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Abstract—Simulated economies suffer intrinsically from val-
idation and comparison problems. The choice of a suitable
indicator quantifying the distance between the model and the
data is pivotal to model selection. However, how to validate and
discriminate between models are still open problems calling for
further investigation, especially in light of the increasing use of
simulations in social sciences. In this paper I present a new
information theoretic criterion to measure how close models’
synthetic output replicates the properties of observable time
series without the need to resort to any likelihood function or
to impose stationarity requirements. This indicator is sufficiently
general to be applied to any kind of model able to simulate or
predict time series data, from simple univariate models such as
Auto Regressive Moving Average (ARMA) and Markov processes
to more complex objects including agent-based or dynamic
stochastic general equilibrium models. More specifically, I use
a simple function of the L-divergence computed at different
block lengths in order to select the model that is better able
to reproduce the distributions of time changes in the data.
To evaluate the L-divergence, probabilities are estimated across
frequencies including a correction for the systematic bias. Finally,
using a known data generating process, I show how this indicator
can be used to validate and discriminate between different
univariate models providing a precise measure of the distance
of each model from the data.

I. INTRODUCTION

T
HE USE of simulations as a tool to investigate real

phenomena has increased steadily in the last two decades,

covering almost every field of the social sciences (see [1]).

Acknowledging this trend, one fundamental issue has become

to establish what a good simulation is. According to [2] the

answer to this question must be: a good simulation is one

that achieves its aim. But just what the aim or goal of a

simulation might be is not obvious. Simulations might be

used to explain a phenomenon, to predict its behaviour or

to explore the internal structure of the phenomenon itself.

Moreover, the aim of the simulation depends largely both

on the modeller and the model. In [3] two kinds of models

are recognized: demonstration models, essentially existence

proofs for phenomena of interest, and descriptive models, that

attempt to track dynamic historical phenomena. Most early

simulation models are considered as demonstrative and a nice

example could be the well known Schelling ([4])’s segregation

model. Despite these models are extremely useful tools for

explorative analysis and “as if” stories, policy analysis requires

descriptive, validated models. The argument is simple: if you

wanted to advise a policy maker on the basis of results from

your model, you should be able, at least, to show that your

model can replicate the behaviour of observed data. When this

does not happen, it would be difficult for the policy maker to

trust your advice or, at least, it should. Hence, for a descriptive

model, offering good simulations means these simulations can

be successfully validated against historical data.

How to validate a model is still an open issue for simulation

studies1 (see [9], [10] and more recently [11]). Finding appro-

priate tools to so is crucial both for the scientific debate and for

policy analysis; the academia needs to develop theories whose

implications fits with empirical evidence and policy makers

needs information coming from reliable models. Establishing

the fit of different models with empirical data is exactly what I

am doing in this paper where I introduce, discuss and estimate

a new information theoretic criterion.

Mason ([12]) distinguishes between output validation and

structural validation. The latter asks how well the simulation

model represents the (prior) conceptual model of the real-

world system; the former asks how successfully the simu-

lations’ output exhibits the historical behaviours of the real-

world target system. Output validation can be directly related

to what Leombruni et al. ([13]) define as empirical validity

of a model, i.e. validity of the empirically occurring true

value relative to its indicator. Leombruni et. al introduce other

four validity concepts that theory- and data-based simulation

studies must consider: theory (the validity of the theory

relative to the simuland), model (the validity of the model

relative to the theory), program (the validity of the simulating

program relative to the model), operational (the validity of the

theoretical concept to its indicator or measurement). Any-time

simulations exhibit lacks with respect to one or more of these

validities, empirical validity is in turn affected and thereby

reduced.

Following [14], it is useful to think of two parallel unfoldings:

the evolution of the real economy (or market or whatever) and

the evolution of the model of this real-world phenomenon.

