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Abstract—We analyse the large scale agent-based model of
a prepaid telecommunication market with oligopolistic com-
petition, heterogeneous calling patterns and different levels of
agent rationality. We apply innovative implementation approach
of utilizing high performance CUDA computing devices which
allows us to consider population of up to 1 million consumers.

We measure influence of a call graph structure, intra-family
network choice coordination and agent rationality level on
the market equilibrium. We discover that boundedly rational
subscribers, who exploit simple decision heuristics to coordinate
network choice within closed user groups, exert much stronger
pressure on suppliers than fully rational ones. This leads to
lower average calling costs, increased welfare and decreased
monopolistic power of operators. We also observe asymmetry
in operator margins and volume of on-net and off-net calls in
accordance with empirical facts.

I. INTRODUCTION

THE breakup of national monopolies and liberalization
of telecommunication markets in recent decades revived

interest in economics of the sector. The seminal publications
of Armstrong [1998] and Laffont et al. [1998a,b] became a
cornerstone of the ongoing debate on nature of competition in
the industry. The original model, subsequently known as the
A-LRT framework, analysed a duopoly market with Bertrand
style price competition and Hotelling-like network differen-
tiation. In order to preserve its analytical tractability the
authors made many simplifying assumptions, in particular they
assumed a fully connected and uniform call graph between
subscribers. Consequently consumers used operator’s market
share as a proxy for proportion of their peers using the network
when considering which network to join.

It was soon noticed that the model failed to explain
numerous stylized facts such as large on-net/off-net price
differentials, high interconnection rates and asymmetry be-
tween on-net and off-net call volumes in equilibrium.1 This
motivated many researchers to extend it. One of the research
threads focused on incorporating network heterogeneity into
the framework. Some simple models of heterogeneity were
proposed. Cherdron [2001] developed a model with two user
groups and a subscriber calling pattern biased towards one of
the groups. Dessein [2003, 2004] analysed models with call
volume heterogeneity by dividing subscriber population into

1see Harbord and Pagnozzi [2010, section 3.2] for recent empirical evidence
from selected European markets

light and heavy users. In a similar manner Gabrielsen and
Vagstad [2003] proposed a model with high and low demand
user groups. These ideas were extended into a more general
framework by Hahn [2004]. Gabrielsen and Vagstad [2008]
introduced an idea of “calling clubs” the members of which
call each other more often than the general population. More
recently Hoernig et al. [2011] proposed a model of “calling
circles” with non-uniform, concentrated calling patterns cor-
related with subscriber’s network preferences. In contrast to
the earlier model of “calling clubs” they allowed the circles
to overlap. Finally to bridge a gap between theory and reality
Harrison et al. [2009a,b] introduced a multiagent approach by
explicitly simulating a call graph as a regular random graph.

All these papers however share the common simplifying
assumption – a “representative” consumer owns a single
telecommunication service and consumers do not coordinate
their network choices. Clearly, this assumption is not met
in practice. Families and companies can own more than one
service and if they do they coordinate operator choices for their
services as shown by Birke and Swann [2006, 2010]. Likewise
Armstrong and Wright [2009] hypothesize that existence of
“closed user groups” coordinating network membership choice
may explain observed bias towards on-net calls and encourages
on-net/off-net price discrimination by operators.

Modelling this kind of coordinated behaviour combined
with network heterogeneity is a methodological challenge for
purely mathematical approach. To overcome this limitation
Kamiński and Łatek [2010] proposed a multiagent model
implementing a concept of a customer – a network choice
decision maker comprising multiple services. Alas, their re-
sults were not directly comparable to work of Laffont et al.
[1998b]. Then Kamiński [2012a,b] proposed a multiagent
model generalizing the model of Laffont et al. [1998b] beyond
the duopoly case and replicating it as a special case. His work
took into account call graph heterogeneity and coordination of
subscriber choices within family-like groups. He operated on a
relatively small population of 4096 fully-rational subscribers.

In this paper we extend the approach of Kamiński [2012a] to
consider 2 classes of customers – fully and boundedly rational.
Additionally we subdivide the latter class by using 2 different
heuristics for network choice coordination among cooperat-
ing subscribers. Furthermore we introduce high performance
CUDA computing technology to operate on a much larger
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agent population (up to 1 million). This innovative approach
allows us to: (i) take precise measurements for oligopoly
markets with 3 and 4 operators which proven to be problematic
with small agent population proposed by Kamiński [2012b];
(ii) compare the outcomes for fully rational subscribers with
outcomes for subscribers characterized by bounded rationality;
(iii) contribute to the research on bounded rationality by pro-
viding another example of “less-is-more” effect when simple
heuristic decision rules prove to be superior to fully rational
decision making.

The rest of the paper is organized as follows. In section
II we describe the model used for the simulation and discuss
the rationale for introducing the novel element of bounded
rationality. In section III we describe simulation setup and
present the results. We discuss the results in section IV.
Section V concludes.

II. MODEL DESCRIPTION

In this section we describe the behaviour of agents (cus-
tomers, subscribers and operators), method of generation of
a call graph and subscriber families in the model. The spec-
ification strictly replicates model of Laffont et al. [1998b]
for linear discriminatory pricing with extensions proposed
by Kamiński [2012b] allowing for customer heterogeneity
and oligopolistic competition. In the presentation of the
base framework we follow description presented in Kamiński
[2012a] with necessary additions and modifications.

Consider a telecommunication market on which there are
K operators and N subscribers. A subscriber is a single
calling contract with the operator. Each subscriber is owned
and managed by a customer and a customer comprises one or
more subscribers. Depending on context we may also call a
subscriber – a service, and a customer – a family.2 Subscribers
call each other with non-uniform intensity – every subscriber
maintains her list of “contacts” which is a subset of the
subscriber population. The ensemble of subscribers’ contacts
constitutes the social communication network or a call graph.

The market is assumed to follow calling party pays regime
and operators can discriminate between on-net and off-net
calls. The pricing is linear i.e. there is no fixed fee for network
membership and no “free minutes” allowance. There is also
no switching costs for changing the operator. The market is
mature – thus we take that the set of operators, customers,
subscribers and a call graph remain constant.

