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[1] VOC emissions from terrestrial ecosystems provide one of the principal controls over
oxidative photochemistry in the lower atmosphere and the resulting air pollution. Such
atmospheric processes have strong seasonal cycles. Although similar seasonal cycles
in VOC emissions from terrestrial ecosystems have been reported, regional emissions
inventories generally omit the effect of seasonality on emissions. We compiled
measurement data on seasonal variations in monoterpene emissions potentials for two
evergreen species (Quercus ilex and Pinus pinea) and used these data to construct two
contrasting seasonal response functions for the inclusion in monoterpene emission models.
We included these responses in the Niinemets et al. model and compared simulation
results to those of the MEGAN model, both with and without its predicted seasonality. The
effect of seasonality on regional monoterpene emissions inventories for European
Mediterranean forests dominated by these species was tested for both models, using the
GOTILWA+ biosphere model platform. The consideration of seasonality in the Niinemets
et al. model reduced total estimated annual monoterpene emissions by up to 65% in some
regions, with largest reductions at lower latitudes. The MEGAN model demonstrated a
much weaker seasonal response than that in the Niinemets et al. model, and did not capture
the between species seasonality differences found in this study. Results suggest that
previous regional model inventories based on one fixed emission factor likely overestimate
regional emissions, and species-specific expressions of seasonality may be necessary. The
consideration of seasonality both largely reduces monoterpene emissions estimates, and
changes their expected seasonal distribution.
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1. Introduction

[2] Nonmethane biogenic volatile organic compounds
(VOCs) represent a heterogeneous compound class made
up of a wide range of reactive hydrocarbons (isoprene,
monoterpenes, and sesquiterpenes) emitted by most plant
species. VOC emissions from terrestrial ecosystems provide
one of the principal controls over oxidative photochemistry
in the lower atmosphere [Fehsenfeld et al., 1992; Crutzen
et al., 1999; Monson and Holland, 2001] and have a large
impact on local air pollution [e.g., Fuentes et al., 2000;
Kanakidou et al., 2005; Helmig et al., 2006; Szidat et al.,
2006; Gelencsér et al., 2007]. The air chemistry and air
pollution impacts of VOCs depend on the availability of
reaction partners, e.g., reactive nitrogen compounds, which

have a regionally specific seasonal pattern that is driven by
anthropogenic as well as biological activities [e.g., Pierce
et al., 1998; Fiore et al., 2005; Tie et al., 2006]. Thus, it is
not only the overall total emission budget but also the
timing of emissions that is important.
[3] Natural seasonal cycles are known to have a strong

control over the timing of VOC emissions [e.g., Llusià and
Peñuelas, 2000; Hakola et al., 2003, 2006; Holzinger et al.,
2006]. Climate change already affects seasonal cycles in
terrestrial ecosystems, most notably the timing and duration
of phenological events such as the onset of budburst and the
rates of foliage development and senescence [Peñuelas and
Filella, 2001; Bakkenes et al., 2002; Peñuelas et al., 2002;
Walther et al., 2002] and is likely to continue to do so in
the future [Gitay et al., 2001; Prieto et al., 2009]. Com-
pared to other regions, Mediterranean regions in particular
are threatened by such changes in the near future due to
proportionally higher projected increases in temperature
[Giorgi et al., 2004; Giorgi, 2006; Beniston et al., 2007;
Intergovernmental Panel on Climate Change (IPCC),
2007], and the potential for drought-driven phenological
shifts in response to changes in precipitation [Peñuelas et
al., 2004]. Moreover, many dominant ecosystems of the
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Mediterranean regions contain species that are strong VOC
emitters such as the Mediterranean evergreen oak Quercus
ilex L. dominated forests, which emit high amounts of
highly reactive monoterpenes and exhibit a strong season-
ality [Llusià and Peñuelas, 2000]. It is not entirely clear
why plants emit VOCs, their presence has been reported to
increase plant tolerance to several environmental stresses,
i.e., high temperatures (see Sharkey et al. [2007] for a
review). Future changes in environmental conditions are
likely to change VOC emissions not only directly through
altered temperature effects on the emission rates, but also
indirectly due to altered seasonal cycles such as phono-
logical events or enzyme activities. Understanding the
overall effect of seasonal cycles on emissions (and potential
future changes) is thus necessary to reduce uncertainty in
current estimates and future projections of VOC emissions.
[4] Various models exist to describe the emissions of

