
 

 

 

 

Abstract—Agent-based modeling is widely applied in the 

social sciences. However, the validation of agent behavior is 

challenging and identified as one of the shortcomings in the 

field. Methods are required to establish empirical links and 

support the implementation of valid agent models. This paper 

contributes to this, by introducing the PLS agent concept. This 

approach shows a way to transfer results about causalities and 

decision criteria from empirical surveys into an agent-based 

decision model, through processing the output of a PLS-SEM 

model. This should simplify and foster the use of empirical 

results in agent-based simulation and support collaborative 

studies over the disciplines. 

I. INTRODUCTION 

gent-based modeling (ABM) is a promising and 

increasingly established method in the economics and 

the social sciences. The basic idea is to model social 

phenomena based on simplified descriptions of agents and 

their interactions. The dynamic behavior of these models is 

investigated based on simulation experiments. This 

capability of depicting human and societal complexity in a 

comparatively simple manner makes agent-based modeling 

very appealing (Macy and Willer 2002). The contribution 

and relevance of this method is demonstrated by its use in 

areas such as political science (e.g., policy adoption, voting 

and demography), technology (e.g., innovation diffusion, 

technology transfer and healthcare), economics (e.g., public 

goods, game theory and markets), as well as business. 

In typical agent-based models in economics and the social 

sciences, autonomous agents represent humans. Just as 

human decision maker, agents have attributes and exhibit 

behavior, which have to be specified during the modeling 

process. This specification of agents, however, is both 

challenging and crucial for a good agent-based model. As 

model behavior is often driven to a large degree by the 

properties of agents, a valid and credible agent-based model 

also requires a valid agent description. Recent surveys on the 

current practice in agent-based modeling, however, have 

identified exactly validation as a major shortcoming (Heath 

et al. 2009). Against this backdrop, one can argue that the 

question of agent validity is one of the major challenges in 

the scientific endeavor to advance ABM. When agents and 

their interaction are not validated, the value and credibility 

of this research method will depreciate for many modeling 

domains. 

The aim of this paper is to discuss how partial least squares 

(PLS) path models based on empirical data can contribute to 

agent validation. This will be done both on a conceptual 

level and at an applied level, i.e. by the means of an 

illustration in the area of innovation diffusion and 

acceptance, where agent properties are crucial for 

subsequently observed characteristics of the diffusion 

process. 

The paper is structured as follows. First, an overview about 

agent model validation and its challenges is given (see 

Section II). Next, an introduction to PLS is given, that 

provide the empirical foundation for agent models (see 

Section III). In Section IV, the concept of the PLS Agent is 

introduced. Finally, the paper ends with a discussion and 

conclusion. 

II. AGENT MODEL VALIDATION 

For a successful application of agent-based simulation, some 

challenges have to be met and resolved. One important issue 

is the validation of the simulation model. Certainly, 

(simulation) models can only be approximations of the target 

system and absolute validity is not possible (Law 2007). 

However, the model has to be close enough, so that valid 

conclusions can be drawn and do not lead to costly 

erroneous decisions. On the other hand, models in the social 

sciences tend to be complex. The “art of modeling” is to find 

a level of detail that meets the important aspects of the target 

system in a treatable model (Gilbert 2008). Too complex 

models include the risk of over-parameterization. Models 

with too many degrees of freedom can always be adjusted in 

a way that they fit to the empirical data (Fagiolo et al. 2007). 

Thus, the model has to be valid in all necessary details, or 

validation remains a system-inherent problem of agent-based 

simulation (Klügl 2008). 

Windrum et al. (2007) describe the “problematic 

relationship between agent-based models and empirical 

data”. In agent-based models, the validation process is the 

assessment of the simulated data with respect to the quality 

of representation of the observed data, as generated by the 

empirical process. A methodological basis for the process of 

empirical validation is clearly needed. However, there is still 

little consensus on the empirical validation of agent-based 

simulation models. 
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Figure 1: General procedure for validating simulation models 

(adapted from Klügl, 2008) 

 

Figure 1 illustrates the basic validation process in agent-

based simulation research, adapted from the process 

described in Klügl (2008).  