If the model is properly specified and calibrated, then its

1In what follows I refer to the Agent Based literature, where simulations are
at the very core of the scientific inquiry process (see [5]); however, validation
is crucial also for more standard approaches, especially in economics (see
[6] ), which would certainly benefit from reading and confronting with the
literature I am referring to (see [7]). On the latter theme see also [8]
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evolution should mirror the historical evolution of the real-

world phenomenon: we could observe the evolution of the

model or the real-world evolution and both should reveal

similar behaviour of the variables of interest.

In this paper I focus on establishing whether and the

extent to a simulation is able to reproduce and predict the

behaviour of a phenomenon. This procedure is carried out

by defining and computing an information theoretic criterion,

based on a simple function of the L-divergence ([15]), which

measures the distance between the actual, observed data and

the synthetic series generated by different, competing models.

This criterion, named Generalized Subtracted L -divergence,

shortly GSL-div, allows to validate the output of a model by

capturing its ability to reproduce the distributions of time-

changes (that is, changes in the process’ values from time to

time) in the real-world observed process, without the need

to resort to any likelihood function or to impose stationarity

requirements. In turns, the procedure I am going to describe

allows for direct model selection, identifying a precise measure

which expresses empirical validity and selecting the model

which exhibits the highest value with respect to this metric.

The approach is in line with [3] and, as the State Similarity

Measure (SSM) proposed therein, it tackles the fourth issue

raised in [9]: validating agent based models using historical

data. It is to be noticed that, in this paper, I use the GSL-div

to compare univariate time series; however the approach can

be extended to multivariate data structures.

II. MEASURING THE DISTANCE BETWEEN TIME SERIES:

THE GSL-DIV

As well explained in [3], using the glasses of informa-

tion theory rather than statistics, the observed data contain

information, and the (descriptive) models we develop (from

our theoretical understanding of the underlying processes

generating the observed data) can be seen of as attempts to

reproduce the highest possible fraction of these information, in

the most compact way. When several models referring to the

same phenomenon are available, empirical validation should

be able to point out the “best” model, that is the model whose

output lose the least amount of information with respect to the

real-world data.

The GSL-div measures the distance between the real and

model’s time series. The former is the unique realization of

the unknown data generating process, the latter are taken to

be M series generated by the same model, with the same

(post-calibration) parameters’ value. The use of an ensemble

of replicated series provides a double advantage: it allows to

correct for the systematic bias in the estimation of information

theoretic quantities (see below) and it captures the behaviour of

the model washing away the effects of particular realizations.

The approach used to develop this criterion could be thought

as the result of an extension of the work provided in [16].

Distance or divergence measures are widely used in a

number of theoretical and applied statistical inference and

data processing problems, including estimation, detection,

compression and model selection ([17]). Most of them rely

largely on the concept of Shannon’s entropy ([18]), which

expresses the amount of uncertainty associated with a random

variable. Among these measures, one of the best known is the

Kullback-Leibner divergenge (KL-div) between two distribu-

tions, D(p||q), or relative entropy ([19]). It is a measure of

the inefficiency of assuming that the distribution is q when

the true one is p. The following discussion will be limited to

discrete probability distributions, but results can be generalized

to probability density functions.

Let X be a discrete random variable with support indicated

by X and probability mass function p(x), x ∈ X. If q(x) is

another probability mass function defined on the same support

X, the KL-div is defined as

DKL(p||q) =
∑

x∈X

p(x) log

(

p(x)

q(x)

)

, (1)

where the logarithm is, usually, in base 2. Throughout the

paper the following conventions will be used: 0 log(0/0) = 0
and, on the basis of continuity arguments, 0 log(0/q) = 0,

independently of the logarithm’s base. It is immediate to see

that if there exist any symbol x ∈ X such that p(x) > 0
and q(x) = 0 then, DKL(p||q) is undefined. This means that

distribution p has to be absolutely continuous with respect to q

for the KL-div to be defined [20]. In addition, the DKL(p||q) is

non-negative, additive but not symmetric. In order to overcome

these problems Lin defined a new symmetric measure, called

L-divergenge, shortly L-div:

DL(p||q) = DKL(p||m) +DKL(q||m), (2)

where m = (p + q)/2 is the “mean” probability mass

function. As the names suggest the L−div is the basic building

block I will use to construct the GSL-div.