VOCs from terrestrial vegetation scales (see Arneth et al.
[2008b] andGrote and Niinemets [2008] for recent reviews).
These models are based on the observed short-term response
of emissions to temperature and light intensity. Due to a
lack of long-term seasonal measurement data, they have a
bias toward employing only a snapshot of whole season,
typically midseason measurements, for the parameterization
and calculation of the basal emission factor (see below) (for
representative emission inventories in midseason used in
major scaling exercises see Kesselmeier and Staudt [1999],
Simpson et al. [1999], and Geron et al. [2000, 2006]).
Other processes, operating over longer time scales, such as
the effect of seasonality, and potential effects of CO2

fertilization have received little attention. Atmospheric
CO2 concentration changes have been suggested to modify
the emission response on the decadal or longer time scale
[Possell et al., 2005; Arneth et al., 2007a, 2007b, 2008a].
The determination of seasonality effects is lately receiving
more attention as an important factor in regional budgets
[Simon et al., 2006; Tarvainen et al., 2007], and represents
a major uncertainty in biogenic emission simulations [Funk
et al., 2005; Monson et al., 2007; Arneth et al., 2008b].
[5] Seasonality in emissions has been suggested to affect

the plant species�specific emission factor. This factor
describes the potential for emissions during the measurement
period, often during the midsummer and optimal conditions.
It is the most important factor for the description of VOC
emissions [Arneth et al., 2008b; Grote and Niinemets, 2008]
and varies strongly among species from values near zero to
greater than 100 mg g�1leaf h

�1 [Kesselmeier and Staudt, 1999;
Wiedinmyer et al., 2004]. The basal emission factor is
known to change considerably during the year [e.g., Llusià
and Peñuelas, 2000; Staudt et al., 2002; Hakola et al.,
2006; Holzinger et al., 2006]. The mechanisms behind this
change are not fully understood, but it has been suggested to
be due to the production and destruction of enzymes that are
responsible for the formation of VOCs [Lehning et al., 1999;
Loreto et al., 2001; Mayrhofer et al., 2005]. In large-scale
simulated emission estimates, the seasonal dynamics gener-
ated by such physiological preconditioning is almost always
neglected. The influence of the omission of seasonal varia-
tion in emission potential on regional VOC emission budgets
has yet to be quantified.
[6] Few approaches have been developed to simulate this

seasonal modification of emissions. Geron et al. [2000]

applied a weak seasonality using the integrated temperature
of the previous 18 h instead of instantaneous temperature.
Fuentes and Wang [1999] used an empirical function based
on cumulated temperature or growing degree days, respec-
tively, and He et al. [2000] varied the emission factor in
dependence on the number of monthly sunshine hours, and
Schaab et al. [2003] used a nonsymmetrical response curve.
Only one regionally applied model known to the authors,
the Guenther et al. [2006] MEGAN model, explicitly
accounts for the seasonal cycle of emissions on the regional
scale. This model applies the same empirical adjustment to
all plant functional types, based on the light and temperature
regime of the past 10 days.
[7] These models have typically resulted in bell-shaped

response curves of VOC emissions during the season,
reflecting seasonal variation in light and temperature. How-
ever, the application of relatively short-term previous inte-
grated climate to describe seasonal variation assumes that
seasonal modifications mainly reflect acclimation response
of foliage emission potentials. While environmental mod-
ifications can trigger the onset of seasonal events such as
bud break or leaf senescence, the control of phenological
events by climatic drivers alone is not often strong [Battey,
2000]. Seasonal variation in VOC emissions is thus often
not bell-shaped [Llusià and Peñuelas, 2000], reflecting
stronger variation of emissions than predicted by integrated
climatic variables, possibly due to direct triggering by
phenological events and the seasonal course of enzyme
activity [Lehning et al., 2001], as simulated by the detailed
SIM-BIM2 model [Grote et al., 2006]. The scarcity of
whole season emission data has hindered the inclusion of
such species controls into the emission models.
[8] The overall uncertainty in our knowledge of the

