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Abstract—Key in spatial planning are opinion dynamics (the
exchange of opinions between agents and the consecutive updates
in opinions by individual agents). A number of possibly relevant
factors that are commonly excluded in well-known models of
opinion dynamics are peer pressure, localized opinion formation
through isolation, and the reputation of the agents involved.
We present a model of agents with a fixed spatial location
(e.g., a household) in a “village” who are capable of only
local interactions with their neighbours. There exist nonlinear
feedbacks between updates in opinion and reputation, which are
described by smooth mathematical functions. Sensitivity analysis
is used to quantify the contributions of different factors to the
convergence of opinions within the “village”.

I. INTRODUCTION

Spatial planning is aimed at land use development that
fulfills current and future societal needs. Traditionally spatial
planning is considered to be a linear process in which selected
actors have to obtain consensus about common goals. In
practice, spatial planning is a non-linear, dynamic process in-
volving many, heterogeneous stakeholders. Actors have diverse
and changing goals and motivations, and influence each other
via direct and indirect communication. Opinion dynamics -
the exchange of opinions between social agents - thus play a
crucial role in spatial planning [1].

Models of opinion dynamics are commonly based on physi-
cal diffusion principles which average neighbouring quantities
[2], [3], [4], [1]. An ‘if-then-else’ condition is implemented
to operationalize the concept of a ‘social distance’ between
interacting agents, i.e., if two agents disagree too much then no
opinion averaging is occurring. There are however a number
of factors that may be relevant in spatial planning which may
significantly influence opinion dynamics, such as:
• Reputation, i.e., ‘higher’ ranking agents will also more

likely be more dominant in their interactions, resulting in
biased opinion exchanges.

• Peer pressure, i.e., solitary agents with one opinion
confronted with two or more agents that share a different
opinion will also often change their opinion more than
the group of agents.

• Empathy, i.e., the ‘ease’ with which an agent listens to
others and is willing to accept their opinion.

• Isolation and spatial effects, i.e., in a spatial land-use
context agents are often fixed at a spatial location (e.g.,

a farm or household) with a limited action radius. They
are thus more likely to interact with neighbouring agents
than with others agents (even in the current Internet era).

We present a spatially explicit agent-based model of a
“village” of limited size consisting of agents with a fixed
spatial position (e.g., a “household”) and no outside contacts.
Agents can only interact with their direct neighbours - opinion
dynamics are thus localized. Agents have an initial opinion on
a scale from 0 to 1 about an abstract subject. They also have a
reputation, an opinion acceptance rate, and a reputation accep-
tance rate. It is furthermore probable that reputation dynamics
- the change in ranking of agents - in turn depends on opinion
dynamics. Agents who share opinions will often also hold each
other in high regard, while agents who strongly disagree will
often also dislike each other. Opinion dynamics and reputation
dynamics thus are connected in feedback mechanisms. Finally,
the update in opinion and reputation in time occurs according
to functions that are based on social distance (difference in
opinion) and difference in reputation in a smooth fashion (i.e.,
without ‘if-then-else’ constructs).

A. Model description

The whole model is implemented as a cellular automaton
with field size Nx×Ny where each ‘cell’ represents an agent
with a fixed location. There is ‘diffusion’ of the quantities
‘opinion’ Xt

x,y and ‘reputation’ Y t
x,y , both bounded between

0 and 1, where x and y indicate spatial location.
1) Main spatial equations: The field rules are

Xt+1
x,y = Xt

x,y +Ax,y

∑
Y ′tx,y

(
f(X ′tx,y −Xt

x,y)
)
, (1a)

Y t+1
x,y = Y t

x,y +Bx,y

∑
X ′tx,y

(
g(Y ′tx,y − Y t

x,y)
)
, (1b)

where ′ denotes the Von Neumann neighbours (i.e., the 4
neighbouring agents influence the agent simultaneously, while
at the boundaries we use boundary conditions to close the
field), and f and g are functions described below. The agent
opinion adoption rate Ax,y and the agent reputation acceptance
Bx,y are individual agent properties and hence have a spatial
location that remain fixed in time. Unlike well-known opinion
dynamics models agents undergo simultaneous and biased
updating, i.e., some agents adapt their opinion (and reputation)
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more than others in an interaction. For notational convenience
the explicit time and space dependence of variables and
parameters are now droppped.