It is immediate to see that DL(p||q) vanishes only if p = q

and that the L-divergence is bounded above by 2. This is

more evident when expressing the L-divergence in terms of

the Shannon entropy, that is

DL(p||q) = 2H

(

p + q

2

)

−H(p)−H(q), (3)

i.e. the difference between twice the mean distribution and

the sum of the entropies of p and q. The generalization of the

L-div is the Jensen-Shannon divergence (see [15]), defined as

DivJS(p, q) = H(π1p + π2q)− π1H(p)− π2H(q), (4)

where the weights π1 and π2 must satisfy π1, π2 ≥ 0
and π1 + π2 = 1. It is straightforward that DL(p||q) =
2DivJS(p, q) for π1 = π2 = 1/2. It is to be noticed that

the KL-div, and consequently the L-div, does not satisfy the

triangle inequality, and hence cannot be considered a proper
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metric.2

With reference to the use of these measures as quantities

for model validation and selection Marks ([3]) outlines their

inadequacy due to the previous problem. However, if models’

data-distributions (say q) are always compared directly with

the real data-distribution (say p), and not among themselves,

model selection does not need a metric satisfying triangle

inequality. Moreover, Endres et al. ([22]) found that the

square root of the L-div is a metric and they called this new

information metric the Jensen-Shannon distance.

In this paper I use the L-div as a measure that captures

the distance between the distributions of time-changes in the

real-world process and those generated by the synthetic output

of simulated, competing models. Time-windows of different

lengths are taken into consideration for the generation of the

state space, which is represented by the set of values the series

might take at each instant of time. The L-div is estimated

for each length of the time-window and results are finally

aggregated into a single information criterion, the Generalized

Subtracted L-divergence (shortly GSL-div). It is worth noticing

that this new measure is designed to capture similarities in

the behaviour of the time series, and not in their levels. This

reflects the opinion that is not relevant for a simulation to

mirror the same values of the real data but to display the

same behaviour in terms of trends, variabilities, trajectories

and their shape. These elements are captured by the GSL-div.

Furthermore, given two series sharing the same behaviour but

different levels, it is sufficient to change initial conditions to

notice they are in effect identical, and this would amount to

add or subtract a drift to one of the two. Finally, levels depend

largely on the unit of measure used by different models, while

series’ behaviour does not.

A. The GSL-divergence

Consider a random variable x taking values from the set x =
(x1, ..., xk) with probabilities p = (p1, ..., pk). Assume we

observe real-world or simulated time series both of length N ;

from x(t), t = 1, ..., N it is possible to build an histogram n =
(n1, ..., nk), where ni is the number of times the outcome was

xi. The frequency vector f = (f1, ..., fk) = (n1/N, ..., nk/N)
is an estimator of the probability distribution p.

Within this framework it is important to notice that I consider

a discretization of the state space: time series are assumed to

take only a finite set of values. How to conduct this procedure

is crucial. In particular, for each time series {x(t)}Nt=1, I take

the original, real interval [xmin;xmax] and I partition it in

b ∈ N0 subintervals, each of equal length. These intervals

are numbered increasingly from 1 to b, with 1 assigned to

[xmin;xmin + (xmax−xmin)
b

). The time series is then symbol-

ized straightforwardly: each observation is mapped into the

number assigned to the interval it falls within. The parameter

b controls for the precision of the symbolization: for b = 1

2A metric is a distance function which must satisfy non-negativity, sym-
metry, coincidence and triangle inequality (see [21]).

the symbolized series takes one and only one value (namely

1) while for b → ∞ we are back to the (scaled) real-

valued process. The symbolization is simple and works as

follows: each {x(t)}Nt=1 is mapped into the natural number

corresponding to the partition interval where it falls.