Every operator k ∈ {1, ...,K} sets a price for a unit of call
time inside his network onk and outside his network offk . Let
s(i) ∈ {1, ...,K} be the operator chosen for subscriber i by a
customer who owns it.

A. Subscriber and Customer behaviour

Subscriber call intensity depends on a call price. Let wij be
the call intensity from subscriber i to subscriber j given the
calling price equals 1 and qij be proportional change of this
volume given actual market price. To determine the price paid

2to reflect that it corresponds to a “friends & family” circle in telecommu-
nication jargon

by subscriber i calling subscriber j we have to check if they
use the same operator. The price formula is defined as

pij = ons(i)[s(i) = s(j)] + offs(i)[s(i) = s(j )],

where expression [`] evaluates to 1 if ` is true and to 0 if it
is false. The rule states that if subscribers i and j belong to
the same operator then on-net price is charged and otherwise
off-net price is used.

Extending Laffont et al. [1998b] we define a subscriber’s
net surplus as

Vi
(
s(i)

)
=

N∑
j=1

wij

(
q
1−1/η
ij

1− 1/η
− qijpij

)
−
Xi
s(i)

∑N
j=1 wij

2σ
,

where η > 1 is price demand elasticity, Xi
s(i) ∈ [0, 1] is mea-

sure of subscriber i preference towards operator s(i) and σ > 0
is a measure of strength of this preference. We assume that
subscriber preferences are independently uniformly distributed
Xi = (Xi

1, . . . , X
i
K) ∈ [0, 1]K . In comparison to formula

given by Laffont et al. [1998b] we need to add a normalizing
factor

∑N
j=1 wij to reflect the fact that a call graph need not

be fully connected and uniformly weighted.
The above equation can be solved for optimal call volume

by a subscriber given operator prices. A utility maximizing
subscriber will set qij = p−ηij and will obtain surplus
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(
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wij
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.

Using this formula a subscriber can choose operator s(i)
so as to maximize the surplus. This is the standard analytical
approach of Laffont et al. [1998b].

1) Fully rational customer: We extend the A-LRT ap-
proach and assume that a customer selects the globally op-
timal allocation of a family of subscribers to operators. Let
F ⊂ {1, . . . , N} be a list of subscribers belonging to a single
customer. Then a customer chooses the subscriber allocation
~a =

(
∀i ∈ F : s(i)

)
that maximizes the aggregated family

surplus

VF
(
~a
)
=
∑
i∈F

Vi
(
s(i)

)
The optimal solution to the above allocation problem can
be different from individual subscriber optimization because
it allows a customer to coordinate operator choice among
subscribers.3 For example (as found in empirical data and
later results of the model) one can expect that onk < offk .
In such a case a customer may be better off by allocating all
the subscribers to one operator to benefit from cheaper on-net

3The fact of coordination within closed user groups is supported by
empirical data – for example Birke and Swann [2006] find out in the examined
sample that 68% of households with 2 mobile subscriptions use the same
network operator
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Algorithm 1 Find best subscriber allocation ~a ∈ {1, ..,K}|F |

bestUtility ← (−∞)
for all ~x ∈ {1, ..,K}|F | do

if VF (~x) > bestUtility then
bestUtility ← VF (~x)
~a← ~x
tieCounter ← 1

else if VF (~x) = bestUtility then
tieCounter++
if 1/tieCounter > runif(0, 1) then
~a← ~x

end if
end if

end for
return ~a

calls within a family circle.4

Please note that in the model customers choose operators
non-strategically and take operator prices as given. Algorithm
1 describes details of the implementation.

2) Boundedly rational customer: One may argue that al-
locating services in a globally optimal way is too strong an
assumption. Indeed, the number of possible allocations a fully-
rational customer has to consider grows exponentially with
family size as K |F |. With 4 operators and 5 family members
a total of 1024 allocations has to be considered. Computational
burden with even larger families could be unbearable for
a flesh & blood agent. Therefore we consider alternative
scenarios with nearly-rational customers who optimize within
a bounded set of possibilities and resort to a simple “take-the-
best” heuristics in allocating their subscribers. These are:

1) single operator optimization: allocate the entire pool of
subscribers to one of the operators or keep the current
allocation – whichever best, where the initial allocation
is randomly selected (see Algorithm 2);

2) initial individual optimization: maximize subscriber util-
ities individually taking other family member choices as
given; repeat the procedure 3 times to allow for adjust-
ment for other family members choices; then proceed as
in Algorithm 2.

The constraints of human mind in processing large amounts
of information laid foundations under the theory of bounded
rationality [Simon, 1955]. Today there is abundance of ev-
idence that individuals retreat to simplified reasoning and
heuristic decision making when confronted with an over-
whelmingly complex decision problem [Gigerenzer and Sel-
ten, 2002]. In context of telecommunications this is tradition-
ally being related to plethora of available tariffs and their

4Obviously this type of uniform allocation needs not be globally optimal
in every case as it depends on proportion of intra-family to extra-family call
volume. In general finding the globally optimal subscriber allocation in case
of a heterogeneous call graph is a non-trivial task and its completion as such
can be guaranteed by the “brute-force” evaluation of every possible allocation.
This is the approach taken in this work for fully rational customers – despite
the obvious disadvantage of computational complexity of O(K|F |).

Algorithm 2 Find best subscriber allocation ~a: single operator
optimization (heuristics 1)
~a← ~x← {∀i ∈ F : s(i)} (initial subscriber allocation)
for k = 1 to K do

for all i ∈ F do
xi ← k

end for
if VF (~x) > VF (~a) then
~a← ~x
tieCounter ← 1

else if VF (~x) = VF (~a) then
tieCounter++
if 1/tieCounter > runif(0, 1) then
~a← ~x

end if
end if

end for
return ~a

structural complexity. Bolle and Heimel [2005] observed that
even intellectually sophisticated mobile phone users (univer-
sity students) base their network membership decision on
simple comparison of absolute levels of on-net/off-net price
vectors failing to weigh properly proportion of on-net to off-
net calls. This “fallacy of dominant price vectors” as they call
it obviously leads to sub-optimal choice and higher average
calling costs. The result was confirmed on an independent
sample of students and faculty staff by Haucap and Heimeshoff
[2011], who call the phenomenon a “price differentiation bias”.
Barth and Graf [2012] came to a similar conclusion in a
discrete choice experiment. In a recent empirical study based
on a large dataset from China Telecom Miao and Jayakar
[2014] reported a vast majority of consumers to make non-
optimal selection from the menu of available tariffs. They also
found out probability of non-optimal selection to increase with
complexity of a tariff plan. Likewise Lambrecht and Skiera
[2006], Mitomo et al. [2009] and Gerpott [2009] observed
a “flat rate bias” – propensity of consumers to overestimate
savings provided by “unlimited” tariffs even if measured
usage-based rates would result in lower average cost.

