
Triadic Balance and Closure as Drivers of the
Evolution of Cooperation

Simone Righi
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ABSTRACT

The prevalence of human cooperation continues to be one
of the biggest puzzles for scientists. Structured interactions
and clustering of cooperators are recognized mechanisms that
help the dissemination of cooperative behavior. We analyze
two dynamic micro structural mechanisms that may contribute
to the evolution of cooperation. We concentrate on two
mechanisms that have empirical justification: triadic closure
and triadic balance. We study their relative efficiency under
different parametric conditions, assuming that the structure of
interactions itself might change endogenously as a result of
previous encounters.

Keywords: evolution of cooperation; signed graphs; net-
work dynamics; negative ties; triadic closure, triadic balance.

I. INTRODUCTION AND RELATED LITERATURE

It is difficult to justify the wide spread and extent of human
cooperation. Cooperation is not the option that a calculative
(rational) individual should choose in a social dilemma situa-
tion, such as the Prisoner’s Dilemma (Axelrod 1984; Axelrod
and Hamilton 1981). Structured interactions and the conse-
quent clustering of cooperators, have been suggested as major
mechanisms that support the emergence and dissemination of
cooperative behavior (Hauert and Doebeli 2004; Lieberman
et al. 2005; Nowak 2006; Ohtsuki et al. 2006; Santos et al.
2006). In fact, human interactions are seldom truly random:
they are frequently repeated and they include partners in close
spatial proximity or who are linked by a social network.
The structure of social interactions also changes over time,
sometimes endogenously, as a result of cooperation (Santos
et al. 2006; Wang et al. 2013; Yamagishi and Hayashi 1996;
Yamagishi et al. 1994). In this study, we consider a non-
random structural dynamics and we use agent based modeling
to explain the emergence and spread of cooperation in such
context.

Social networks change in many different ways. The un-
derlying mechanisms that govern their dynamics have just
started to be characterized systematically (e.g., Ahuja et al.
2012). Exogenous random changes tend to diminish chances of

cooperation diffusion as they introduce frictions to the estab-
lishment of clusters of cooperation (Durrett 2007). It is more
realistic to consider exogenous non-random changes, such as
preferential attachment and small world rewiring that describe
observed patterns of dynamics and drive networks towards
clustered topologies. These dynamics tend to result in more
success for cooperative strategies (Wang et al. 2008). Finally,
endogenous topological changes that reflect on previous play,
are the most realistic as they highlight the interdependence
between structure and behavior. Moreover, they are the most
likely to speed up the evolution of cooperation.

In the current study, we concentrate on two endogenous
mechanisms that have empirical justification in many social
contexts: triadic closure and triadic balance. Both mechanisms
are related to the concept of cognitive balance (Heider 1946),
i.e, to the propensity of couples of individuals to align the way
they feel about an object (or, in our case, a third person). Tri-
adic closure is the tendency of ”friends of friends” to become
friend themselves or, from a network topology perspective,
of triads to close (Fararo and Skvoretz 1987; Granovetter
1973; Rapoport 1953). Triadic balance is the tendency of
people to maintain cognitive consistency in their relationships
by changing the valence of their relationships in established
triads so that the multiplication of signs turn positive and the
relationships are structurally balanced (Cartwright and Harary
1956). In the context of our model, these mechanisms are
chosen as they allow to endogenize both the relational sign
evolution and the topological network update in an empirically
justified manner.

Our aim is to study the efficiency of these dynamic network
mechanisms for cooperation under different parameter condi-
tions. We analyze their effect alone, but we also test if they
have a synergic impact on cooperation, in addition.

II. THE MODEL

The agent-based model presented in this paper builds on
our previous models (Righi and Takács 2013, 2014a,b,c). Our
setup allows the coevolution of network structure, relational
signs and agents strategies in the context of signed networks.
In the current study, we introduce two empirically based
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mechanisms (triadic closure and triadic balance) that guide
the evolution of cooperation.

We consider a population of size N, connected by a non-
weighted, undirected network. The ties are assumed to be
signed and are either positive or negative. Each agent i can
play the Prisoner’s Dilemma (PD) with peers in his current first
order social neighborhood, and only with them. The social
neighborhood of i is the subset of the population he shares
network ties with, formally F t

i ⊂ N . The cardinality |F t
i | (i.e.,

the degree of agents at time t) is assumed to be distributed
according to some arbitrary probability mass function f(k).
For the sake of the preliminary simulations discussed in this
manuscript, we considered an Erdős-Rényi random network
with each link existing with an independent probability 0.10
at the setup. This type of network provides a useful benchmark
against which to study results for other topologies.

