
Sensitivity analysis for agent-based models: a low
complexity test-case

Abstract—Methodologies for sensitivity analysis are considered
to be of great importance for analyzing agent-based models
(ABMs), even more because calibration and validation of ABMs
often prove problematic. Different methodologies for sensitivity
analysis may help to understand ABM dynamics and (thus)
aid in the calibration and validation of ABMs. However, model
complexity of ABMs is a significant hinderance for a detailed
research on which (combination of) sensitivity analysis methods
may provide the best option. We present here an agent-based
model of low complexity to be used as test case for different
methodologies of sensitivity analysis.

I. INTRODUCTION

Calibration and validation are considered to be key chal-
lenges for agent-based modelling [1]. Sensitivity analysis is
a statistical tool to analyze the effects of variations and
uncertainty in input on the resulting output [2]. Sensitivity
analysis can be helpful for model calibration and validation.
For instance, it may reveal what level of data is required
for certain inputs, and thus what type of experimental design
is minimally required for model validation. A protocol for
the numerical experimental design of sensitivity analysis for
ABMs has recently been proposed [3].
One weak point of currently available methodologies for

sensitivity analysis is that they are not particularly well-suited
for models with strong nonlinearities and tipping points [4].
Yet, systems simulated by ABMs may display exactly these
characteristics typical of Complex Adaptive Systems (CAS).
For instance, an ABM simulating a fishery system in the
Philippines shows a near linear increase in revenue under a
decrease in the tightness of fishing quota, followed by a tipping
point at which the ecological system - and hence the revenues
- completely collapses [5]. This result was found using one-
at-a-time sensitivity analysis.
It is conceivable that a combination of different methods

for sensitivity analysis offers better insight on the sensitivity of
models representing CAS. We therefore explore here a strategy
of combining methodologies for sensitivity analysis to analyze
an ABM. In practice, however, many ABMs have a rather
high complexity, which means it may prove cumbersome to
perform sensitivity analysis - up to the point of being practi-
cally infeasible. We therefore propose a low complexity test
case ABM to ascertain the best strategy for doing sensitivity
analysis. This approach allows us to start out simple, while
letting us add further CAS properties to the model once the
present version has been sufficiently analyzed.

TABLE I: Process overview of the model
sites: grow and diffuse resource
agents: observe
agents: harvest?
agents: move?
agents: pay maintenance
agents: die?
agents: breed?

TABLE II: Table containing the main variables and parameters

i Agent index
ntot Total number of agents

Nx ×Ny Field size
t Time index

x, y Spatial orientation indices
Ei[t] Internal energy content of agent
nx,y [t] Number of agents at a site
Rx,y [t] Resource density at a site
αh,i Harvest coefficient of an agent
αm,i Move coefficient of an agent
D Diffusion coefficient
Ea Energy expenditure on maintenance per time unit

Ebirth Minimal energy for procreation
Eh Energy expenditure on harvest
Em Energy expenditure on move

Hmax Maximum harvest by agent at a site per time unit
k Carrying capacity per site
n0 Initial number of agents
r Growth rate of resource

Runc Uncertainty in agent’s observation of resource
γ Mortality coefficient
η Efficiency of converting resource to internal energy
κ Procreation coefficient
ξ Variation in offspring characteristics

II. TEST CASE DESCRIPTION

The test case ABM considers agents that harvest a resource
in a spatially explicit environment. The ABM contains two
types of entities: lattice sites and agents. The lattice sites form
an Nx × Ny lattice that represents the spatial environment.
Each site contains an abstracted resource density Rx,y,t.
Because agents have a basic energy expenditure, they need

to harvest resource from sites to maintain their internal energy
balance. Every time-step, agents decide to either harvest at
their current location, move to a neighbouringing site (which
costs energy), or stay (preserving energy with the risk of
finding the resource taken by another agent). This decision
depends on both the external environment and the internal
state of the agent.
The ABM is implemented in NETLOGO [6]. The main

process overview for a single time-step is shown in Table I. All
parameters and variables are given in Table II. A summarized
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description of the submodels in the process overview follows
below.
1) Grow and diffuse resource: The resource grows lo-

gistically on each site and diffuses between sites following
following Fick’s second law [7],

dR(x, y, t)

dt
= rR(x, y, t)

?
1− R(x, y, t)

k

?
+D∇2R(x, y, t).