For example, consider the following realization of the stochas-

tic process x(t) with t = 3: {0; 0.65; 1}. Choosing b = 2, the

symbolized series will be xs(t) = {1, 2, 2}, while choosing

b = 10 the symbolized series becomes xs(t) = {1, 7, 10}. It

is immediate to see that increasing b the information loss about

the behaviour of the stochastic process due to the symboliza-

tion becomes smaller and smaller. However, as it typically

happens, increasing the precision of the symbolization has a

cost: higher b translates also in higher size of the alphabet,

that is the total number of words that could be created using

symbols {1, ..., b}. The size of the alphabet corresponds to the

cardinality of the state space and increasing it might require

larger time series to conveniently estimate probability distribu-

tions. However, as will be shown, the GSL-div does not suffer

from the use of low values of b. Additionally, it is important to

notice that using high precision of the symbolization procedure

is not a problem when a large amount of data are available, for

example in high frequency models of financial markets (see,

among others, these recent contributions [23] and [24]3 ). A

detailed discussion about the partitioning of the state space

when dealing with information theoretic functional is provided

in [25].

Once the time series are properly symbolized, they are sub-

divided in successive blocks of equal length l; this operation

is recursive for l = 1, ..., L, where L is the maximum

block’s length (time-window) considered. Since there are N
observations for each series, N/l blocks will be obtained for

each value of l. L represents the maximum length of the

windows which are used to compare the behaviour of the real

data with the synthetic ones. It has to be chosen considering

both (i) the nature of the phenomenon of interest and (ii) the

size of the available real-world time series which can be used

to validate the models. The first criterion, (i), reflects the time-

horizon one considers when analysing a given phenomenon.

For example, if the focus is centred on business cycles,

data will be typically quarterly and the time-window around

eight or twelve periods; conversely, in case one considers

economic growth in the long run, data will be annual and

the window considerably enlarged. The second criterion, (ii),

puts a constraint on the comparability of real v.s. simulated

data: when a real-world time series of length N is the only

available source of information about the phenomenon under

study, it makes a non-sense to compare it with a double-

length simulated series. On the other hand it could be perfectly

reasonable to take an ensemble of replicated series each of

length N , both to wash away across-simulation variability and

to solve the small sample problem ([26]). Using symbolized

3Here the methodology described in the paper is directly applicable to the
time series of stock prices.
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series, l = 1, ..., L represents also the length of the words

which compose the corresponding alphabet.

For each value of l, a subtracted version of the L-div is

estimated from the data. It provides a measure of how close

the behaviour the synthetic data replicates the real one when

the series are studied along windows of length l. The GSL-div

aggregates subtracted L-div values using weights increasing

in l. In such a way it integrates the distances between the

distributions of two time series for multiple (namely L) time-

windows. Greater weights are assigned to values of the L-div

considering longer windows.

Let {x(t)}Nt=1 and {y(t)}Nt=1 be two time series of total length

N and indicate with xs(t) and ys(t) their symbolized version

according to the procedure described above. It is important the

precision level b chosen in the symbolization procedure to be

the same for the two time series to be comparable.

The GSL-div takes the following functional form:

DGSL(x(t)||y(t)) =

L
∑

i=1

wi[−2
∑

x∈Xi

mi(x) logai
mi(x)

+
∑

x∈Xi

qi(x) logai
qi(x)] (5)

=

L
∑

i=1

wi

(

2HXi(mi)−HXi(qi)
)

(6)

where the symbol HXi(·) indicates the Shannon entropy of

a distribution over the state space Xi.

On the right hand side of the first line of (5) the big square

brackets contain the subtracted L-divergence computed at

different block lengths l. In particular I take the L-div ([15])

and I subtract the entropy for the time series {x(t)}Ni=1. This

can be justified in two ways. On the one hand it is due to

the fact that x(t) is always taken to be the real-world time

series and it can be observed only once. This means it is not

possible to replicate this series and create an ensemble, as it

will be done for the time series produced by models. As a

consequence, it cannot be corrected for the systematic bias

stemming from the fact that its entropy is computed using

an estimator (the frequency over the state space) and not the

true probabilistic structure (see [27] and [26]). On the other

hand, being the GSL-div always applied to real data against

models’ output, when one compares the distance of different

simulated data with respect to the real counterpart the entropy

of the latter will always be washed away.