More generic evidence comes from extensive literature on
bounded rationality. We consider studies of chess players to be
particularity relevant to the subscriber coordination problem.
The task of allocating services of a large family, say with
10 subscribers, to numerous available networks resembles the
problem of a chess player in terms of immense quantity of
available strategies. Chess player reasoning was studied by
De Groot [1965] and later by Simon [1972] and Chase and
Simon [1973a,b]. De Groot discovered that both beginners and
master players apply similar simplified decision procedures
(heuristics). At each move they analyse only a small subset of
available strategies – no more than a dozen or so. The secret
of course is to pick the right subset for analysis and this is
where masters “master” as they know, through experience and
learning, how to select the most promising ones.
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Although the decision heuristics designed for our experi-
ment may seem simplistic at first they follow the rules outlined
by master chess players. It is easily seen that some allocation
strategies, namely uniform allocation of services to one of
the operators, bear higher potential for substantial gain in
utility than any seemingly “random” strategy. When time or
computational capacity is scarce it is best to focus on the
most promising alternatives – as master chess players do. Such
simplified optimization approach is also justified by anecdotal
evidence – many if not most large organizations equip their
staff with mobile phones from a single operator, although
corporate contracts are somewhat more complex than a simple
prepaid market model analysed here.

The second heuristics extends the first one by allowing
subscribers to individually optimize their network choices
prior attempting to assign all the family services to one
operator. The rationale behind such approach is that a single
operator optimization (heuristic rule 1) is beneficial mainly for
large families. Firstly, the effort of fully rational allocation is
huge for such families due to combinatorial explosion of the
search space so heuristic decision making provides dramatic
savings in this respect. Secondly, the larger a family gets the
more likely volume of intra-family calls outweighs volume of
extra-family calls. Small families on the other hand may be
better off by not coordinating their choices and optimizing
individually instead. They are also more likely to encounter
a Pareto-optimal allocation within the 3-iteration adjustment
schema we allowed for as size of their decision set is much
smaller. Simply speaking the heuristic rule 2 allows small
families to benefit from individual optimization and large
families from a single-operator optimization at almost no
computational overhead.

In the end it is worth noting that we model both rational
and nearly-rational customers as having passive expectations
i.e. they assume their neighbourhood to remain static when
making network allocation decision for their subscribers. In
fact the environment is not static as all the other customers
make their subscriber allocation decisions at the same time
and based on the same information set. Therefore we repeat
allocation procedures for the entire customer population until
the stable subscriber allocation is reached or changes are
of simple cyclical nature i.e. no subscriber changes network
allocation or some subscribers switch back and forth between
networks in stable patterns.

B. Operator behaviour

Take that ac is cost of initiating the call, bc is cost of
terminating the call and ic is interconnection fee (paid by a call
initiating operator to a terminating operator). By fc we denote
fixed cost of maintaining a subscriber by a chosen network
operator. Under such notation operator k calculates profit πk
using formula (again it is a direct extension of Laffont et al.
[1998b]):

πk(onk, offk ) = (onk − ac − bc)on−ηk
∑

s(i)=k=s(j)

wij+

+(offk − ac − ic)offk
−η

∑
s(i)=k 6=s(j)

wij+

+
∑

s(i)6=k=s(j)

(ic − bc)offk
−ηwij+

−{i : s(i) = k}fc
N∑
i=1

N∑
j=1

wij
N
.

The formula comprises four terms taking into account
optimal call intensity given prices (q = p−η). In the first
term we calculate operator profit from on-net calls. The second
and third terms represent profits from outgoing and incoming
off-net calls respectively. The last term counts fixed costs
of customer maintenance, for example customer service and
billing cost. Similarly to parameter σ in order to assure its
consistency with the reference model it has to be normalized.

C. Equilibrium Prices

We compute equilibrium prices for both the reference A-
LRT model and for its multiagent counterpart. Note that
Laffont et al. [1998b] provide only implicit formula for equi-
librium, so it is not possible to calculate the reference prices
directly. Therefore following Kamiński [2012b] we applied
an adaptation of numerical procedure proposed by Krawczyk
and Zuccollo [2006]. We start from prices equal to marginal
cost. In each step of the simulation operators find the best
response prices in the neighbourhood of current prices and
next they update their prices by moving halfway from current
prices towards the best prices. In each iteration we narrow the
neighbourhood radius. The procedure is repeated 213 times –
we confirmed experimentally that it is sufficient for obtaining
accuracy of results in order of 10−3.

Similar approach is taken for obtaining the multiagent
model equilibrium prices. We start from prices in proximity of
the reference A-LRT prices and with a random allocation of
subscribers to networks. In each simulation step the elected
operator finds the best response prices by testing if it is
profitable to change its on-net and off-net prices by ±0.01
or leave them unchanged. Then the new pricing is announced,
other operators adjust their prices and consumer adjust their
network membership choices. The procedure is repeated until
the stationary state is reached i.e. the current prices being the
best prices and stable allocation of subscribers to networks.

We assume operators to “anticipate” how customers will
react to changed prices. This is achieved by an operator
recursively sub-simulating the market response for new pricing
as proposed by Łatek et al. [2009]. Because the multiagent
simulation is non-deterministic there is a natural tendency to-
wards instability of the optimal decisions. In order to pinpoint
approximate equilibrium in each step prices are rounded to
precision of 0.01. If optimal responses do not deviate more
than this value from current prices then current prices are taken
as the equilibrium approximation.

D. Call Graph Generation

We assume a call graph to have small-world property for
consistency with structure of empirical telecommunication
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networks [Onnela et al., 2007a,b]. We generate it using Watts
and Strogatz [1998] algorithm adapted to handle directed
graphs. Graph generation is started from ring lattice with
neighbourhood radius given as a parameter, next edges are
rewired with defined probability. Because we assume the graph
is directed, rewiring is done separately for each direction of
initial connection between services.