First, an agent model is specified for the given target system. 

Based on empirical evidence about individual behavior and 

interactions, the agent concept is specified, implemented and 

verified in the first step. This determines the micro level of 

the simulation model. The resulting simulation behavior is 

assessed for plausibility on the (macro) system level for 

behavioral validity (input-output behavior). If necessary, the 

model is calibrated in this stage to fit the stylized facts. The 

plausible model is analyzed systematically in a sensitivity 

analysis. The results from this analysis can be verified by 

empirical data. 

  

The described verification process of calibrating the micro 

model based on stylized facts on the macro level, is called 

the indirect calibration approach (Fagiolo et al. 2007). This 

approach is also useful for the reason, that data on the 

aggregate level are easier to gather than on the individual 

level (Klügl 2008). It is problematic to achieve data about 

the internal structure on the individual level. However, such 

data is necessary for modeling causalities within the agents’ 

reasoning process, and, thus, for achieving a structural 

validity on the agent level. Overall, the main problem is the 

missing availability of empirical data (Klügl 2008). 

This paper addresses this by introducing the partial least 

squares (PLS) method as empirical basis for defining the 

structure and causalities of agent reasoning. By using PLS, 

an empirically derived model about the internal structure of 

reasoning on the individual level as well as about the 

causalities between the variables of the agents’ reasoning 

provides the basis for the agent architecture. This paper 

shows, how PLS can build a bridge between empirical data 

on the one hand and the agent architecture on the other. 

III. PARTIAL LEAST SQUARES (PLS) 

A. PLS-SEM 

Structural equation models (SEM) appeared in the 1970’s 

(Jöreskog, 1973) and have become a quasi-standard 

statistical method in the social sciences (Hair et al., 2011). 

The desire to test complete theories and concepts is a key 

reason for using the SEM method (Bollen, 1989). Variance-

based partial least squares (PLS-SEM; Lohmöller, 1989; 

Wold, 1982) and covariance-based SEM (CB-SEM; 

Jöreskog, 1978, 1982) represent two alternative but 

distinctive methods to estimate structural equation models. 

In short, CB-SEM and PLS-SEM are different but 

complementary statistical methods for SEM whereby the 

advantages of the one method are the disadvantages of the 

other and vice versa (Jöreskog & Wold, 1982).  

In general, a structural equation model with latent variables 

consists of measurement models describing the relationships 

between latent variables and their observed indicators, and a 

structural model of the relationships between the latent 

variables. In the PLS-SEM context, measurement and 

structural models are frequently called outer and inner 

models. Measurement models can comprise formative or 

reflective indicators (Diamantopoulos & Winklhofer, 2001; 

Jarvis et al., 2003), whereby only one type of relationship is 

possible per latent variable, although different latent 

variables in the SEM may use different types of 

measurement models. Reflective indicators are seen as 

functions of the latent variable. Changes in the latent 

variable are reflected by changes in the associated indicator 

variables. In contrast, formative indicators are assumed to 

cause a latent variable, i.e. changes in the indicators imply 

changes in the latent variable’s value. 

Figure 2 shows an example of a simple PLS path model, 

which includes one endogenous latent variable (y3) and two 

exogenous latent variables (y1 and y2). The term 

“exogenous” is used to characterize latent variables with no 

preceding ones in the structural model. In contrast, the term 

“endogenous” characterizes latent variables that are 

explained by others in the structural model.  

PLS-SEM requires the structural model to be recursive, 

which excludes the use of causal loops in the relationships 

between the latent variables (there would be a causal loop in 

the model in Figure 2 if there were relationships between y1 

and y2, y2 and y3, and y3 and y1). The latent variables y1 and 

y2 are measured by means of formative indicators and y3 by 

reflective indicators. It is important to note that PLS 

measurement models consist of one or more indicators. Each 

indicator can only be assigned once within a measurement 

model. 
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Figure 2: PLS-SEM example: initial set-up 

 

The basic PLS-SEM algorithm - originally developed by 

Wold (1975) as NIPALS (nonlinear iterative partial least 

squares) and later extended by Lohmöller (1989) - follows a 

two-stage approach. This approach consists of the estimation 

of latent variable scores via the iteration of four steps in the 

first stage, and the final estimation of outer weights/loadings 

and path coefficients in the second stage (Figure 3). 