drivers of seasonal dynamics of emissions, and how to
model them, is potentially a large source of error when
modeling VOC emissions from terrestrial vegetation. In this
paper, we focus on monoterpenes (a class of VOCs that
consist of two isoprene units and have the molecular
formula C10H16), and addressed the problem of seasonal
dynamics of monoterpene emission potentials by developing
seasonal emission factor response functions for two key
species in Mediterranean forest ecosystems: the broadleaved
evergreen sclerophyll Quercus ilex and the evergreen
conifer Pinus pinea. The response functions were integrated
into the Niinemets et al. [1999, 2002] monoterpene emis-
sion model coupled to the process-based terrestrial biogeo-
chemical model GOTILWA+ [Gracia et al., 1999; Keenan
et al., 2008, 2009a]. Simulations were run for these two
dominating species over the European Mediterranean region
to quantify the effect of the consideration of a seasonally
dynamic emissions potential on the total emissions budget
for these two species. The simulations were further compared
with simulations coupling the commonly used empirical
Guenther et al. [2006] model development, MEGAN, both
with and without its seasonal modifications of emissions, to
the GOTILWA+ model.

2. Models, Measurements, and Methods

2.1. Studied Species

[9] The Holm oak (Quercus ilex) is an evergreen sclero-
phyllous tree native to Mediterranean Europe. It is a strong
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emitter of monoterpene species (mostly a-pinene, b-pinene,
sabinene, myrcene, and limonene), and although its distribu-
tion is limited to the Mediterranean region, it contributes
more than 25% of the total European forest monoterpene
emissions budget [Keenan et al., 2009a]. The aerial cover-
age of Quercus ilex is currently increasing in some mesic
areas as the result of warmer temperature and reductions in
water availability [Peñuelas and Boada, 2003]. The Italian
stone pine (Pinus pinea) is an evergreen conifer wide-
spread in the European Mediterranean region. It is also
one of the strongest monoterpene emitters of European
forest species (emitting mostly linalool, trans-b-ocimene,
a-pinene, myrcene, and limonene, among others). We
assume no emissions from storage ducts, as in both species,
the bulk of monoterpenes are emitted in a temperature- and
light-dependent manner [Bertin et al., 1997; Staudt et al.,
1997].

2.2. Biosphere Model Platform Description

[10] To describe canopy-level emissions, and scale the
leaf-level monoterpene emission models to the region, we
coupled both the Niinemets et al. and the MEGAN model
monoterpene emission models to the process based terres-
trial biogeochemical model GOTILWA+ (Growth Of Trees
Is Limited by WAter) [Gracia et al., 1999; Keenan et al.,
2008, 2009b].
[11] The GOTILWA+ model describes leaf structural and

chemical characteristics, and thus foliage physiological
potentials. The model also describes the forest structure
and the microclimatic conditions necessary to scale from the
leaf to the canopy, and for correct integration of fluxes
distinguishes between sunlit and shaded leaf fractions
[Wang and Leuning, 1998; Dai et al., 2004; Niinemets
and Anten, 2009]. The distribution of intercepted diffuse
and direct radiation within the canopy depends on the time
of the day, season, and the area of leaf exposed to the sun
[Campbell, 1986]. The photosynthetic module couples the
Farquhar et al. [1980] photosynthesis model, with depen-
dencies on intercepted radiation, species-specific photo-
synthetic capacities, leaf temperature, and leaf intercellular
CO2 concentration (Ci), to the Leuning et al. [1995] stomatal
conductance model, that is the advancement of the Ball et al.
[1987] model.
[12] To scale from the canopy to the region, an extensive

database has been built within the framework of the
European ATEAM (Advanced Terrestrial Ecosystem Anal-
ysis and Modeling) and ALARM (Assessing Large-scale
Risks for biodiversity with tested Methods) projects
[Keenan et al., 2009a], connecting diverse information
sources at a European level and adapting them to fit the same
spatial resolution of 100 latitude � 100 longitude (minutes).
The database contains data related to forest species, forest
coverage, forest structure, forest function (photosynthesis,
respiration rates), soil hydrology, organic matter decomposi-
tion rates and management strategies [Schröter et al., 2005].
The species distribution database was updated using distri-
bution data compiled by members of the EUFORGEN
network [Fady and Vendramin, 2004] (www.euforgen.org,
updated 2008). The model setup used to scale from the
leaf to the region has previously been described by
Keenan et al. [2009a].