A complementary part of a call graph generation is assign-
ment of services to customers (families). We define param-
eter family denoting maximal family size. Each family has
random size that is drawn from Zipf distribution truncated
at the parameter value level. In this way smaller families are
more probable than large ones. Additionally we make services
belonging to the same family a clique in a call graph which
accounts for the fact that services belonging to the same family
tend to call each other.

III. SIMULATION RESULTS

In this section we first we describe the setup of the simu-
lation experiment and then we present the results obtained.

A. Experiment Setup

The parameter range for the simulation is given in Table I.
We follow recommendations of Kamiński [2012a] with minute
modifications. We take a call termination cost bc = 1.0 as
the numéraire so that all the remaining parameters are ex-
pressed relative to it. It is natural to assume parameters ac and
ic to be slightly larger than bc and therefore we set their range
to [1.00; 1.50] and [1.00; 1.75] respectively. The choice of the
network substitutability parameter σ follows recommendations
of Laffont et al. [1998b] where it is required not to be too
large in order to ensure existence of a stable shared-market
equilibrium. On the other hand if it was too small then the
non-pricing component would dominate subscriber’s utility
which would be unrealistic. In order to balance these two
effects and following Harrison et al. [2009a] and De Bijl
and Peitz [2002] the range of σ was set to [1.00; 2.00]. In
a similar manner following Laffont et al. [1998b] the value of
elasticity parameter η should be greater than 1. On the other
hand Ingraham and Sidak [2004] report that price elasticity of
demand on telecommunication markets is not high, hence the
choice of parameter range is [1.25; 1.75]. Next it is natural
to assume that fc should not be large. It is normalized
not to exceed 10% of average customer calling costs when
onk = offk = 1. Network radius parameter range was chosen
following data from Wojewnik et al. [2011] and a graph rewire
probability parameter spans full range of admissible values.
The maximum family size parameter spans from 1 to 5 and
the number of operators from 2 to 4.

We extend the span of parameter family for boundedly
rational customers to measure impact of family size more pre-
cisely. We put the cap of 5 on the parameter for fully rational
customers due to computational complexity constraints (see
section II-A2 for the discussion). Consequently we extend the
span of parameter radius to measure potential influence of
interactions between the two.

TABLE I
SIMULATION PARAMETER VALUE RANGE

parameter value (range) parameter value (range)
σ [1.0, 2.0] fc [0.0, 0.1]
η [1.25, 1.75] rewire [0.0, 1.0]
bc 1.0 NLRT2 102400
ac [1.0, 1.5] NEXT34 531441
ic [1.0, 1.75]

Fully rational Boundedly rational
radius {3, 4, 5} radius {3, . . . , 10}
family {1, . . . , 5} family {1, . . . , 10}

B. Simulation Docking

We performed simulation docking to verify if it replicated
the A-LRT model when the equivalent parametrization was
used. For this purpose we used a fully connected subscriber
graph with equal connection weights and single member fam-
ilies i.e. subscribers calling each other with uniform intensity
and no intra-family coordination. We examined 4 different
subscriber population sizes (15k, 100k, 500k and 1mln) and
3 different methods of probing subscriber preference space
– equidistant grid, pseudo- and quasi-random. Mersenne-
Twister and randomized Sobol were used as pseudo- and
quasi-randomness sources respectively. We randomly selected
100 simulation parameter sets and for each set performed 32
simulation runs per model, per population size, per preference
space probing method. The results of the docking exercise are
summarized in Table II. Models are coded using 5 alphanu-
meric characters schema as follows:
• prefix LRT2 marks the standard duopoly model of Laffont

et al. [1998b] with unit interval uniform preferences;
• models prefixed EXTn where n is number of operators

are extended oligopoly models as proposed by Kamiński
[2012b] with subscriber preferences independently uni-
formly distributed on hypercube [0, 1]K ;

• suffixes {S,R,Q} stand for equidistant grid, pseudo-
random and quasi-random preference space probing re-
spectively.

Columns don and doff are mean deviations from the numer-
ically computed theoretical A-LRT equilibrium prices (on-net
and off-net respectively). Columns sdon and sdoff are mean
standard deviations of these values. Column onshare is mean
share of on-net calls, the standard deviation of this value is 0
in all cases therefore it is not shown in the table.

The reader may notice that equidistant grid preferences
(type S) delivered the most accurate results for the A-LRT
equivalent setup (LRT2). The accuracy however drastically
deteriorated for an extended Kamiński [2012b] model spec-
ification. The reason was that equidistant probing of mul-
tidimensional preference space caused heavy discretization
of the model response surface.5 This resulted in large bias.
For the extended specification pseudo-random (R) and quasi-
random (Q) probing worked much better and with comparable
accuracy. One may also see that accuracy of models with 500k

5the problem known as “curse of dimensionality” in numerical analysis
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Fig. 1. Simulated to theoretical price deviations for the A-LRT equivalent
configuration

and 1mln subscribers is very close. It was natural therefore to
choose the smaller population for further analysis as having
lower computational capacity requirements.

We used accuracy of docking results to select models for
further analysis and the actual simulation run. We have arbi-
trarily chosen the subscriber population sizes to be NLRT2 =
3202 = 102400 for the duopoly A-LRT equivalent setup and
NEXT34 = 813 = 7293 = 531441 for the extended triopoly
and 4-network oligopoly as providing the best accuracy to
performance ratios. For the preference space probing we have
chosen uniform grid (S) and pseudo-random preferences (R)
for the duopoly and oligopoly models respectively. The quasi-
random approach (Q) delivered slightly lower variance of the
results but we opted for pseudo-randomness as more reliable
for standard error estimates.

Fig. 1 shows simulated to theoretical price deviations of
the selected models for the A-LRT equivalent configuration
(averaged observations per point). One may see the multiagent
models reproducing theoretical prices with high accuracy –
deviating by no more than 0.9% and 0.5% for on-net and
off-net prices respectively in case of model EXT4R. The small
discrepancies came from two sources: (a) rounding errors (we
used 4 and 2 decimal places for computing the theoretical
A-LRT and multiagent equilibrium prices respectively) and
(b) stochastic nature of discrete subscriber preferences in the
multiagent setup for the oligopoly models (EXT3R, EXT4R).