The logarithm is always in base ai with i = 1, ..., L, which

corresponds to the cardinality of the alphabet available at

length l = i.
Consider for example the following symbolized time series of

length 8 obtained selecting b = 4:

{x(t)}8t=1 = {0, 2, 1, 2, 1, 3, 4, 0}.

When l = 1 the time-window corresponds to one period,

the series is sub-divided into 8 blocks and each of them

is associated to one out of four symbols, namely 1, 2, 3 or

4. When l = 2, N/l = 8/2 = 4 blocks are obtained

and each is mapped to one of the following 24 symbols:

{(11); (12); (13); ...; (43); (44)}. The mapping between blocks

and corresponding symbols is straightforward: the series’ first

block of length 2 is {0, 2} and it is associated to the symbol

(02); the second block, {1, 2}, is associated to (12) and

so on. The cardinality of the alphabet available when the

selected time-window has length l corresponds to the number

of different symbols the series’ blocks might be associated to.

Hence

ai = 2Xi = bl, ∀l = 1, ..., L (7)

where b is, as usual, the precision level used in the symbol-

ization.

It is worth recalling that, in equation (5), mi(x) indicates the

“mean”distribution of pi(x) and qi(x):

mi(x) =
pi(x) + qi(x)

2
, (8)

where pi(x) is the estimated probability (frequency) as-

signed by the real-world process to the symbol x, while qi
is the counterpart assigned by (one series of) the simulated

process to the same symbol.

As introduced above, each of the subtracted L-divergences

entering the GSL-div is assigned an increasing weight. This

reflects the grater importance assigned to the ability of the

simulated data to match the behaviour of the real process over

a longer time-window and, additionally, it compensates for

the increasing value of the logarithm basis ai. In particular,

weights are chosen to guarantee that their first differences are

constant; that is, the weight assigned at a given length of the

time window is equal to the one assigned at the previous length

plus a constant term. As usual, the normalization condition

must hold,
∑L

i=1 wi = 1. The following weights are obtained4:

wi = wi−1 +
2

L(L+ 1)
i = 1, ..., L (9)

where w0 = 0. As will be shown, the choice of the weights

is robust to changes and even assuming equal weights across

the length of the time-windows results are unaffected.

B. The systematic bias

When an information theoretic function is computed without

knowing the exact probability of each symbol, a systematic

error might arise. In particular this the case when the true

probabilistic structure of a process has to be estimated from

a finite sequence of observations (see [27], [26], [28], [29],

[30]).

Even knowing the true distribution p of a time series x(t) over

a state space X, when one computes any of the KL-div, JS-div,

4proof omitted here both for sake of brevity and its simplicity.
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L-div or GSL-div between p and q estimated from {x(t)}Nt=1

with N < ∞, the result would be larger than zero. Obviously,

the bias is also present when computing the distance between

two frequency vectors that are estimated from two realizations

of the same stochastic process.

The concept of systematic bias for the numerical values of

information theoretic functional is well known in the literature

and it follows directly from Jensen inequality (see [31]). In

particular, the bias is identified with the expectation value

E[f(f)] being lower than f(p) where f is an estimator of

the true probability distribution p. Applying this result to the

Shannon entropy one obtains

E[H(f)] ≤ H(p), (10)

where the expectation is defined over the ensemble of finite-

length i.i.d sequences generated by the probability distribution

p.

Following [32] it can be shown that the expected value of the

observed entropy is systematically biased downwards from the

true entropy:

E[H(f)] = H(p)−
B − 1

2N
+O(N−2), (11)

where N is the length of each time series and B is the

number of states x ∈ X such that f(x) > 0 . This result was

originally obtained by Basharin ([27]) and Herzel ([26]) who

found also that, up to the first order O(N−1), the bias is

independent of the actual distribution p. The term O(N−2)
contains unknown probabilities p and cannot be estimated in

general (see [28], [29], [32]).

Dealing with a model it is always possible to generate an

ensemble of time series; conversely, it becomes impossible

with the unknown real data generating process, which pro-

duces an unique observable series for each phenomenon. This

help justify the fact I subtract the entropy of the real series

when I define the GSL-div.