  

Stage 1: Iterative estimation of the latent variable scores. 

     Do Loop 

Step 1.1: Outer approximation of the latent variable  

                           scores.  

Step 1.2: Estimation of the inner weights. 

Step 1.3: Inner approximation of the latent variable  

               scores. 

Step 1.4: Estimation of the outer weights. 

Until Convergence 

Stage 2: Final estimation of outer weights/loadings and 

path coefficients through (single and multiple) 

ordinary least squares (OLS) regressions. 

Figure 3: Key steps of the basic PLS-SEM algorithm 

 

The goal of Stage 1 of the PLS-SEM algorithm is 

determining the latent variable scores. After convergence 

(Henseler, 2010), in Stage 2 of the PLS-SEM algorithm, the 

final latent variable scores are used to run OLS regressions 

that determine the final estimates for all relationships in the 

PLS path model. 

B. Important Characteristics of PLS-SEM to Extend 

Simulation Methods 

The statistical properties of the PLS-SEM method 

substantiate its use to extend simulation methods. Primarily, 

PLS-SEM is a non-parametric regression-based estimation 

method. Its use focuses on the prediction of a specific set of 

hypothesized relationships that maximizes explained 

variance in more or less the way as ordinary least squares 

(OLS) regressions do. Therefore, the focus is much more on 

prediction rather than explanation, which makes PLS-SEM 

results particularly beneficial for simulation methods. 

PLS-SEM is also very flexible regarding the modeling 

properties. The only premise is connected to “predictor 

specification” (i.e., the systematic portion of all OLS 

regressions is equal to the dependent variables’ conditional 

expectations; Haenlein & Kaplan, 2004). In accordance, the 

inner model must be a causal chain system with uncorrelated 

residuals and an endogenous latent variable’s residual being 

uncorrelated with the corresponding predictor latent 

variables. PLS-SEM is also considered as the primary 

approach when the hypothesized model incorporates 

formative measures (Diamantopoulos & Winklhofer, 2001). 

Moreover, PLS-SEM is also a sensible choice in research 

situations where few observations are used to estimate 

complex models with many manifest variables. This holds 

especially true when formative measures are involved 

(besides the potential identification issues discussed above). 

Formative measurement models are often more capacious, as 

formative constructs should be represented by all relevant 

indicators that forms it to ensure content validity 

(Diamantopoulos et al., 2008). Thus, PLS-SEM can be a 

useful way of quickly exploring a large number of variables 

to identify sets of latent variables that can predict some 

outcome variable, underlining the approach’s exploratory 

character. Hence, PLS-SEM can be used for relatively 

complex models and has only very few requirements to be 

met. These features make PLS-SEM particularly suitable in 

combination with simulation methods.  

Finally, in situations when it is difficult or impossible to 

meet more traditional multivariate techniques’ strict 

assumptions (e.g. distributional assumptions), PLS-SEM’s 

greater flexibility with modeling problems is emphasized by 

the label “soft modeling” coined by Wold (1982). Within 

this context, “soft” is only attributed to distributional 

assumptions and not the concepts, models or estimation 

techniques (Lohmöller, 1989). PLS-SEM’s statistical 

properties provide very robust model estimations both with 

data that have normal and extremely non-normal 

distributional properties (Reinartz et al., 2009; Ringle et al., 

2009). Thus, PLS-SEM can also be used when distributions 

are highly skewed (e.g., Beebe et al., 1998; Cassel et al., 

1999; Tenenhaus et al., 2010), especially when formative 

measurement models are included (Ringle et al., 2009). 

Moreover, the PLS-SEM algorithm principally requires 

metric data for the indicators in the measurement models. 

However, the method also generally works with ordinal 
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scales with equidistant data points - i.e., quasi metric scales 

(Mooi & Sarstedt, 2011) - and with binary coded data. In the 

latter case, when using both metric and dummy variables, 

one must account for the role of dummy coded variables in 

regressions (Hair et al., 2011b), or the specific 

considerations provided by Lohmöller (1989) for PLS path 

model estimations that solely draw on dummy coded 

variables. This kind of flexibility regarding the data used 

also represents a beneficial feature when combining the 

PLS-SEM method with other techniques such as simulation 

methods.  