C. Results

The results of the multiagent simulation were obtained using
10131 random parametrizations for the duopoly (LRT2) model
and 7745 random parametrizations for the triopoly (EXT3) and
4-network oligopoly (EXT4) models. For each parametrization
there were in average 32 simulation runs for the duopoly

model and 19 simulation runs for the oligopoly models. For
each run of EXT3 and EXT4 models a new set of random
preferences was drawn. Additionally a new random call and
family graphs were generated every eight run. In total 712041
simulation runs were performed.

We applied linear regression metamodeling approach to
ensure simple interpretation of the results. Even though the
relationship between parameters and equilibrium prices is
in fact non-linear, within the chosen paremeter range such
approximation is acceptable as suggested by R2 values of the
regression model close to 1. The regression results for the
average calling cost are presented in tables III and IV. Network
choice coordination classes are coded as “FamilyCN” where
C denotes fully rational (F), heuristic type 1 (H) and type 2 (G)
coordination procedures respectively, and N ∈ {1, . . . , 10}
denotes a maximum family size.

Fig. 2 shows, ceteris paribus, average on-net and off-net
margin differentials between the reference A-LRT model and
the simulated multiagent models with network heterogeneity
and different levels of agent rationality for the duopoly market.
The theoretical prediction of Laffont et al. [1998b] is that in
equilibrium on-net and off-net profit margins are equal. As
can be seen simulated operator margins deviate significantly
from the theoretical results. When no customer coordination
is taken into account (family = 1) the simulated on-net and
off-net margins are in average higher by 5 and 1 percentage
points respectively. This represents the pure effect of the
network heterogeneity and confirms that for non-uniform call
graphs tariff mediated network effects are internalized by
operators in form of higher profits. This experimental result is
in accordance with recent theoretical predictions of Hoernig
et al. [2011] and is independent of the number of competing
operators as seen on Fig. 2, 5 and 6.

Customer coordination effect counteracts the network het-
erogeneity effect and quickly outweighs it as the family size
grows. In the duopoly setup with large families the fall in
on-net margins is stronger than rise in off-net margins. Overall
the average calling costs are decreased as seen on Fig. 3.
The coordination effect is strongest for the duopoly market and
fades as the number of networks grows (Fig. 5 and 6). This is
intuitively understandable – with more operators, peer services
are more dispersed among them and coordination becomes
more intricate. Also operator margins go down due to inten-
sified competition so there is less room for price adjustment
anyhow. For oligopoly markets with 3 and 4 operators and
fully rational customers the fall in on-net margins is just about
enough to offset the rise in off-net margins. This causes costs
to remain constant regardless of a family size.

Quite unexpectedly the fall in margins and average calling
costs is dramatically larger in case of boundedly rational
customers as compared to fully rational ones. Moreover in this
case both on-net and off-net margins go down simultaneously.
One may see for example that in case of a duopoly market with
up to 5 member families fall in on-net margin is more than 2
and 3 times deeper for heuristic rule 1 and 2 respectively as
compared to fully rational case (Fig. 2). Again the magnitude
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Fig. 2. Simulated to theoretical margin differentials for the duopoly model (LRT2S)

of the effect fades as number of operators grows for the same
reason as above, but its direction remains the same for both
on-net and off-net prices.

Another interesting simulation outcome is bias towards on-
net calls. In the A-LRT framework in equilibrium the share of
on-net calls equals the market share of the operator. This is at
odds with empirical data as on-net volume share observed on
real markets is much higher [Harbord and Pagnozzi, 2010].
As seen on Fig. 4 this effect emerges from the multiagent
model. Again we see impact of the heterogeneity effect
(when family = 1) and the coordination effect – on-net
volume share grows as the family size grows. Interestingly
the differential to the A-LRT model gets larger as number of
operators grows as seen on Fig. 5 and 6. As previously the
effect is much stronger for boundedly rational customers as
compared to fully rational ones.

Finally it is worth pointing out that the effect of the
interconnection charge (ic) on the average consumer cost is
systematically larger in the multiagent setup than in the A-LRT
equivalent setup, despite monopolistic power of operators
in the former being weakened by the coordination effect.
This shows that models ignoring network graph heterogeneity
underestimate influence of this parameter on market prices.

IV. DISCUSSION

Both the magnitude and the direction of influence of agent
rationality level on the market equilibrium came as a surprise.
Conventional wisdom perceives boundedly rational behaviour
as inferior substitute to fully rational one and expects it to
deliver results that are second-order worse at minimum. More-
over one would expect that in a large population small individ-
ual level deviations from Pareto-optimal choices (i.e. nearly-
rational behaviour) cancel each other out and do not cause

significant distortion of the aggregated outcome.
At least two lines of research questioned such reasoning.

Gigerenzer [2004] provides examples of heuristic decision
making leading to results superior to fully rational one – the
“less-is-more” effect. Akerlof and Yellen [1985] show how
seemingly insignificant second-order deviations from perfect
rationality cause unexpected first-order systemic effects. Con-
tributing to this line of thinking the results of our model
provide an example of less mental effort leading to the more
desirable outcome – increased welfare of agents. They also
show how nearly-optimal behaviour may lead to substantial
deflection from the theoretical results.

One should however be careful in drawing generalized
conclusions. In an attempt to explain the phenomenon we need
to consider whether it is an artifact of the model, the emergent
property of the system being modelled or maybe both. We
argue that the latter is the case. Part of the explanation
lies in the way we model subscriber preferences. We inherit
the A-LRT approach with preferences uniformly distributed
on a generalized unit interval [0, 1]K . Notice that when we
bundle i.i.d. subscribers into customers and as the family
size grows the aggregated customer preferences approach the
normal distribution and concentrate around the marginal sub-
scriber. Hence the population of customers (who are decision
makers in our model) is more indifferent between operators
than population of subscribers. As a result the competition
between operators intensifies and prices go down. This effect
is equivalent to increasing value of σ – the substitutability
parameter. The above is not the complete rationale however.
If it were there would not be visible discrepancies between
fully-rational and boundedly rational outcomes as the σ-effect
occurs for any type of subscriber coordination.