Applying the previous correction of the systematic bias to the

GSL-div one obtain the following expression

DGSL(x(t)||y(t)) =

L
∑

i=1

wi[−2
∑

x∈Xi

mi(x) logai
mi(x)

+
∑

x∈Xi

qi(x) logai
qi(x)]

+

L
∑

i=1

wi

(

Bm
i − 1

Ni

−
Bq

i − 1

2Ni

)

(12)

where the second line captures the correction terms for the

systematic bias.

Finally it is important to recall that the GSL-div is bounded

both from above and below. In particular it is possible to show

that

0 ≤ DGSL ≤ 2. (13)

However, due to the subtraction with respect to the L-div,

this is not the case in practice, and the lower bound for the

GSL-div is the unknown entropy of the real-world time series,

which is, apart from special cases, positive. However, this is

not a problem for model selection and validation and the only

thing which matters is to have an upper bound for the criterion,

which can be used as a comparison term. To the purposes of

model selection lower the GSL-div the better the ability of the

model to reproduce the behaviour of the observed real data.

III. A SIMPLE EXAMPLE

In this section I show the performance and the precision of

the GSL-div criterion in distinguishing between three ad hoc

created time series. x(t) is chosen to be the observed series

while xA(t) and xB(t) are to be intended as the output of

two models (A and B respectively) trying to simulate x(t).
These series are consciously chosen to have xA(t) much

more close to the behaviour of x(t) with respect to xB(t).
Their plot is reported in figure 1.
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Fig. 1. Behaviour of three selected time series

I expect the GSL-div criterion to show a lower distance

between the observed time series coming from the unknown

data generating process and model A’s output.

Before showing the results I present the symbolization process.

The three series take values in the real interval [0, 1] and a very

small sample consisting of six observations is chosen:

x(t) = {0.2; 0.3; 0.8; 0.4; 0.45; 0.15},

xA(t) = {0.1; 0.25; 0.72; 0.45; 0.5; 0.35},

xB(t) = {0.05; 0.15; 0.65; 0.9; 0.4; 0, 25}.

The precision of the symbolization is set to b = 3; this

choice leads to the following partition of the original state

space: [0; 0.33); [0.33; 0.66); [0.66; 1]. Despite the choice of b
is arbitrary results are robust to changes in the value of this

parameter. The use of a low b can be justified here by the fact

that the time series are very short; in addition, representing it

the the precision of the symbolization process, the use of a
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low value for b makes it more difficult to distinguish between

the series. The ability of the GSL-div to recognize the most

similar even when the symbolization is relatively imprecise

would confirm the power of this new criterion.

According to the chosen parametrization, the three symbol-

ized time series are:

x(t) = {1, 1, 3, 2, 2, 1},

xA(t) = {1, 1, 3, 2, 2, 2},

xB(t) = {1, 1, 2, 3, 2, 1}.

By inspection it is possible to notice that xA is much more

closer to x than xB: while the former exhibits the same

behaviour of the real data apart form the very last period,

the latter displays twice the opposite one (it increases from

t = 3 to t = 4 when x(t) is decreasing and vice-versa in the

following period).

Given the use of short time series, the maximum value of

the time-window’s length along which the three processes are

compared cannot be set above L = 3; otherwise one and only

one block would be available, the probability distribution over

the alphabet would appear constant and its entropy pushed

to zero. Hence, I am considering blocks and corresponding

alphabets for l = 1, 2, 3. Respectively, six, three and two

observations are obtained and used to estimate the frequencies.

As it is obvious, these are very rough estimates of the

probabilities the three process assign to symbols x ∈ Xl.

Notwithstanding this limitation the performance of the GSL-

div in selecting model A and validating its output against real

data is excellent. Table 1 (with progressive weights) and Table

2 (with uniform weights) provide evidence of this result.