2.3. Leaf-Level Monoterpene Emissions Algorithms

[13] We considered the two leaf-level monoterpene
emission models most commonly applied to estimate
monoterpene emissions on the regional scale. Both models
take contrasting approaches to modeling emissions, each
with different assumptions about the way in which envi-
ronmental factors limit the emissions and with different
levels of mechanistic detail. Where pertinent, modifications
were made for consistency between these models (as in
work by Arneth et al. [2007a]). No direct CO2 or water
stress effect on the emissions was applied in this modeling
exercise.
2.3.1. MEGAN Model
[14] The most widely used model for the simulation of

natural VOC emissions was developed by Guenther et al.
[1991, 1993]. Its wide use is in large part due to its simplicity,
describing emission rates by varying a long-term basal
emission factor for monoterpenes (EM) in dependence on
light and temperature. These adjustments are applied
through two empirical factors, one describing the response
to light intensity and the other to leaf temperature, using
the following algorithm:

E ¼ EMCLCT: ð1Þ

The emission factor, EM, used in the model is the emission
rate normalized to a leaf temperature (T) of 30�C and
quantum flux density (Q) of 1000 mmol m�2 s�1 [Guenther
et al., 1991, 1993, 1995; Guenther, 1997]. CL and CT are
the functions of quantum flux density and leaf tempera-
ture, respectively) as outlined in the Guenther et al. [2006]
MEGAN (Modeling Emissions of Gases and Aerosols
from Nature) model version. Parameters were determined
following the original parameterizations of the Guenther
et al. model, including recent algorithms developed in
MEGAN, which links parameter values to short-term (24 h)
and long-term (10 days) fluctuations in temperature and light
intensity [Müller et al., 2008]. For simulations using
MEGAN without accounting for seasonality, the parameter-
ization for long-term fluctuations was omitted.
[15] Other specifications of the MEGAN model, such as

the effect of water stress, have been omitted in this study to
ensure comparability with the Niinemets et al. [1999, 2002]
model (both MEGAN and the Niinemets et al. model
assume no leaf age affect for evergreen species). The
seasonal cycle of emissions in the MEGAN model is based
on the previous 10 days light and temperature. It has been
previously calibrated [Guenther et al., 2006] using emission
data from five studies (not included in response function
parameterization derived in this study) [Petron et al., 2001;
Monson et al., 1994; Sharkey et al., 1999; Geron et al.,
2000; Hanson and Sharkey, 2001], including four different
species (Quercus alba, Quercus rubra, Quercus macrocarpa,
and Populus tremuloides).
2.3.2. Niinemets et al. Model
[16] In the Niinemets et al. [1999, 2002] model for

monoterpene emissions the supply of dimethylallyldiphos-
phate (DMADP) and Nicotinamide adenine dinucleotide
phosphate (NADPH), as affected by the rate of photosyn-
thetic electron transport and the competitive strength of the
synthase enzyme for electrons, are considered as the main
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controlling factors for the rate of monoterpene synthesis.
Thus the emission rates are linked to the activity of the
synthase enzyme SS to predict the capacity of the synthesis
pathway and to foliar photosynthetic metabolism via the
photosynthetic electron transport rate, J, to predict substrate
availability for monoterpene synthesis [Niinemets et al.,
1999, 2002].
[17] Emission rates are calculated through the rate of

photosynthetic electron transport, the fraction of total elec-
tron flow used for the monoterpene synthesis, and the cost
of monoterpene synthesis in terms of electrons. Emissions
can thus be linked to the photosynthetic electron transport
activity of the leaf with the use of only one single leaf
dependent parameter: the fractional allocation of electron
transport to monoterpene synthesis.