Strong network effects seem to be the hidden driving force.
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A single subscriber switching operators may trigger a cascade
of followers who find it beneficial to do the same in the modi-
fied network constellation. This ignites a chain-like reaction in
the entire population. This induced churn effect is at work for
both fully and boundedly rational setups however it is orders
of magnitude stronger in the latter case. To see why consider
that in the fully rational setup families will most likely not
choose uniform network membership while in the boundedly
rational setup they will most likely choose it. Than in the latter
case entire subscriber families (customers) switch operators
as opposed to mostly subscriber level switches in the former
case. Let us remind here that customers in the model choose
networks non-strategically i.e. they take the environment as
given and do not anticipate far-reaching consequences of their
decision on the systemic level. Paradoxically this causes fully
rational customers to overlook potential gains in utility reaped
by boundedly rational agents as a cumulative side effect of
their simplified reasoning.

Another considerable fact is divergence between outcomes
of the two apparently similar heuristic rules. It was already
explained in section II-A2 but we may repeat for clarity that
the heuristic rule 1 is beneficial mostly for large families.
Small families do better by not coordinating on a single
network as volume of their intra-family calls is unlikely to
outweigh volume of extra-family calls. Such families are
better off when subscribers make network choices individually.
Heuristic rule 2 allows for such diversity of choice and
hence fits the environment better. Consequently it leads to
implicit market segmentation as small and large families act
differently. Overall customers are able to extract more surplus
for themselves. Since in our model operators are not allowed
to discriminate pricing on customer classes they respond by
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Fig. 3. Simulated to theoretical average cost differential for the duopoly
model (LRT2S)

decreasing prices yet again to give up more of the surplus
for “smarter” customers. This affects off-net prices more than
on-net prices as seen on Fig. 5 and 6.

To what extent the subscriber coordination effect is at work
on real markets is an open question that requires further re-
search, especially if you consider some unrealistic assumptions
of the model. For example subscriber mobility is assumed to
be frictionless as there is no cost associated with network
switching. So you may have a lot of network “jumpers”.
Nevertheless consistency of the results with theoretical pre-
dictions on the one hand and the stylized facts on the other
indicate the effect as a plausible explanation to many enigmatic
market phenomena, one complementary to hypothesis of “call
externalities” prevailing in the theoretical literature. Further-
more diversity of the results and sensitivity of the model
suggest that scrutinizing actual network choice coordination
procedures among consumers is crucial for understanding
the mechanics of telecommunication markets, particularly in
context of the long-lasting regulatory discussion on the extent
of monopolistic power of network operators. Our research
demonstrates that it depends heavily on micro-foundations as
apparently insignificant differences in agent behaviour lead to
substantially different market outcomes.

IMPLEMENTATION NOTE

The simulation was implemented as a standalone Java
application with the compute intensive parts ported to C with
NVidia CUDA extensions. We used Java CUDA bindings
to glue the pieces together. CUDA converts mass-market
graphical processing units (GPUs) into massively parallel high
performance computing devices. It has been used for scientific
computing in many domains [Owens et al., 2008, Nickolls and
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Fig. 4. Simulated to theoretical on-net volume share differential for the
duopoly model (LRT2S)
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Dally, 2010].
The application have run on mixture of commodity Intel

and NVidia hardware under control of Linux operating system.
Access to hardware has been provided courtesy NVidia Test
Drive program by Boston Limited and Megware Computer
Vertrieb und Service GmbH. Access to the source code will
be provided by authors upon an e-mail request.

V. CONCLUDING REMARKS

We have built the large scale multi-agent model of a mobile
telecommunication market. It extends the standard model of
Laffont et al. [1998b] by introducing customer heterogeneity,
intra-family network choice coordination and different levels
of customer rationality.

We confirmed that network heterogeneity plays an important
role in shaping equilibrium prices on telecommunication mar-
kets. We observed the heterogeneity surplus being internalized
by operators in form of higher profits as predicted by Hoernig
et al. [2011]. We have shown the subscriber coordination effect
to counteract the heterogeneity effect and offset or outweigh
it leading to significant fall in operator margins and lower
average calling costs.

Most importantly we discovered that the level of customer
rationality has very strong influence on the market equilibrium.
We have shown that, due to unanticipated network effects,
boundedly rational customers extract significantly more of the
surplus than fully rational ones. Surprisingly, tariff mediated
network effects caused by termination based price discrimina-
tion turned against operators confronted with nearly rational,
network choice coordinating subscribers.

We also proposed an innovative approach to implementation
by utilizing high performance CUDA computing devices. This
allowed us to operate on large scale with population of
up to 1 million agents. We demonstrated how mass-market,
commodity GPU devices can be used by social scientists
as an inexpensive alternative for traditional data centres. We
conclude that massive parallelism of CUDA devices makes it
a perfect fit for multigent simulations characterized by high
level of inherent parallelism.
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B. Kamiński. Telecommunication competition with family
effects. Salzburger Geographische Arbeiten, (48):233–238,
2012a.
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APPENDIX