(1)

We use the exact solution for the logistic growth, avoiding
numerical destabilization. The diffusion equation is solved
using a forward Euler algorithm, which is stable for D < 1

4 .
2) Observe: Agents check their current site and the 4 Von

Neumann neighbours for resource Rx,y , the number of agents
nx, y, and the internal energy Ei of each agent. Agents do not
have perfect information on the amount of resource or internal
energy; there is a random difference between the observed
amount and the true amount. The difference is distributed
normally around zero with standard deviation Runc.
3) Harvest?: Agents decide whether they will harvest this

time-step. The agent is more likely to harvest if Ei is low
(ie., the agent is ’hungy’), if Rx,y is high, if nx,y is low (ie.,
there is no need to share) and if the resource on neighbouring
sites is low. Agents also have an individual harvest coefficient
αh. Agents with a low value of αh harvest more often. If
an agent decides to harvest, an amount of resource up to a
maximum harvest Hmax is converted to internal energy with
an efficiency η, .
4) Move?: If an agent does not decide to harvest, it may

spend energy to move. Moving is likely in the direction of
the highest expected harvest. That is, a move is made in the
direction with the highest Rx,y and the lowest number of
agents. In addition, agents have an individual move coefficient
αm. Agents with a low value of αm are more likely to move.
5) Pay maintenance: Agents pay a constant amount of

energy for maintenance Ea each time-step.
6) Die?: Each agent has a probability to die each time-step.

This probability is higher if the internal energy of the agent
is low.
7) Breed?: Agents with a sufficient internal energy level

have a probability of procreating by dividing their internal
energy over two newly created ‘daughter’ agents. These inherit
the characteristics of the ‘parent’ agent with minor deviations.

III. RESULTS

A. Local sensitivity analysis

Local sensitivity analysis is a low-cost methodology that can
expose tipping points and other strong nonlinearities. Local
analysis starts from a nominal parameter set. From this set,
each parameter, including the initial number of agents n0, was
varied individually over a large range. As output variables, we
chose ntot, and the average values of αh and αm, taken over
all agents. Many runs showed periodic solutions (see Fig. 1).
For simplicity, we averaged over the second half of each run
and did not consider the periodicity. Each run lasted 103 time-
steps. A number of runs of 105 time-steps showed this to be

Fig. 1: Time-series of the total number of agents in the nominal
parameter set.

Fig. 2: The number of agents ntot for different values of D.
The reported values are the averages over the second half of
each run, and over 10 replication runs. The mimimum and
maximum among replicates are shown in red squares and
green triangles respectively. The error bars show the 95%
confidence interval.

sufficient to capture the long-term model behaviour. Each run
was repeated 10 times to account for stochastic variations.
The results for the diffusivity D are shown in Fig. 2. If

there is no diffusion (D = 0), the number of agents goes to
zero. This is to be expected, since sites cannot gain resource
after having been emtied completely. The agents thus empty
the sites one by one, until the system collapses. As the
diffusivity is increased, the number of agents increases, up to
an optimal value of D where the number of agents is maximal.
As D increases further, n0 decreases and eventually goes to
zero (depicted in Fig. 2 as red squares). Visual inspection of
simulations reveals that this results from an increase in the
amplitude of the oscillations in the number of agents. For
D = 0.15 and D = 0.175 some of the runs went to zero
as the mimimum of the oscillations reached ntot = 0. For
higher values of D, this happened in all of the runs.
Figs. 3 and 4 show the effect of the diffusivity on αh and

αm. A low value of αh or αm means that agents harvest or
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Fig. 3: OAT sensitivity analysis of D on αh. The reported
values are the averages over the second half of each run, and
over 10 replication runs.

Fig. 4: OAT sensitivity analysis of D on αm. The reported
values are the averages over the second half of each run, and
over 10 replication runs.

move more often respectively. For low values of D agents
move more often, trying to find sites that are rich in resource.
For high values of D the resource spreads out more evenly,
so that agents tend to harvest at their present location more
often. Further one-at-a-time analyses for all other parameters
revealed that η, k, Eh, Ea, Emax and θdie all have tipping
points where n0 goes to zero, i.e. this is a robust property of
the ABM.

B. Global sensitivity analysis

After revealing nonlinearities and tipping points by using
a local method, a global variance-based analysis was used to
sample from the full parameter space and to obtain information
about interactions between parameters. For a variance-based
method one assumes probability distributions to account for
uncertainty in the input parameters. The method then decom-
poses the variance of the output in terms that are attributed to
these input uncertainties. We chose uniform input distributions
over a large range, to explore the model behaviour over a large
part of the parameter space. The analysis was based on an
independent draw of 1000 parameter sets from these input

distributions. Inspection of the histograms showed that the
input sample sufficiently covered the uncertainty range of each
parameter. Furthermore, there were no significant correlations
between the input parameters in the sample. As was done in
the local analysis, all outputs were averaged over the second
half of the simulation. For each sample point, 10 replicates
were generated to account for stochastic effects. Table III
shows the mean of the variance among replicates, expressed
as a percentage of the variance over all model runs. Stochastic
effects did not cause a large amount of variation in ntot, but
αh and αm showed larger variations between replicates.