Considering the existence of a signed link between two
agents i and j, the strategy played by i in the PD can be
of three types. (1) Unconditional Cooperation (hereby named
UC): a strategy that always cooperates, regardless of the
sign of the relationship between i and j. (2) Unconditional
Defection (hereby named UD): a strategy that, symmetrically,
always defects. (3) Conditional Play (hereby named COND):
a strategy that prescribes cooperation for i if the link between
i and j is positive, and prescribes defection if the link between
i and j is negative.

Each dyadic game yields a payoff for the players, defined
according to the classical PD in Table 1. When two agents
cooperate with each other, each gets a reward (R). When
they both defect, they are both punished (P). Finally, when
one agent defects and the other cooperates, the first gets a
temptation payoff (T) while his partner obtains the sucker
payoff (S). The game is defined with payoffs T > R >
P > S. In line with Axelrod (1984), we further assume that
T + S > R + P . The dynamics of our model is summarized

TABLE 1: The Prisoner’s Dilemma payoff matrix. The nu-
merical payoffs used here are the same as those of Axelrod
(1984).

C D
C (R = 3, R = 3) (S = 0, T = 5)
D (T = 5, S = 0) (P = 1, P = 1)

in Algorithm 1. At each time step, every pair of currently
connected agents play the PD, and individual payoffs are
calculated. As a consequence of the strategies played, tension
emerges in a relationship, if a cooperator faces defection from
the opponent. Tension can result (with probability Pbal) in
an update of the status of the relationship which is hereby
modeled through the empirically grounded mechanisms of
balance. Moreover, in the absence of tension among agents,
the mechanism of triadic closure mechanism is activated with
probability Pclo; implying the closure of one triad involving
the partners. Tension in social relationships in intended to
model in a very simple way, the emotional consequences of
partners behavior. In addition, in order to make meaningful

comparisons, we will also study the effect of exogenous triadic
closure and balance mechanisms on cooperation, in which the
structural change is independent of previous play, but depends
on previous structure.

for each pair of individuals i and j connected at time
t− 1 do

Compute the social neighborhood F t−1
i and F t−1

j ;
Play the PD with i and j and compute payoffs;
if the link between i and j is tense then

Update relational signs between i and j so to
maximize triadic balance (with probability Pbal);

else
Select an acquaintance k of either i or j who is
not connected to the other and close the triad
(with probability Pclo);
Assign a relational sign randomly to the new
relationship;
Delete one relation who does not include i or j
that has the relational sign of the new
relationship randomly;

end
end
for each agent i do

Compute average payoff of agent i;
Observe the average payoffs of each agent j ∈ F t−1

i ;
Adopt a random (strictly) better strategy (with
probability Padopt);

end
Algorithm 1: Pseudo-code of dynamics of our model, re-
peated at each time step t. The relational update performed
at time t, take effect only at time t+ 1. The PD is therefore
played in parallel by all agents. The implementation details
about the closure and balance mechanisms are discussed
below.

Let’s define more precisely the procedure through which
closure and balance are introduced in our model.

Triadic Closure. Two agents, sharing a stable positive rela-
tionship (i.e. in the absence of tensions due to past behavior)
tend to increase the number of common friends. This triadic
closure mechanism is adopted with probability Pclo. When this
is the case, agents (say i and j) select one of the acquaintances
of either i or j, who is not an acquaintance of the other
(denoted here with k). Agent k is then connected with the other
agents so to obtain a complete triad. The new link is assigned
a random sign. 1 Finally, to keep the overall density constant,
one old link, not involved in any triad between i and j is
selected randomly and eliminated. As we want to keep triadic
closure neutral with respect to the evolution of relational
signs, we further assume that if a new negative relationship
is created, then an old negative one is deleted, and a new

1One could assume instead that the new link takes a sign such that the
triad that results is in balance. However, we choose to use the random sign
allocation rule in order to separate more effectively the role of triadic closure
from that of triadic balance.
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positive sign implies the deletion of an old positive sign. This
mechanisms allows network topology and agent’s strategies
to co-evolve endogenously. Indeed, structural changes are
induced by the absence of tension, which results from previous
positive interactions. The probability Pclo, is assumed to be
equal for the whole population and non-strategic.

Triadic Balance. When tension emerges in a dyad, due to
the divergence of agents’ behavior in the PD, it can be resolved
through a balance mechanism. This is assumed to occur with
probability Pbal. In this case, we consider the signs involved in
all triads where both i and j are members. The relational sign
between i and j is then changed so to maximize the number
of balanced triads that involve them.