TABLE I
GSL-DIV FOR x(t) AND BOTH xA(t) AND xB(t) WITH PROGRESSIVE

WEIGHTS

Subtracted L-div

block length weights model A model B
1 0.17 0.948161 0.920620
2 0.33 0.710310 0.710310
3 0.50 0.420620 0.630930

GSL-div 0.605900 0.706373

TABLE II
GSL-DIV FOR x(t) AND BOTH xA(t) AND xB(t) WITH UNIFORM WEIGHTS

Subtracted L-div

block length weights model A model B
1 0.33 0.948161 0.920620
2 0.33 0.710310 0.710310
3 0.33 0.420620 0.630930

GSL-div 0.693030 0.753953

Two observations deserve attention. First, the subtracted L-

divergence at blocks’ length equal to one is lower for model

B’s than for model A’s series. This is driven by the fact

that xB(t) and x(t) have been chosen to exhibit the same

frequency distribution over the alphabet available for l = 1,

X1 = {1, 2, 3}, while xA(t) has not. This means that it

becomes relatively more difficult to recognise xA(t) as the

series most similar to x(t). However, the distribution of time-

changes is completely different between x(t) and xB(t). The

result is that when one move to l = 2, 3, corresponding

to capture longer trends and trajectories, xA(t) equals and

overcome xB(t)’s performance in simulating the behaviour of

x(t). In addition, this justifies the choice of using progressive

weights in the definition of the GSL-div: a model matching

the distribution of changes for a longer time window should

always be preferred and selected.

Secondly, the three time series have been selected ad hoc to

show the performance of the GSL-div. Not having a proper

model it is not possible to replicate simulations and correct

for the systematic bias5.

In the next section I move away from this example and I

show the precision of the GSL-div in validating and selecting

the most appropriate among 9 univariate stochastic models;

the correction term for the systematic bias is added to the

estimation of the criterion.

IV. SELECTING AND VALIDATING ARMA MODELS

A set of 9 Auto Regressive Moving Average (ARMA)

models is analysed. The GSL-div is used to select the model

which minimizes the distance with respect to the distribution

of time changes in the real data. Real data are assumed to be

a realization of a Gaussian AR(1) process with autoregressive

order-one parameter φ1 = 0.1. Figure 2 provides a plot of this

process. It is obviously stationary, causal and invertible6.

0 200 400 600 800 1000

−
3

−
1

1
3

Data Generating Process: AR(1) − 0.1

time

x(
t)

Fig. 2. The real-world time series

Table 3 summarizes the main features of the models which

are considered for replicating the behaviour of the real data.

5The only meaningless solution would be assuming deterministic models
producing always the same realization.

6see [33] for a definition of these properties
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All of them are Gaussian N(0, 1) ARMAs and are used to

produce an ensemble of M = 1000 Monte Carlo replications,

each of length N = 1000. These series are symbolized using

precision b = 5.

TABLE III
MAIN FEATURES OF THE NINE MODELS CONSIDERED

parameters properties

model φ θ stationary invertible
1 AR(1) 0.1 0 yes yes
2 AR(1) 0.2 0 yes yes
3 AR(1) 0.5 0 yes yes
4 AR(1) 0.01 0 yes yes
5 AR(1) 0.9 0 yes yes
6 ARMA(1,1) 0.2 0.9 yes yes
7 ARMA(1,1) 0.5 2 yes no
8 AR(1) 1 0 no yes
9 AR(1) 2 0 no yes

The majority of the models considered are stationary and,

even if not reported directly, they are also causal. In addition,

most of them are invertible. This allows to conclude that six

out of nine are unique, meaning that there is a one-to-one

correspondence between the family of the finite dimensional

distributions of the process and its finite parametric represen-

tation (see [33]). This applies also to the Data Generating

Process (DGP).

The GSL-div is expected to recognize the model which is

most similar to the DGP: model 1 exhibits exactly the same

parametric representation of the data generating process from

which x(t) is taken. In addition one should ask the GSL-div to

identify models producing series completely inconsistent with

the real world data x(t): model 9 is strongly non-stationary

and exhibits an explosive behaviour. Therefore, within the

class of models considered here, I expect the GSL-div to

reach a minimum when model 1 and x(t) are evaluated and a

maximum when model 9 is compared to observed data.