TABLE II
MODEL DOCKING RESULTS

Model Population don sdon doff sdoff onshare
EXT2Q 15625 0.0091 0.0551 0.0028 0.0582 0.5000
EXT2R 15625 0.0178 0.1291 0.0198 0.1342 0.5000
EXT2S 15625 -0.1973 0.1236 -0.2891 0.1297 0.5000
EXT3Q 15625 0.0032 0.0747 0.0114 0.0701 0.3333
EXT3R 15625 0.0098 0.0971 0.0165 0.1072 0.3333
EXT3S 15625 2.3996 0.1624 2.8022 0.1763 0.3339
EXT4Q 14641 0.0166 0.1008 0.0093 0.0741 0.2500
EXT4R 14641 0.0143 0.0942 0.0116 0.0877 0.2500
EXT4S 14641 3.0507 0.3256 3.5281 0.3550 0.2545
LRT2Q 15625 -0.0012 0.0226 0.0004 0.0212 0.5000
LRT2R 15625 0.0200 0.1275 0.0213 0.1320 0.5000
LRT2S 15625 -0.0014 0.0064 -0.0012 0.0063 0.5000
EXT2Q 117649 -0.0007 0.0264 0.0010 0.0235 0.5000
EXT2R 117649 0.0000 0.0486 0.0017 0.0481 0.5000
EXT2S 117649 0.1061 0.0290 -0.0689 0.0315 0.5000
EXT3Q 117649 -0.0014 0.0291 0.0024 0.0193 0.3333
EXT3R 117649 -0.0000 0.0411 0.0038 0.0390 0.3333
EXT3S 117649 0.2762 0.1364 0.3696 0.1499 0.3335
EXT4Q 104976 0.0043 0.0409 0.0017 0.0215 0.2500
EXT4R 104976 0.0056 0.0469 0.0032 0.0326 0.2500
EXT4S 104976 2.3398 0.2231 2.7599 0.2514 0.2517
LRT2Q 117649 -0.0004 0.0073 -0.0004 0.0061 0.5000
LRT2R 117649 0.0010 0.0489 0.0028 0.0477 0.5000
LRT2S 117649 -0.0003 0.0022 -0.0002 0.0029 0.5000
EXT2Q 531441 0.0003 0.0110 0.0008 0.0088 0.5000
EXT2R 531441 0.0002 0.0252 0.0010 0.0233 0.5000
EXT2S 531441 0.0089 0.0291 0.1784 0.0772 0.5000
EXT3Q 531441 -0.0005 0.0149 0.0013 0.0084 0.3333
EXT3R 531441 -0.0004 0.0220 0.0018 0.0195 0.3333
EXT3S 531441 -0.4257 0.0359 -0.4090 0.0398 0.3334
EXT4Q 531441 0.0016 0.0167 0.0011 0.0079 0.2500
EXT4R 531441 0.0016 0.0229 0.0015 0.0157 0.2500
EXT4S 531441 0.8856 0.5223 1.0829 0.6278 0.2508
LRT2Q 531441 -0.0006 0.0028 -0.0005 0.0020 0.5000
LRT2R 531441 -0.0015 0.0253 -0.0009 0.0236 0.5000
LRT2S 531441 -0.0006 0.0003 -0.0003 0.0006 0.5000
EXT2Q 1000000 0.0004 0.0085 0.0007 0.0070 0.5000
EXT2R 1000000 0.0004 0.0189 0.0005 0.0178 0.5000
EXT2S 1000000 0.0052 0.0215 0.1359 0.0492 0.5000
EXT3Q 1000000 -0.0007 0.0116 0.0010 0.0067 0.3333
EXT3R 1000000 0.0000 0.0169 0.0019 0.0147 0.3333
EXT3S 1000000 -0.3708 0.0369 -0.3536 0.0383 0.3334
EXT4Q 1048576 0.0011 0.0125 0.0010 0.0057 0.2500
EXT4R 1048576 0.0016 0.0182 0.0006 0.0118 0.2500
EXT4S 1048576 0.1410 0.2017 0.2083 0.2511 0.2505
LRT2Q 1000000 -0.0006 0.0018 -0.0006 0.0011 0.5000
LRT2R 1000000 -0.0013 0.0193 -0.0005 0.0179 0.5000
LRT2S 1000000 -0.0005 0.0000 -0.0006 0.0000 0.5000

Miguel, Amblard, Barceló & Madella (eds.) Advances in Computational Social Science and Social Simulation
Barcelona: Autònoma University of Barcelona, 2014, DDD repository <http://ddd.uab.cat/record/125597>



TABLE III
REGRESSION OF THE AVERAGE CALLING COST – THE A-LRT EQUIVALENT SETUP

LRT2S EXT3R EXT4R
Estimate Std.Err t value Pr(>|t|) Estimate Std.Err t value Pr(>|t|) Estimate Std.Err t value Pr(>|t|)

(Intercept) 0.1602 0.0020 78.2743 0.0000 -0.3248 0.0027 -121.6703 0.0000 -0.3694 0.0026 -142.6373 0.0000
sigma -0.7627 0.0004 -1755.5613 0.0000 -0.6095 0.0006 -1065.1016 0.0000 -0.4984 0.0006 -897.0317 0.0000

eta 1.1506 0.0009 1302.9708 0.0000 1.1148 0.0012 952.3294 0.0000 1.0114 0.0011 889.8822 0.0000
ic 0.1041 0.0007 144.1288 0.0000 0.3243 0.0009 366.7979 0.0000 0.3353 0.0009 390.5088 0.0000
ac 1.9433 0.0009 2231.9662 0.0000 1.7474 0.0012 1518.8540 0.0000 1.6243 0.0011 1452.6669 0.0000

f 7.0465 0.0044 1601.4341 0.0000 6.8455 0.0058 1172.4098 0.0000 6.5418 0.0057 1153.1944 0.0000
RSE: 0.0736 on 336598 DF, Adj.R2: 0.9739 RSE: 0.0747 on 198339 DF, Adj.R2: 0.9678 RSE: 0.0725 on 197958 DF, Adj.R2: 0.9640

TABLE IV
REGRESSION OF THE AVERAGE CALLING COST – THE MULTIAGENT SETUP

LRT2S EXT3R EXT4R
Estimate Std.Err t value Pr(>|t|) Estimate Std.Err t value Pr(>|t|) Estimate Std.Err t value Pr(>|t|)

(Intercept) 0.2803 0.0032 87.1028 0.0000 -0.1486 0.0033 -45.5957 0.0000 -0.2323 0.0030 -76.9718 0.0000
sigma -0.6718 0.0006 -1054.9123 0.0000 -0.5333 0.0007 -812.9612 0.0000 -0.4406 0.0006 -725.1634 0.0000

eta 1.0671 0.0013 829.2190 0.0000 0.9994 0.0013 745.3509 0.0000 0.9145 0.0012 736.1419 0.0000
ic 0.1772 0.0011 164.5358 0.0000 0.3630 0.0010 347.3133 0.0000 0.3704 0.0010 382.5382 0.0000
ac 1.8330 0.0013 1443.8558 0.0000 1.6700 0.0013 1264.9617 0.0000 1.5677 0.0012 1280.5955 0.0000

f 6.7904 0.0064 1059.2387 0.0000 6.5881 0.0067 984.8478 0.0000 6.3448 0.0062 1023.1532 0.0000
rewire -0.1735 0.0006 -270.4930 0.0000 -0.1208 0.0007 -181.5881 0.0000 -0.0879 0.0006 -142.5061 0.0000