2.4. Derivation and Implementation of Seasonal
Response Functions

[18] An extensive literature search was performed to
identify measurements related to the seasonal variation of
the basal monoterpene emission factor (EM). Data were
compiled from studies explicitly looking at seasonal varia-
tion in EM as well as from studies reporting emission rates
for several sampling events during the growing season
where the measurement date was reported. In all cases,
only measurements from fully sun-exposed branches were
included. For Quercus ilex, EM estimates were obtained
from Bertin et al. [1997], Owen et al. [1997], Kesselmeier et
al. [1997], Street et al. [1997], Kesselmeier et al. [1998],
Llusià and Peñuelas [2000], and Staudt et al. [2004]. For
Pinus pinea, EM estimates were obtained from Pio et al.
[1993], Kesselmeier et al. [1997], Owen et al. [1997],
Staudt et al. [1997], Street et al. [1997], Owen and Hewitt
[2000], Staudt et al. [2000], Owen et al. [2001], Sabillón
and Cremades [2001]. The compiled data for both species
exhibited a curve with a maximum between days 200–320
(Figure 1) and were fitted by different empirical functions.
The best fit was obtained by an asymmetric exponential
function that allows for different rates of increase and

reduction in EM during the growing season [June et al.,
2004] to describe the seasonal variation in EM:

EM ¼ E0 þ Emaxe
� D�Dmaxð Þ

e½ �2 ; ð2Þ

where E0 is the minimum and Emax the maximum emission
rate during the season, D is the day of the year, Dmax is the
day at Emax, and e determines the rate of change of EM

during the season. The data were fitted by equation 2 through
minimizing the least squares between the measurements and
predictions, resulting in a high degree of correlation between
the measured and predicted values (r = 0.83 for Quercus ilex
and r = 0.86 for Pinus pinea) (see Figure 1 for the fits).
For Quercus ilex, the model parameters obtained were:
E0 = 7.49 mg g�1 h�1, Emax = 28.8 mg g�1 h�1, Dmax =
222.7, e = 55.6, while for Pinus pinea E0 = 1.95 mg g�1 h�1,
Emax = 7.90 mg g�1 h�1, Dmax = 198.1, e = 42.9.

2.5. Modeling Protocol

[19] Simulations were run with each emission model cou-
pled to the GOTILWA+ model for each 10’ longitude x 10’
latitude scale pixel containing Quercus ilex or Pinus pinea
forests in the European Mediterranean region. For parame-
terization of the forest structural components in GOTILWA+,
species-specific parameters for Quercus ilex and Pinus pinea
were applied. Two versions of the Niinemets et al. model
were considered: one with a fixed tree species-specific
emissions potential (Figure 1), and the other varying the
emissions potential using the seasonally dynamic response
derived in Section 2.4 (Figure 1). Two versions of the
MEGAN model were also used: one without the seasonal
parameter modification (see Section 2.3.1), and the other
applying the MEGAN seasonal modification (based on the
previous light and temperature regime). For each tree species,
simulations were performed for years from 1900 to 2000,
using the reconstructed climatic time series based on the
CRU05 (1901–2000) monthly data set [New et al., 1999],
with atmospheric concentrations of CO2 from 1901 to 2000
obtained from the Carbon Cycle Model Linkage Project
[McGuire et al., 2001]. The presented results correspond to
the 1960 to 1990 time period.

3. Results

[20] The application of seasonal variations in monoter-
pene emissions in both models had a large affect on both the
total monoterpene emissions budget and the timing of
monoterpene emissions for the two tree species (Table 1).
For both species the consideration of a seasonally changing
emission potential with the Niinemets et al. model reduced
the total annual monoterpene emissions from the European
Mediterranean region by roughly 50%, when compared to
emission estimates from the Niinemets et al. model with a
fixed basal emission factor at Emax. The difference between
the seasonal and nonseasonal MEGAN model was not as
strong, with an overall difference in annual emissions of
21% over the two species (Table 1).
[21] Emissions from winter, early spring and late autumn

were most affected. In the case of the seasonal Niinemets et
al. model, the highest emissions potential was not reached
until late summer forQuercus ilex (Figure 2) and midsummer
for Pinus pinea (Figure 3). For the seasonal MEGAN model,