As discussed, each individual can only play the PD with
other agents in his own local neighborhood. Following most
of the literature on evolutionary games played on networks,
we assume the average of the payoffs obtained in dyadic
interactions as the measure of individual fitness. Due to this
assumption, it is important that the order in which dyads are
selected for interaction, does not matter for the outcome. For
this reason, each dyad interacts and updates strategies and link
signs observing only the previous step status quo. Moreover,
changes in network topology, relational signs and strategy
updates take effect from the following time step. We thus
assume that updates are made in parallel.

Finally, the evolutionary mechanism that we adopt in this
paper is relatively simple. After all agents performed their
round of social interactions, each observes his average payoff
as well as the ones of the agents he played with in his social
neighborhood. Thus each agent is able to measure the relative
local efficiency of his strategy. If a subset of agents in F t

i

has a payoff higher than his own, then agent i adopts the
strategy played by one of them, selected uniformly at random.
Evolutionary update happens, for each agent, with probability
Padopt which is assumed equal for all agents.

III. PRELIMINARY RESULTS AND DISCUSSION

In this section, we introduce some preliminary results on
this model. In particular, we study the effect on cooperation
of one of the mechanisms discussed: triadic closure. In the
simulations reported, we fixed Pbal to 0.15. This is a first step
in the direction of a more comprehensive analysis that we are
in the process of developing. What is the impact of triadic
closure on the level of cooperation observed in the model?
In Figure 1 and 2 we show that, at any level of Padopt, in
the absence of a closure mechanism, no cooperation survives.
Increasing the probability of closure to occur progressively,
our setup suddenly enters a short but intense phase of insta-
bility, where simulation results differ widely (hence the high
standard deviations). Subsequently, the proportion of negative
ties, surviving at the end of the simulation, suddenly drops and
the proportion of conditional and unconditional cooperators
jumps to values significantly larger than zero.

Moreover, the level of closure required for the emergence
of cooperation increases with the probability of adoption of

a better strategy. Indeed, increasing the evolutionary pressure
tends to favor the evolutionary stable strategy: defection.

IV. FINAL REMARKS AND FURTHER WORK

In this extended abstract we introduced a model aimed at
studying the emergence of cooperation in a system where
network topology coevolves with agents strategies and with
relational signs. Building on our previous work, we introduced
two mechanisms (and we began to study the impact of one
of them) with the objective of understanding their impact on
cooperation on signed networks.

In this paper we only provide some exploratory results
showing the role of triadic closure on the outcome of the
simulations. Our results show that, at any level of evolutionary
pressure the introduction of enough triadic closure leads to
the possibility of emergence of cooperation. The emergence
of cooperation is not gradual but happens right after a sharp
phase transition. On this regard our result is similar to the one
proposed by Santos et al. (2006), which shows how rewiring
can provide a mechanism for the emergence of cooperation.
However we provide the sociological micro-foundation that
justify the rewiring (and its effect on cooperation) and we
extend the study to signed networks.

We are currently designing the simulations to study the
impact of the triadic balance mechanisms on cooperation.
Furthermore we are exploring the emerging meso-level mech-
anisms that produce the results discussed. Our further analysis
will focus in particular on two aspects of our model: (1)
the effects on cooperation of the interaction between triadic
balance and triadic closure for different levels of probability
of these two mechanisms and (2) the implications, for the
emergence of cooperation, of the existence (or the absence)
of an explicit causal link between the strategy played by
agents and network/relational signs updates (endogenous vs
exogenous dynamics).

One potential limitation of our approach is that both the
social interactions and the social mechanisms are fully local.
A further direction of research that we intend to explore will
address this limitation studying the impact of closure and
balance in a context where the PD can also be played among
non connected agents.
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Fig. 1: Effect of the Triadic Closure probability at different levels of probability of adoption of a better strategy (Padopt).
Results provided for Padopt = 0.2 (solid blue line) for Padopt = 0.4 (dotted red line) and for for Padopt = 0.7 (dashed black
line). Data for the final proportion of negative ties in the network (Left Panel), of UDs (Central Panel) and of UCs (Right
Panel) are displayed. Each data-point represents the average of 50 simulations. For each simulations N = 200 and network
signs are randomly initialized with equal probability. All populations are initialized as equally divided among the three agent
types. The social networks are initialized as random network with each link existing with the independent probability 0.10.
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Fig. 2: Effect of the Triadic Closure probability on the propor-
tion of CONDs, at different levels of probability of adoption of
a better strategy (Padopt). Results provided for Padopt = 0.2
(solid blue line) for Padopt = 0.4 (dotted red line) and for
for Padopt = 0.7 (dashed black line). Parameter values are the
same as those in Figure 1.
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