2) Opinion update function: The function f for agent
opinion updating is given as

f(X ′ −X) = sgn(X ′ −X)
(
−(X ′ −X)2 + 1

)
e−r(X

′−X)2 ,
(2)

where sgn (signum) conserves the sign of the difference in
opinion (because of the square the sign would be otherwise
lost). This function is evaluated separately for each neighbour
before the agent opinion is updated. Maximum opinion ex-
change occurs in the limit |X ′ − X| → 0 (i.e. two agents
practically share an opinion, although no convergence will then
occur anymore). If the opinions diverge maximally (namely
1 or −1) there is no exchange of opinion. The function
is generic, i.e., only basic aspects of agent interactions are
considered. Parameter r is a measure of social distance. For
r → 0 the function becomes a parabola (crossing the x-axis at
1 and −1), while for increasing r there is a decrease in social
distance (see Fig. 1).

3) reputation update function: The reputation of an agent
is updated according to function g, which is given as

g(Y ′ − Y ) = (u(−(Y ′ − Y )2 + 1)e−w(Y ′−Y )2)− v , (3)

which is again a generic function, depicted in Fig. 2. The
parameters u, v and w have arbitrary values. It is assumed that
neighbours with similar reputation will ‘flock together’, while
agents of dissimilar social status do not hold each other in
high regard. As status in principle is unbounded it is required
to re-scale variable S at every iteration to keep both status and
opinion bounded between 0 and 1.

II. MODEL RESULTS

A. Model behaviour

An example of how opinions change dynamically is de-
picted in Fig. 3. Each agent is indicated by a distinct colour.
The dynamics of reputation for the exact same simulation is
given in Fig. 4. In this example after 1000 iterations there are
still 3 distinct opinions. Although opinions still change after
some time, reputation seems to converge to some steady state
very fast. Interesting switches in reputation occur between
agents who quickly come to a shared opinion with each other.
For instance, the black, green, and pink agents quickly share
an opinion. Interestly, while the black agent starts with having
by far the lowest reputation of the three, he rises quickly
to being the most dominant agent within the village! As the
shared opinion of these three agents still changes after their
opinion merger, it stands to reason that the black agent must
be dominant in this opinion change. Further scrutiny reveals
that black is in fact the agent in the middle of the village and
has both a relatively high agent opinion change adoption rate
A and agent reputation acceptance rate B, thus fulfilling a key
role in the (local) opinion dynamics.

Fig. 1: Function f to translate the difference in opinion X
between two agents to opinion convergence. The x-axis gives
the difference in opinion between two agents. Note that the
function is “squeezed” more as the value of r is larger, i.e., the
social distance is smaller then. In solid red r = 5, in dashed
blue r = 30.

Fig. 2: Function g to translate the difference in reputation
Y to reputation convergence or divergence. The x-axis gives
the difference in reputation between two agents. When agents
are ‘equal’ they tend to listen to each other - birds of a
feather flock together - while very ‘unequal’ agents show
strong disdain for each other.

B. Model analysis

A significant number of runs were extended far beyond 1000
iterations, and their results suggest that eventually under all
conditions the system converges to one shared opinion in a
small village. Indeed, although function f visually seems to
be zero very quickly for large values of r, there is still an
incremental convergence for any difference in opinion smaller
than the maximum difference of 1. As the model is purely
deterministic, given enough iterations opinions will eventually
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merge. It is therefore relevant to look at the influence that
various factors have on the rate of convergence.

Sensitivity analysis [5] has been used to quantitatively ana-
lyze how model behaviour is affected by changes in different
factors. The output of interest is n, the number of distinct
opinions at time t divided by the total size of the village
(i.e., this is a discrete output variable). Obviously, n has a
minimal value of (Ni×Nj)

−1, i.e., there is always one distinct
opinion. Fig. 5 shows a one-at-a-time analysis of n within a
small “village” of 3× 3 after a 1000 iterations, in which r is
the varied factor - all other parameters are fixed, as are the
bounds on the initial distributions - for 25 runs per value of
r. Depicted in red is the mean of these runs, open diamonds
indicate the most common value, and blue crosses indicate the
minimum and the maximum value from the sets of 25 runs.

There is a clear increase in the mean for increasing r,
which is to be expected. There is a ‘step-up’ value where
the minimum number of distinct opinions goes from one to
two, i.e., the end-time of 1000 iterations is not sufficient even
for such a small village to converge to one opinion. Also, the
number of distinct opinions clearly increases for increasing r.
However, no strong nonlinearities or tipping points seem to
occur within the considered parameter range.