One of PLS-SEM’s most important features relates to the 

nature of the latent variable scores. Specifically, scores are 

estimated as exact linear combinations of their associated 

manifest variables (Fornell & Bookstein, 1982), and PLS-

SEM treats these scores as perfect substitutes for the 

manifest variables capturing the variance that can explain 

the endogenous latent variables. PLS-SEM builds on the 

implicit assumption that all the measured variance in the 

model’s manifest variables is useful and should be 

explained. Consequently, the “correctness” of the model is 

partly determined by the strength of the structural model 

relations between the latent variables.  

While the strong reliance on latent variable scores has its 

drawbacks, it also has certain advantages as researchers may 

use latent variable scores in subsequent analyses. Other 

research methods already employ the PLS-SEM latent 

variable score for further analysis (e.g,. latent class 

segmentation; Sarstedt et al., 2011). Similarly, simulation 

studies may employ these results for their analyses, as we 

will show in this paper. 

IV. THE PLS AGENT 

This section shows how PLS results may be used as basis for 

modeling agent behavior. Therefore, this section starts with 

(A) general requirements for agent modeling. Afterwards, it 

is shown (B) how a PLS path model can be transferred into 

an agent decision model. Finally, (C) the implemented 

simulation framework SimPLS is described, by which a 

direct link between PLS output and ABM initialization is 

established, so that the concept is ready to be applied for 

various PLS path models. 

A. Agent modeling 

An agent is specified by its properties and abilities. The 

basic abilities of an agent are to perceive, decide and act. 

The agent observes its environment and perceives 

environmental information. The agent determines its 

behavior with the information received. Programmed rules 

relate information sensed by the agent to its decisions and 

actions (Macal and North 2010). Defined by the rules of 

decision for the given observation, the agent executes the 

corresponding action in its artificial environment. 

The decision rules may be defined deterministically or 

stochastically. Furthermore, the complexity of decision rules 

may vary, so that the implementation of complex decision 

process is possible. A basic decision rule structure can be 

described by condition-action rules (see e.g. Holland et al. 

(2000)). By this concept, the agent may build up a 

representation about its environment and respond. The 

condition describes the causal dependency of an action. All 

possible actions of the agent are assigned to one (or several) 

condition part(s). In complex situations, where more than 

one condition is included, some decision criteria may have a 

stronger link to actions than other.  

The design of the agents’ decision rules requires a valid 

foundation. However, the human decision process is an 

internal process, which is not easy to observe and determine. 

Therefore, many cognitive agent architectures rely on 

decision theory and psychological findings (see Brenner 

2006). Still, for many studies a more concrete decision 

model for the given context and situation is needed. PLS 

path models result from empirical studies, such as surveys. 

They can provide a modeling anchor for (1) the set of 

decision criteria that play a role in the given decision 

process, (2) the existing relationships between the criteria, 

and (3) their relative relevance. The concept of the PLS 

Agent will be shown in the following section. 

B. PLS Behavior Model 

The starting point is a valid and calculated PLS path model, 

based on verified data from an empirical study. This PLS 

path model provides the basis for the agent model. As the 

model should be used to define agent behavior, the target 

concept of the PLS path model has to be a decision, such as 

“adoption”. The structural model describes a latent variable 

network of causalities. This provides a set of criteria, which 

influence the agent decision or preference. Thus, the PLS 

path model informs the ABM about the components of 

reasoning by the list of latent variables. The identified 

significant relationships of the PLS path model indicate the 

existing causality paths of agent reasoning. Finally, the 

coefficients of the significant relationships provide the order 

of criteria with regard to their relevance for the agent. 

For the agent decision process in the simulation model, a 

representation of the decision object is needed. This can be a 

product or some environmental circumstances. The 

exogenous variables of the PLS path model can be used as a 

basis for the set of decision object attributes.  

