by
solar radiation and latitude (included in 39% of the models
in both cases). However, in other studies [Ninyerola et al.,
2000; Cristóbal et al., 2006] altitude usually appears in a
higher frequency than continentality but an increase in the
meteorological series length would probably change this
behavior making it similar to previous studies.
[66] In the case of remote sensing variables for daily

models, LST is the most important variable followed by
albedo and NDVI (included in 73%, 43% and 41% of the
models, respectively). For monthly and annual models, LST
and NDVI are the most important variables followed by
albedo (included in 77%, 77% and 64% of the models,
respectively).

5.6. Multiple Regression Beta Weights

[67] Standardized beta, or beta weight, estimate the rela-
tive predictive power of predictors and help to assess the
unique importance of the independent variables relative to a
given multiple regression model [Sokal and Rohlf, 1997].
Because of the lower interpretability of beta weights in daily
models, we have only considered monthly air temperature
models to analyze beta weight behavior. In order to estab-

lish the relative predictive importance of the independent
variables in monthly air temperature modeling we have
averaged the beta weights for the different predictors
depending on the type of air temperature modeled.
[68] Figure 7 shows the averaged weights of the predic-

tors for the MODIS air temperature modeling from 2000 to
2005.
5.6.1. Geographical Predictor Beta Weights
[69] In previous studies in the Iberian Peninsula [Ninyerola

et al., 2000, 2007a] we found the same pattern in the case of
altitude and continentality. Altitude has a negative sign in all
months and in all types of temperature modeled because air
temperature usually decreases as altitude increases. Conti-
nentality has a positive sign for all months in maximum air
temperature models and a negative sign in minimum air
temperature models. In the case of mean temperature mod-
els, it is positive in spring and summer months (when the
interior is hotter) and negative in winter and autumn months
(when the interior is colder). In the work of Ninyerola et al.
[2000] and Ninyerola et al. [2007a] latitude was always
found to be positive and this difference can be explained by
the fact that in these studies we analyzed longer series of
meteorological series instead of only those covering a period
of 5 years. Regarding solar radiation, this predictor is always
positive in the whole set of air temperature models when it is
statistically significant.
[70] With regard to the relative predictive power of

geographical predictors, altitude is the most powerful pre-
dictor followed by continentality, latitude and solar radia-

Figure 7. Average of geographical and remote sensing multiple regression beta weights in the case of
monthly models (MODIS) from 2000 to 2005 for monthly mean, minimum and maximum air
temperature modeling.
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tion, in that order. Solar radiation, however, could be more
predictive if meteorological stations were located on slopes
and not mainly in planes and hills, as they are.
5.6.2. Remote Sensing Predictor Beta Weights
[71] Beta weights of remote sensing predictors are rarely

dealt with in the literature and their comparison with other
results is often not possible. Albedo always has a negative
sign in all air temperature models, so air temperature
decreases as albedo increases. Low albedo surfaces absorb
heat and increase the air temperature in comparison with the
surrounding area. On the other hand, high albedo surfaces
reflect incoming solar radiation in a higher proportion and,
therefore, decrease the air temperature of the surrounding
area. NDVI always displays negative values so air temper-
ature decreases as NDVI values increase. We can relate
NDVI with water availability; thus, nonstressed vegetation
or well irrigated crops tend to display higher NDVI values
than bare soils or stressed vegetation that usually displays
lower NDVI values. Because of leaf cooling caused by the
usage of visible radiation for photosynthesis and to plant
transpiration, vegetation reduces its temperature below air
temperature [Curtis, 1936; Pallas et al., 1967; Gates, 1980],
therefore, an increase in NDVI is usually followed by a
decrease in air temperature. LST always has a positive sign
so air temperature increases as LST increases. Emissive
natural covers usually transfer heat to the atmosphere by
convection which depends on the ascent of warm air above
heated surfaces or the descent of cold air below cooled
surfaces [Monteith and Unsworth, 1990] as in areas mainly
covered by snow or ice. Regarding the different LST
predictors, night LST in minimum air temperature modeling
shows higher weight than mean or day LST or altitude,
which indicates that this predictor is necessary in the case of
extreme temperature modeling such as minimum tempera-
ture (see Figure 7).
[72] Regarding the relative predictive power of remote

sensing predictors, LST is the most powerful predictor
followed by NDVI and albedo. Although NDVI and
albedo weights are similar, NDVI appears as a significant
predictor in a higher proportion than albedo (77% and
64%, respectively).
[73] Finally, it is interesting to note that altitude and LST

are the most important predictors of air temperature mod-
eling and that their weights are similar. Besides, both
predictors are statistically significant in a higher proportion
(71% in the case of altitude and 77% in the case of LST).
This means that these two predictors are likely to be used in
air temperature modeling in the future.

6. Conclusions

[74] Models combining remote sensing and geographical
predictors have been statistically selected more frequently
than only geographical (11%) or only remote sensing
models (2%) and are statistically significant in 87% of the
daily and monthly and annual air temperature models.
Moreover, the inclusion of satellite variables has decreased
the RMSE, especially in monthly air temperature models,
although modest results have been obtained compared with
only geographical models.
[75] The obtained RMSE of daily and monthly air tem-

perature combined models has been shown to be moderately

accurate in the daily case and highly accurate in the monthly
case for all resolutions, especially in instantaneous and
mean air temperature modeling. Furthermore, these results
suggest that daily and monthly air temperature maps should
be introduced as input variables, for example in ecological
modeling, because of the low RMSE obtained.
[76] Remote sensing variables have shown themselves to

be robust predictors of air temperature, especially LST and
NDVI. In the case of remote sensing variables for daily
models, LST is the most important variable followed by
albedo and NDVI, while in the case of monthly and annual
models, LST and NDVI are the most important variables
followed by albedo.
[77] Regarding spatial resolution, low spatial resolution

images have given better results than those with high spatial
resolution when the time the satellite passes is appropriate,
due to the fact that ground meteorological station measures
the mixed air temperature beyond the point itself.
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