radiusr=4 0.0122 0.0005 24.7803 0.0000 0.0055 0.0006 9.7988 0.0000 0.0031 0.0005 6.0398 0.0000
radiusr=5 0.0195 0.0005 39.0220 0.0000 0.0063 0.0006 11.0646 0.0000 0.0026 0.0005 5.0346 0.0000
radiusr=6 0.0182 0.0011 17.1324 0.0000 0.0074 0.0009 8.3679 0.0000 0.0039 0.0008 4.7156 0.0000
radiusr=7 0.0123 0.0011 11.5272 0.0000 0.0115 0.0009 12.9661 0.0000 0.0084 0.0008 10.2043 0.0000
radiusr=8 0.0225 0.0010 21.6842 0.0000 0.0157 0.0009 18.0055 0.0000 0.0094 0.0008 11.6464 0.0000
radiusr=9 0.0135 0.0013 10.7262 0.0000 0.0050 0.0010 4.7174 0.0000 0.0016 0.0010 1.6472 0.0995

radiusr=10 0.0125 0.0012 10.1877 0.0000 0.0041 0.0010 3.9528 0.0001 0.0018 0.0010 1.8935 0.0583
FamilyF1 0.0585 0.0012 48.5098 0.0000 0.0461 0.0012 39.2199 0.0000 0.0364 0.0011 33.3879 0.0000
FamilyF2 0.0489 0.0012 39.2481 0.0000 0.0535 0.0012 43.4216 0.0000 0.0456 0.0011 39.9165 0.0000
FamilyF3 0.0108 0.0012 9.1054 0.0000 0.0384 0.0011 33.6400 0.0000 0.0360 0.0011 34.0611 0.0000
FamilyF4 -0.0054 0.0012 -4.5254 0.0000 0.0457 0.0012 39.2590 0.0000 0.0462 0.0011 42.8909 0.0000
FamilyF5 -0.0410 0.0012 -33.9068 0.0000 0.0370 0.0012 31.3832 0.0000 0.0431 0.0011 39.5773 0.0000
FamilyH1 0.0592 0.0014 41.3713 0.0000 0.0597 0.0015 39.8899 0.0000 0.0480 0.0014 34.6196 0.0000
FamilyH2 -0.1800 0.0015 -122.6138 0.0000 0.0022 0.0015 1.5027 0.1329 0.0216 0.0014 15.9309 0.0000
FamilyH3 -0.2868 0.0014 -206.1914 0.0000 -0.0540 0.0015 -35.9890 0.0000 -0.0202 0.0014 -14.5722 0.0000
FamilyH4 -0.3583 0.0014 -253.9186 0.0000 -0.1258 0.0015 -84.8218 0.0000 -0.0802 0.0014 -58.3866 0.0000
FamilyH5 -0.4286 0.0014 -301.5214 0.0000 -0.1935 0.0015 -130.8469 0.0000 -0.1359 0.0014 -99.2570 0.0000
FamilyH6 -0.4963 0.0018 -276.1554 0.0000 -0.2456 0.0015 -166.1425 0.0000 -0.1771 0.0014 -129.3945 0.0000
FamilyH7 -0.5588 0.0018 -302.8385 0.0000 -0.3003 0.0015 -198.9627 0.0000 -0.2220 0.0014 -158.8458 0.0000
FamilyH8 -0.6159 0.0018 -341.0998 0.0000 -0.3453 0.0015 -232.6603 0.0000 -0.2571 0.0014 -187.1531 0.0000
FamilyH9 -0.6442 0.0017 -368.2016 0.0000 -0.3774 0.0014 -261.0040 0.0000 -0.2825 0.0013 -211.0761 0.0000

FamilyH10 -0.6666 0.0018 -367.2946 0.0000 -0.4012 0.0015 -268.7229 0.0000 -0.3000 0.0014 -217.0025 0.0000
FamilyG1 0.0650 0.0019 33.3858 0.0000 0.0524 0.0016 31.8987 0.0000 0.0424 0.0015 27.8968 0.0000
FamilyG2 -0.2907 0.0020 -147.9344 0.0000 -0.0688 0.0016 -42.3793 0.0000 -0.0253 0.0015 -16.7978 0.0000
FamilyG3 -0.4481 0.0021 -213.2274 0.0000 -0.1828 0.0017 -104.7305 0.0000 -0.1109 0.0016 -68.6169 0.0000
FamilyG4 -0.5503 0.0021 -267.0427 0.0000 -0.2655 0.0017 -152.7928 0.0000 -0.1763 0.0016 -109.8182 0.0000
FamilyG5 -0.6271 0.0020 -318.2227 0.0000 -0.3259 0.0016 -199.0975 0.0000 -0.2232 0.0015 -147.2806 0.0000
FamilyG6 -0.6789 0.0020 -340.4438 0.0000 -0.3771 0.0017 -224.4127 0.0000 -0.2643 0.0016 -169.6662 0.0000
FamilyG7 -0.7178 0.0019 -374.4083 0.0000 -0.4181 0.0016 -261.1374 0.0000 -0.2977 0.0015 -200.7579 0.0000
FamilyG8 -0.7415 0.0020 -365.6167 0.0000 -0.4421 0.0017 -263.4054 0.0000 -0.3162 0.0016 -203.3334 0.0000
FamilyG9 -0.7866 0.0020 -400.7365 0.0000 -0.4847 0.0017 -290.5156 0.0000 -0.3538 0.0015 -229.1157 0.0000

FamilyG10 -0.8096 0.0019 -425.6128 0.0000 -0.5034 0.0016 -311.9743 0.0000 -0.3676 0.0015 -245.9765 0.0000
RSE: 0.1072 on 336565 DF, Adj.R2: 0.9559 RSE: 0.0854 on 198306 DF, Adj.R2: 0.9613 RSE: 0.0791 on 197925 DF, Adj.R2: 0.9588
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Barcelona: Autònoma University of Barcelona, 2014, DDD repository <http://ddd.uab.cat/record/125597>
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Fig. 5. Results for the triopoly model (EXT3)
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Fig. 6. Results for the 4 network oligopoly model (EXT4)
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