The agent perceives this product type and decides about its 

adoption. For the agent decision process, a probability value 

for the decision is calculated. Therefore, the implemented 

causality network provides the basis for a set of linear 

combinations. 

C. Example: TIAM Model 

To give a concrete example of the merger of PLS and ABM, 

we apply the PLS path model “Technology and Innovation 

Acceptance Model” (TIAM) to agent based simulation. The 

TIAM describes the causal impact of product innovation 

attributes and consumption values on the adoption and use of 

a technological innovation. This model is a further 

development of the widespread Technology Acceptance 
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Model (TAM) developed by Davis et al. (1989) 

and the Unified Theory of Acceptance and Use of 

Technology (UTAUT) by Venkatesh et al. (2003) 

- (for further studies see for example: Venkatesh 

and Bala (2008); Wu et al. (2011); Venkatesh et 

al. (2012)). While both, the TAM and UTAUT, 

focus on the technology acceptance in an 

organizational context, the TIAM furthermore 

emphasize the adoption of an innovation in a 

consumer context. The TIAM is built on the 

Innovation Diffusion Theory (IDT) by Rogers 

(2003) and the Theory of Consumption Values 

(TCV) by Sheth et al. (1991). Hence, the TIAM 

explains consumers’ adoption intention of a new 

technology by the five product attributes 

introduced by Rogers (1983) and the five 

consumption values introduced by Sheth et al. 

(1991). 

It is important to note that the TIAM study is 

work in progress and serves here only as an 

example to show the concept of the PLS agent. 

For a content-oriented consideration of the model 

see Pakur (forthcoming). 

The agent architecture based on the TIAM model 

is included in the simulation model INNOAGE 

(Iffländer et al. 2012). The purpose of the 

simulation model INNOAGE is the analysis of the 

diffusion process of innovations in aging societies. 

Therefore, the influence of varying age 

distributions within the population on the adoption 

rate and speed of diffusion is considered. Also, the 

interaction effects between individual consumer 

types, network characteristics, and product 

attributes are addressed.  

a) Decision Criteria and Relevance 

Figure 4 shows that the TIAM has two main fields, namely 

product attributes and consumption values. Each field is 

determined by five constructs, to measure consumers’ 

technology and innovation adoption. Adoption intention is 

the main construct and target variable. Figure 4 does not 

show the measurement model, which was used for the 

calculation of the path loadings. Here, only the significant 

relationships and their path values are relevant for the agent 

model. 

Given the group analyses of the PLS model, more than one 

agent type might be initialized in this way. If the PLS results 

identified groups of individuals with varying causality paths 

and strengths of causalities, those can be included as 

different agent types in the simulation model. Here, the 

multi-group analysis identified two consumer groups A and 

B, which were identified by age. Those will be transferred in 

the simulation model as agent type A (young consumer) and 

B (aged consumer).  

As one can see, the (preliminary) results of the path model 

for agent type A have shown, that the criteria compatibility 

and ease of use influence the evaluation of the product 

attributes, whereas compatibility has a much greater 

influence. The adoption intention of the consumer is 

influenced by the perceived product attributes, as well as the 

emotional and the conditional value. The other potential 

criteria for the adoption intention are not significant (n.s.). 

They have no influence, and can be excluded as decision 

criteria for agent type A. The use of the product is explained 

to 51% by adoption intention.  

For agent type B, however, compatibility has a much smaller 

influence, and is only slightly more relevant than ease of use 

on the perceived product attributes. But, the emotional value 

is a stronger driver for the adoption intention than for agent 

type A, while at the same time the conditional value plays 

no role for agent type B. 

This summarizes the results of the PLS path model being 

important for the agent model and the simulation analysis. In 

the agent model, all significant paths are included as a link 

between the criteria, and the path values are included as link 

Rel. Advantage Compatibility Observability Triability Ease of Use 

R2=0.990 

Product Attributes 

R2=0.629 

Adoption Intention 

Funcitonal Value Social Value Epistemic Value Emotional Value Conditional Value 

R2=0.510 

Use 

0.714 

0.276 n.s. n.s. 0.804 n.s. 