We also consider global sensitivities by performing a
variance-based sensitivity analysis [5], [6]. The assumed distri-
butions for initial conditions are uniform U(m∓d), where m is
the average value and d the variance around this average value.
For X[0] and Y [0] draws were made from U(0, 1), while for
A and B draws were a bit arbitrary from U(0, 2). The factors
varied in the sensitivity analysis are social distance r, and
dX[0],Y [0],A,B (i.e., respectively variance in the opinions X[0],
reputation Y [0], opinion adoption rates A, and acceptance
rates B). Sampling has been done from a hyperdimensional
‘chessboard’, i.e., parameters are taken from a limited set of
combinations from p with equi-distant steps. For each set of
fixed values 10 simulations have been run.

The global variance-based sensitivity is given as

Sp =
E(V ar(n|p))

V ar(n)
, (4)

where p is the input under consideration, E is the expected
value, and the other parameters are considered to be ‘un-
known’. Marginals can be ignored as only uniform distribu-
tions have been used. Observe that the time point is fixed
in this analysis, i.e., one has to do the same type of analysis
for each different selected time point. The results of the global
variance-based sensitivity analysis are given in Fig. 6, in which
the sensitivity of n is given in time. Not surprisingly, the
sensitivity of n to the initial distribution of opinions X[0]
(grey) is high, however, it is significantly smaller than 100 %.
In other words, a significant portion of the variance in n is
explained by interactions between inputs. The sensitivity to
X[0] decreases in time, while the influence of the opinion
acceptance rate A (black) and later the social distance r (red)
increases. Observe, that an increasing portion of the total

Fig. 3: A simulation of changes in opinions X up to 1000
iterations for r = 15 in a “village” of 3× 3. Different colours
indicate different agents. In this example there are still three
clearly distinct opinions at the end-time.

Fig. 4: The dynamics of Y (reputation) for the same simulation
as X (Fig. 3).

variance has to be explained from higher-order interactions.

III. DISCUSSION

Although agents in the model always seem to converge
to one opinion eventually, the number of iterations before
convergence occurs can vary strongly, depending on different
factors. For practical purposes it may be intractable to allow
for a large number of iterations, e.g., in real spatial planning
it may be realistic to have a certain end-point, and thus more
than one distinct opinion to be considered.

Of the considered factors that may influence opinion dy-
namics (reputation, peer pressure, empathy, and spatial isola-
tion effects) not all have been investigated properly. Of the
considered parameters not surprisingly the most influential is
the initial opinion distribution, but it is not at all a 100 %,
and furthermore this sensitivity decreases in time. Instead, the
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importance of the social distance (r) and opinion acceptance
rate (A) increase. Furthermore, a significant portion of the
variance in opinions is not explained by single-order effects.
Two parameters that remain to be explored in more depth
are the size of the village and the radius of communication
with neighbours. For large enough village sizes opinions may
in practice never really converge because of local isolated
patches. Such patches then would have no real opinion ex-
change anymore with their neighbours outside the patches,
resembling the behaviour of models that show segregation of
agents, such as the well-known Schelling model. Effects of
spatial segregation should be confirmed by a more extensive
sensitivity analysis that includes the village size as variable
factor.

The above in turn also raises another relevant point, namely
how to perform a spatially explicit sensitivity analysis. The
method applied here considers only an aggregate output (the
number of distinct opinions), but it may be obvious that
because of the local interactions there are spatiotemporal
correlations which need to be considered. Currently the devel-
opment and application of methodologies for spatial sensitivity
analysis is limited because of the conceptual and numerical
difficulty of dealing with spatial structure in model analysis,
which in turn results in a common absence of spatial sensitivity
analyses [7].

Our model currently considers agents with a spatially ex-
plicit fixed position but with a non-spatial opinion. However, in
spatial planning agents typically differ in their opinions about
different locations, for instance, two agents may agree on one
location but disagree on another. Future model extensions will
incorporate this spatially explicit opinion difference. Also, the
current version of the model is fully deterministic - barring
the randomly drawn initial conditions - but it is plausible that
internal noise - such as misconception about each other’s opin-
ions - as well as outside interference will prevent convergence
towards one shared opinion. The addition of noise may result
in a ‘natural’ social distance which in many other models is
imposed explicitly as an ‘if-then-else’-construct. The functions
for opinion and reputation change are now very generic and
not grounded in any social theory other than very basic
assumptions about opinion and reputation dynamics. However,
as the exchange of opinion and reputation is ‘decoupled’
from the update other exchange functions can be ‘inserted’
which are based on social theory or experiments. Future
model extensions may also include different descriptions of
the exchange of opinion and reputation.
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