Figure 1. Seasonal variation in monoterpene emission
factor (EM) in the Mediterranean evergreen sclerophyll
Quercus ilex and the evergreen conifer Pinus pinea. Data
were fitted by equation (2). (See section 2.4. for data sources
and curve parameters.)
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highest emissions were in late summer for both species.
The MEGAN model predicted only very small reduction
in emissions due to seasonality in autumn, due to the fact
that it uses the past 10 days light and temperature, which
allows high emissions to be sustained after optimum
summer conditions.
[22] For Quercus ilex, the nonseasonal versions of both

models gave very similar annual monoterpene emissions

totals. There were large differences within the year however.
For the nonseasonal models, the Niinemets et al. model
gave higher emissions in the early and later parts or the year,
and the MEGANmodel giving higher peak emissions during
summer (Table 1). The implication of a seasonal variation in
emission potentials in the Niinemets et al. model explained
much of the difference in the shape of the annual emission
response when compared to the MEGAN model (Figure 2).

Table 1. Average Monoterpene Emissions for the Niinemets et al. and MEGAN Models for Quercus ilex and Pinus pinea During the

Years 1960–1990a

Period

Quercus ilex Emissions (gC m�2 month�1) Pinus pinea Emissions (gC m�2 month�1)

MEGAN Model Niinemets et al. Model MEGAN Model Niinemets et al. Model

Nonseasonal Seasonal
Reduction

(%) Nonseasonal Seasonal
Reduction

(%) Nonseasonal Seasonal
Reduction

(%) Nonseasonal Seasonal
Reduction

(%)

JFM 0.23 0.10 55.4 0.28 0.06 88.6 0.06 0.04 38.9 0.1 0.02 80
AMJ 0.73 0.54 25.5 0.87 0.33 62.1 0.18 0.13 28.3 0.24 0.11 54.2
JAS 1.30 1.20 7.5 1.06 0.91 14.2 0.31 0.27 11.7 0.27 0.18 33.3
OND 0.33 0.21 37.7 0.41 0.13 68.3 0.08 0.07 20.7 0.14 0.03 78.6
Totals 2.59 2.05 20.8 2.62 1.43 45.4 0.63 0.51 20.1 0.75 0.34 54.7

aFor the Periods January-February-March (JFM), April-May-June (AMJ), July-August-September (JAS), and October-November-December (OND).
Niinemets et al. model is from Niinemets et al. [1999, 2002] and MEGAN model is from Guenther et al. [2006]. Average monoterpene emissions given in
gC m�2 month�1. Emissions for the MEGAN model and Niinemets et al. model are compared both with and without a seasonal adjustment. The percentage
reduction refers to the reduction in total emissions from each model due to the implication of a seasonal variation in emissions.

Figure 2. Average monthly per pixel forest canopy monoterpene emissions (gC m�2 month�1) with the
Niinemets et al. [1999, 2002] model and the MEGAN model [Guenther et al., 2006] coupled to the
GOTILWA+ model [Gracia et al., 1999; Keenan et al., 2009a], for Mediterranean Europe Quercus ilex
dominated forests over the period 1960–1990. The Niinemets et al. model is run both with and without
the seasonality factor (Figure 1). The MEGAN model is run both with and without its measure of
seasonality.
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The seasonal MEGAN model showed the same shape as the
seasonally dynamic Niinemets et al. model, with peak
emissions around August (Figure 2), but gave higher emis-
sions than those of the seasonal Niinemets et al. model at
all times during the year (Table 1). The total annual emissions
budget with the seasonal MEGAN model for Quercus ilex
over the Mediterranean region was 43% higher than that of
the seasonal Niinemets et al. model (Table 1).
[23] For Pinus pinea, the nonseasonal Niinemets et al.

model and the nonseasonal MEGAN model again gave
similar annual totals (differing by 16%), with a very different
distribution of monoterpene emissions within the year. The
distribution of monoterpene emissions within the year from
the seasonally dynamic Niinemets et al. model was also more
comparable to both the nonseasonal and the seasonal
MEGAN models than was the nonseasonal Niinemets et al.
model (Figure 3). Much of the difference between the
original Niinemets et al. model and the seasonal MEGAN
model was explained by the inclusion of a seasonally
dynamic emissions factor in the Niinemets et al. model,
particularly in spring and early summer (Table 1). Marked
differences appear in late summer and autumn, with mono-
terpene emissions from the seasonal MEGAN model (which
applies the same seasonal response to both species) peaking
much later than those of the seasonally dynamic Niinemets
et al. model. This leads to 56% higher emissions in the