Figures 3 and 4 provide a plot of a realization for model 1

and 9 respectively.

Tables 4 and 5 (in the next page) show the performance

of the GSL-div in evaluating the distance between the

distributions of the real-world time-series and different

models, after correcting for the systematic bias. The

maximum length of the time-window (or block-length) is

chosen to be six. Numbers in bold indicate the estimated

GSL-div while those in plain represent its partial values, that

is subtracted L-divergences.

Expectations are perfectly confirmed: model 1 turns out be

the closest to the real data while model 9 the most distant.
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Fig. 3. A realization of model 1
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Fig. 4. A realization of model 9

In general the GSL-div is shown to distinguish clearly among

models: non-stationary processes are the most distant from the

real data and when a Moving Average component is added to

the process the distance from the real data increases. This is

true especially when the MA part is non-invertible (model

7). Moreover, among the same class of processes (AR(1))

the criterion is able to recognize those having a parametric

representation which is closer to the DGP.

It is worth noticing that results are robust to the choice of

the weights in the functional representation (12) of the GSL-

div. Finally, the correction term for the systematic bias is, in

absolute value, considerably low with respect to the estimated

value of the GSL-div criterion, and it becomes even smaller

the longer the time series. In particular, the correction never

affects results and the ordering of models’ distance from x(t).

V. CONCLUSIONS

Validation of simulated models is still an open issue. One

way of tackling this problem is via the identification of a

measure of the distance between simulated and real-world

data. This paper provides an information theoretic criterion,

the GSL-div, which captures this distance without any require-

ment of stationarity nor the need to resort to any likelihood

function. This constitutes a direct advantage with respect to

other approaches aimed at characterizing times series and their

behaviour.
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TABLE IV
GSL-div FOR x(t) AND NINE ARMA MODELS WITH PROGRESSIVE

WEIGHTS

block length weights AR1 - 0.1 AR1 - 0.2 AR1 - 0.01

1 0.047619 0.035086 0.035110 0.035135
2 0.095238 0.069981 0.070112 0.070133
3 0.142857 0.104996 0.105102 0.105244
4 0.190476 0.140687 0.140874 0.140918
5 0.238095 0.173118 0.172980 0.173164
6 0.285714 0.194703 0.195057 0.195459

GSL-div 0.718571 0.719235 0.720053

block length weights AR1 - 0.5 AR1 - 0.2 AR1 - 0.5

MA1 - 0.9 MA1 - 2

1 0.047619 0.035154 0.035147 0.035203
2 0.095238 0.071077 0.071422 0.073134
3 0.142857 0.106422 0.106308 0.109892
4 0.190476 0.142626 0.144963 0.146516
5 0.238095 0.173115 0.174841 0.175495
6 0.285714 0.194625 0.195291 0.195260

GSL-div 0.723019 0.727973 0.735501

block length weights AR1 - 0.9 AR1 - 1 AR1 - 2

1 0.047619 0.035500 0.040350 0.072301
2 0.095238 0.077123 0.087890 0.109458
3 0.142857 0.114550 0.126863 0.143475
4 0.190476 0.151631 0.163332 0.174783
5 0.238095 0.178279 0.188724 0.196458
6 0.285714 0.196556 0.202831 0.207266

GSL-div 0.753639 0.809990 0.903741

My approach leaves two free parameters: the precision of the

symbolization process, namely b, and the maximum length of

the time-window used to identify blocks of the time series,

namely l. Both can be increased when the size of real time

series against which models are evaluated is large; however,

I showed that using relatively low parameters’ values (b = 5,

l = 6) the GSL-div is extremely precise in selecting and

ordering the models which are better able to reproduce the

distributions of time-changes observed in the real data.

In this paper the GSL-div is applied to univariate models.

Extensions to multivariate settings are possible. There, I ex-

plicitly account for the fact that a multivariate model which

perfectly matches one real time series but poorly replicates

the others should not, in general, be better than one which

decently simulates the behaviour of all the considered series.
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