0.282 

Agent type A 

n.s. n.s. n.s. 0.297 0.307 

Rel. Advantage Compatibility Observability Triability Ease of Use 

R2=0.990 

Product Attributes 

R2=0.769 

Adoption Intention 

Funcitonal Value Social Value Epistemic Value Emotional Value Conditional Value 

R2=0.593 

Use 

0.770 

0.473 n.s. n.s. 0.571 n.s. 

0.321 

Agent type B 

n.s. n.s. n.s. 0.605 n.s. 

Figure 4 Example: TIAM models as basis for agent type A and B 

(work in progress - preliminary results) 
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strengths. This implements a network of causality paths in 

the agent mind. 

At this step, the PLS path model results are included in the 

agent architecture, and the agent initialization is finalized. 

The subsequent use and calculations happen only in the 

agent mind within the run of a simulation model. In the 

following, the agent decision process based on this causality 

network is described. 

b) Decision Object 

For the given TIAM model, the consumers decide about a 

product. The list of product attributes is given by the 

exogenous variables. Those are the variables relative 

advantage, compatibility, observability, triability, and ease 

of use on the one hand, and functional value, social value, 

epistemic value, emotional value, and conditional value on 

the other. All these units represent the attributes of the 

product.  

 

Exogeneous 

Variables 

Endogenous 

Variable 
Scale 

Basis 

Scenario 

Relative 
Advantage 

Product 
Attributes 

[1, 10] 5 medium 

Compatibility 
Product 

Attributes 
[1, 10] 5 medium 

Observability 
Product 

Attributes 
[1, 10] 5 medium 

Trialability 
Product 
Attributes 

[1, 10] 5 medium 

Ease of Use 
Product 

Attributes 
[1, 10] 5 medium 

Functional Value 
Adoption 

Intention 
[1, 10] 5 medium 

Social Value 
Adoption 

Intention 
[1, 10] 5 medium 

Epistemic Value 
Adoption 

Intention 
[1, 10] 5 medium 

Emotional Value 
Adoption 
Intention 

[1, 10] 5 medium 

Conditional 

Value 

Adoption 

Intention 
[1, 10] 5 medium 

Table 1 Product modeling for TIAM 

 

Table 1 shows the description of a basis scenario. Within the 

simulation experiments, the product attributes should vary 

over simulation runs. Thus, for each exogeneous variable, an 

input parameter sets the value on a scale between 1 (low) 

and 10 (high). The combination of these values describes the 

product type for the respective simulation run. In the basic 

case, all indicators have the same value (on a medium scale, 

5). By holding the product type on the medium level, the 

effects of various populations and agent interactions may be 

considered. In further experiments, however, variations of 

product attributes values allow the analysis of their effects. 

c) Decision Process 

We know from the PLS path model, that agent type A only 

considers compatibility, ease of use, and the emotional value 

of the product in its decision making process. The agent is 

ignorant towards variations of other product attributes. The 

strength of the adoption intention value is the result of a 

linear combination over its relevant criteria and coefficients. 

Its calculation follows a two-step calculation. First, a 

maximum model provides the basis for the normalized 

adoption intention strength. This value has only to be 

calculated once, at the beginning of the simulation run. 

Maximum model - agent type A 

  

Exogenous variables 
Product 
values Coefficients Results 

Product 

Attributes 

Compatibility 10  0.804  8.040  10.800  

Ease of Use 10  0.276  2.760  

 

     

        
Adoption 

Intention 

Product Attributes 10.800  0.282  3.046  9.086  

Emotional Value 10  0.297  2.970  

 Conditional Value 10  0.307  3.070  
      

Table 2 Calculation of the maximum model for agent type A 

 

The calculation of the maximum model is described in Table 

2. Therefore, a scenario with a product type of best quality 

(value 10) is assumed. The idea is, to weight the relevant 

attributes with their influence. Hence, the product values are 

multiplied with the coefficients from the path model and 

result in a value per criteria. Given this, the value for 

product attributes can be calculated by the sum of all 

influencing criteria values. Based on this, and the other 

influencing criteria on adoption intention, a maximum 

strength for adoption intention may be calculated (here: 

9.086). In the simulation run, this provides a basis for 

calculating the normalized intention strength. This will be 

again shown by an example (see Table 3). The adoption 

intention value for the consumer agent, observing a medium 

product quality of 5, is 4.543. In the final step of the decision 

making process, the probability for adoption is determined, 

based on this calculated value. 