Following the method employed earlier by [9], we fitted a
regression model on the averaged output of the 10 replicates.
The resulting polynomial was then used to attribute output
variance to parameter uncertainties. A linear regression of
all the parameters and initial conditions explained 49.6 %
of the output variance in total. The first order sensitivity of
a parameter is the percentage of the output variance that is
accounted for by that parameter, excluding interactions with
other parameters. These are printed for all parameters in table
IV. The total order sensitivity of a parameter is the percent-
age of the output variance accounted for by that parameter
and its interaction with other parameters. For our test case,
the differences between the first and total order sensitivities
were found to be very small. This indicates that interactions
between parameters did not account for a significant part of
the variance.

To also take into account nonlinearities, we computed the
sensitivities based on a regression model with third order
splines for all parameters. The difference between the linear
terms and terms with splines is small, indicating that non-
linearities up to that order also do not account for a large
percentage of the variance. The best fit was obtained by taking
into account all possible interactions up to second order and
third order nonlinearities for all parameters. This fit explained
64.0 % of variance.

Fig. 2 suggests that nonlinearities account for some of
the unexplained variance. The number of agents collapses
rapidly as the diffusivity increases, which is not easily captured
using a regression based method. The one-at-a-time sensitivity
analysis shows similar tipping points for other parameters.
In the results for the global sensitivity analysis, the number
of agents went to zero in about half of the runs, again
suggesting the presence of tipping points. As a test, regression
based sensitvity analysis was also applied to the remainder
of the runs, omitting all the runs that went to zero. This in-
creased the amount of explained variance to 76.0 %. However,
omitting these runs introduces correlations between the input
parameters, which makes it impossible to fully separate the
contributions of those parameters to the output.
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TABLE III: Mean variance among replications, as percentage
of variance among all runs

Output variable % of variance
ntot 0.4
αh 6.0
αm 13.5

TABLE IV: First order sensitivities, ranked from most to least
influential on the model output ntot. The total % of explained
variance in ntot is 49.6%

Parameter
Uncertainty
range

% of variance
ntot

η 0 - 1 18.4
r 0 - 0.5 11.5
k 1 - 5 8.0
M 0 - 0.4 3.8
γ 0 - 5 3.0
Eharvest 0 - 0.5 2.2
Emove 0 - 2 1.4
Ebirth 1.0 - 10 1.3
D 0 - 0.25 1.2
Emax 0.2 - 2 0.2
N0 0 - 1000 0.0
R0 0 - 1 0.0
Runc 0 - 1 0.0
ξ 0 - 0.5 0.0

IV. DISCUSSION

We have been able to explain 64.0 % of the output variance
by regression methods, including third order nonlinearities and
interaction effects. This leaves a significant part of the variance
unexplained. Table III shows that stochastic effects do not
explain this variance. Nonlinearities may be another source
of unexplained variance. Nonlinearities up to third order were
considered, but this does not account for a result like in
Fig. 2, where the output variable abruptly goes to zero as
the diffusivity is increased. Similar tipping points were found
for other parameters.
An important aim of sensitivity analysis is to better under-

stand model behaviour. Our test case shows that one-at-a-time
sensitivity analysis helps to achieve this aim by uncovering
tipping points and strong nonlinearities. We therefore recom-
mend to use one-at-a-time sensitivity analysis in addition to
global sensitivity analysis. While global sensitivity analysis
does not allow for the straightforward identification of tipping
points, it does provide summary measures for the sensitivities
of (interactions between) parameters over a large region of the
parameter space. For complex relations between inputs and
outputs, such as in our test-case, regression-based sensitivity
analysis does not yield accurate estimations for these sensi-
tivities. “Model-free” methods of sensitivity analysis, like the
Sobol method [2] [8], may aid in this case. In contrast with
regression-based methods, model-free methods do not a priori
assume any specific form for the relation between the input
parameters and output variables.

A. Future work

The analysis so far has used outputs that were averaged over
time. However, the sensitivities can vary strongly in time. To

understand the dynamics of an ABM, it is relevant to compute
the sensitivities as a function of time [10]. In our test case
model, the existence of oscillations in the output variables (see
Fig.1) makes the computation of time-dependent sensitivities
particularly relevant.
Furthermore, the outputs were also averaged over space.

Since the model features local interactions it is relevant to
consider spatial correlations. Due to the difficulties in dealing
with spatial correlations, this is not a common approach [11],
but may be worthwhile for a simple test model.
We plan to perform a model-free method of global sensi-

tivity analysis. This should yield accurate estimations for the
global sensitivities, even in the presence of tipping points such
as the one in Fig. 2. We also plan to examine such tipping
points in more detail. For example, we will zoom in around
the tipping point in the region of D = [0.15, 0.2] using a
smaller step-size in D and more replicates to unravel the exact
dynamics around that point.
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