second half of the year with the seasonal MEGAN model
(Table 1). The seasonal MEGAN model gave 50% higher
total annual emissions than the seasonal Niinemets et al.
model.
[24] The impact of the consideration of a seasonally

dynamic emission potential on the total annual monoterpene
emission budget from the Niinemets et al. model was higher
at lower latitudes. The reduction in the total annual mono-
terpene emissions from the Niinemets et al. model due to
the consideration of seasonal variability in the basal emis-
sion factor varied from 25% (in the region of the Pyrenees
Mountains), to 65% (in the southern Iberian Peninsula).
This trend was reflected in both Quercus ilex (Figure 4a)
and in Pinus pinea (Figure 5a). Overall, the impact of
seasonal variation in the Niinemets et al. model was higher
in Pinus pinea, which shows a stronger seasonal cycle in its
emission potential (a 5.2 fold increase over a 62 day period,
compared to a 4.8 fold increase over a 98 day period for
Quercus ilex (Figure 1)). Areas subject to warmer winters
showed the largest differences.
[25] The difference between the MEGAN model with and

without seasonality was considerably smaller than that
observed with the Niinemets et al. model (Figures 4 and 5),
suggesting that the measure of seasonality in the MEGAN
model is much weaker than that derived from the data in
Section 2.4. The difference in total annual monoterpene

Figure 3. Average monthly per pixel forest canopy monoterpene emissions (gC m�2 month�1) with the
Niinemets et al. [1999, 2002] model and MEGAN model [Guenther et al., 2006] coupled to the
GOTILWA+ model [Gracia et al., 1999; Keenan et al., 2009a], for Mediterranean Europe Pinus pinea
dominated forests over the period 1960–1990. The Niinemets et al. model is run both with and without
the seasonality factor. The MEGAN model is run both with and without its measure of seasonality.
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emissions did not show a strong latitudinal response, due
to the fact that the seasonal response in the MEGAN model
is based on temperature and light.

4. Discussion

[26] Seasonal variation in VOC emissions in Mediterra-
nean plants has been widely reported [e.g., Grinspoon et al.,
1991; Fuentes et al., 1995; Staudt et al., 1997; Fuentes and

Wang, 1999; Lehning et al., 1999; Peñuelas and Llusià,
1999; Llusià and Peñuelas, 1999; Loreto et al., 2001; Kuhn
et al., 2004; Mayrhofer et al., 2005]. Accounting for such
seasonal changes in monoterpene emissions has been shown
here to have a large impact on modeling the seasonal
dynamics of emissions. The presented study is the first to
demonstrate the importance of considering the seasonal
dynamics of monoterpene emissions on a regional scale,
and illustrates the magnitude that the consideration of

Figure 4. Average regional differences (percent) in total simulated annual monoterpene emissions:
(a) between the Niinemets et al. [1999, 2002] seasonal and nonseasonal model and (b) the MEGAN
model [Guenther et al., 2006] with and without its seasonal response. Both models are run coupled to the
GOTILWA+ model [Gracia et al., 1999; Keenan et al., 2009a], for Quercus ilex forests in the
Mediterranean Europe region, for the period 1960–1990.

Figure 5. Average regional differences (percent) in total simulated annual monoterpene emissions:
(a) between the Niinemets et al. [1999, 2002] seasonal and nonseasonal model and (b) the MEGAN
model [Guenther et al., 2006] with and without its seasonal response. Both models are run coupled to the
GOTILWA+model [Gracia et al., 1999;Keenan et al., 2009a], for Pinus pinea forests in theMediterranean
Europe region.
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seasonal variability can have on estimated monoterpene
regional budgets. The scarcity of knowledge on the driving
processes behind such seasonal variations leads to large
uncertainty when modeling the seasonal cycle of mono-
terpene emissions. The use of a fixed seasonality relation-
ship with the time of year, as applied in this study, may
not be entirely correct due to the probable dependence of
seasonality on past light and temperature regimes [Sharkey
and Loreto, 1993; Staudt et al., 2000], phenology, or water
availability [Bertin and Staudt, 1996], leading to complex
spatiotemporal variations in emission potentials. This is
confounded by potential effects of canopy depth on enzyme
activity [Grote, 2007]. However, considering such affects in a
more detailed manner is not possible until a more process-
based knowledge of seasonal variations has been gained.
[27] The Niinemets et al. model has a strong relation to