Decision model (basis scenario) - agent type A 

Exogenous variables 

Product 

values Coefficients Results 
Product 

Attributes 

Compatibility 5  0.804  4.020  5.400  

Ease of Use 5  0.276  1.380  
 

     

        
Adoption 

Intention 

Product Attributes 5.400  0.282  1.523  4.543  

Emotional Value 5  0.297  1.485  
 Conditional Value 5  0.307  1.535  

      

Table 3 Calculation of the decision model - agent type A 

 

The probability for adopting a product is given by dividing 

the calculated intention strength from the decision model 

with the maximum model. Here, this results in an intention 
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probability of 50%. This is in accordance with the 

assumption, that the product type represents a scenario with 

an average quality. In the next step of the simulation run, the 

agent observes another product type, and decides about its 

adoption by the given calculation. 

Given this behavior model, it is recommended to conduct a 

pre-experiment with varying values for the decision object, 

to do a micro-validation. The causalities of the PLS path 

model should be recognized in the simulation results. 

 

This section showed, that the PLS agent provides an agent 

architecture with a direct empirical link. Depending on the 

focus of research, the behavior may be embedded in a wider 

decision context, or a network of different agent types, to 

consider their interactions. 

D. SimPLS Framework 

To make use of the PLS-Agent concept, a SimPLS 

simulation framework was developed. It is implemented in 

JAVA/Repast. The default PLS report is an html-file that 

provides the input for SimPLS. By reading the html-file, the 

agent types are automatically created.  

 

PLS path model Agent model 

Latent variables  Decision criteria 

Exogenous variables Decision object (product) attributes 

Target construct Decision or preference 

Significant coefficients Relationships between criteria 

Strength of (sign.) coefficients Strength (relevance) of criteria 

Groups Agent types 

Table 4 Components of the SimPLS Interface 

 

Table 4 shows how the concepts of the PLS path model are 

transferred into an agent-based model by SimPLS. The latent 

variables are the decision criteria of the behavior model. The 

exogenous variables provide a list of attributes for the 

decision object. By the target variable, the agent decision or 

preference is defined, depending on the focus of research. 

All paths with significant coefficients are translated into 

relationships between the criteria of the agent model. By the 

path values, the relevance of criteria is indicated. Finally, 

multi-group analysis may provide different agent types. 

SimPLS creates automatically the agent types according to 

the output files from PLS. Therewith, flexibility for 

changing SEM models is given. 

V. DISCUSSION AND CONCLUSION 

This paper presented a way to link agent models to empirical 

results, by transferring results from PLS path models into 

ABM. By this, two elements for the agent decision model 

are provided: (1) the set of criteria, which are relevant for 

the decision process, also in comparison to other agent types, 

and (2) the existing causalities and strengths of causalities 

between the criteria. Furthermore, attributes about the 

decision object can be derived by the exogenous variables.  

One crucial aspect might be the use of the path values as 

described. This approach involves the threat of an over-

parameterization of the PLS path model in the agent 

behavior model. To address this, the resulting value of the 

decision model provides a probability value that is used for a 

stochastic decision. By this, the result is a tendency in 

behavior instead of a determination. However, further ways 

about including the distribution of coefficient values might 

be valuable. 

In some cases, the resulting decision model may result in 

highly stochastic agent behavior. This may be due to the 

complexity of the PLS path model, such as a high number of 

decision criteria. This can be limited by focusing on the most 

relevant influences.  

Next to the empirical link, this study may foster 

interdisciplinary collaboration. The simulation method may 

include and compare results from different empirical studies 

and support their communication. Furthermore, not only 

PLS can be useful to inform ABM, but also SimPLS can be 

useful to further analyze PLS path models, given the 

questions that arise from the perspective of the empirical 

study. 

In future research, the applicability of the PLS agent should 

be tested in more depth by additional analyses of the existing 

model, as well as by including PLS path models from other 

empirical studies. 
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