light regime and energy production [see Arneth et al.,
2007a], as do the MEGAN model algorithms [Guenther et
al., 1991, 1993, 1995; Arneth et al., 2007a], which have
been widely used, with a fixed emission factor, in regional
and global estimates of biogenic VOC emissions inventories
[e.g., Guenther et al., 1995; Levis et al., 1999; Simpson et
al., 1999; Wang and Shallcross, 2000; Adams et al., 2001;
Naik et al., 2004; Parra et al., 2004; Tao and Jain, 2005;
Lathière et al., 2006]. Thus, with a fixed emission factor,
emissions can be sustained even in winter because light
availability and temperature are still sufficiently high. This
is particularly noticeable in the increasing difference in
modeled monoterpene emissions at more southern latitudes
(Figures 4 and 5), where relatively warm winters led to large
monoterpene emissions if the seasonal cycle of emissions
potentials is not taken into account. To the best of our
knowledge, there is no large scale regional study which
takes into account a realistic measure of seasonality.
[28] Species differences in the shape of the EM versus time

of year dependencies reflect species-specific differences in
phenology as frequently observed in Mediterranean species
[e.g., Pereira et al., 1987; Flexas et al., 2001; Ogaya and
Peñuelas, 2004; Prieto et al., 2009]. The large difference (in
the magnitude and timing of emissions) between the response
function for Pinus pinea and Quercus ilex calls into question
the validity of applying one empirical parameterization to
all species and functional types. Such differences suggest
that the empirical introduction of seasonality by the
MEGAN model (parameterized with data from five studies
of four different species) may not be effective in capturing
between species/functional type variations. This has proven
to be the case for these two studied species, with both
exhibiting markedly different seasonal cycles.
[29] The effect of drought has not been included in this

study. Drought has also been shown to greatly reduce
summer emissions from forest canopies in the Mediterranean
region [Llusià and Peñuelas, 1998;Grote et al., 2009; Lavoir
et al., 2009]. Various simple reduction functions have been
used in modeling studies [Guenther et al., 2006; Grote et al.,
2009; Keenan et al., 2009a], though there is no clear
understanding as to how to model emission responses to
drought [Grote and Niinemets, 2008]. A drought-induced
reduction in monoterpene emissions during summer would
increase the relative importance of the consideration of sea-
sonal variation in the basal emission factor, as spring and
autumn emissions (where bigger differences are observed

due to seasonality) would have greater weight in the total
annual emissions budget. Current understanding of the effect
of drought on photosynthesis, and how to model it, has
recently improved [Keenan et al., 2009b] but much work is
needed to accurately model phenology and interactions
between water availability and the timing of phenological
responses.

5. Conclusions

[30] We conclude that monoterpene emissions modeled
based on midsummer basal emissions factors will inevitably
overestimate the annual total and, more importantly, inaccu-
rately predict the annual pattern of emissions. Emission
models including seasonality only as light and temperature
history are not capable of catching seasonal changes in
emission potential. Therefore, the consideration of season-
ality is necessary for any regional monoterpene inventory,
and a more thorough understanding will likely be crucial
for climate change scenario analyses of VOC emissions for
many regions. This is particularly true for areas that exhibit
drought stress today or in the future and host VOC emitting
plants.
[31] The large reduction in the estimated regional emis-

sions due to the inclusion of seasonality, although here
specific to monoterpene and the two studied tree species,
are expected to be applicable to any tree species and poten-
tially to other biogenic VOCs. This is likely to have large
ramifications on regional and global monoterpene emissions
estimates, potentially reducing previous emissions invento-
ries by up to 65% in some areas.
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Peñuelas, J., and M. Boada (2003), A global change-induced biome shift in
the Montseny mountains (NE Spain), Global Change Biol., 9, 131–140,
doi:10.1046/j.1365-2486.2003.00566.x.
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