
 

 

 

 
 

Abstract — A seemingly endless series of scandals has focused 

increasing public attention on the issue of doping among elite 

athletes. But we still do not know how many elite athletes really 

make use of banned drugs. In addition, we recognize the 

literature suffers a lack of appropriate game theory models for 

complex social interactions related to doping. Therefore, we 

think that an agent-based approach may allow doping behavior 

patterns in professional sports to be explored and elucidated. 

We conceptualize an agent-based model on three interacting 

objectives, namely (i) elite athletes, (ii) anti-doping laboratory 

and (iii) anti-doping agency. The latter agency announces anti-

doping rules and imposes penalties; the anti-doping laboratory 

executes doping controls and elite athletes compete for income. 

In particular, we focus on presenting an agent-based concept to 

analyze elite athletes’ doping behavior. Using such an agent-

based framework and computational simulations may lead in 

the future to policy recommendations for the fight against 

doping. 

I. INTRODUCTION 

S LONG as competitive professional sports exist the 

phenomenon of using illicit methods like doping will 

remain. However, in modern times doping has gained more 

and more public attention since the astonishing death of 

cyclist Knud Jensen at the Olympic Games of 1960. The 

World Anti-Doping Agency (WADA) has shown the rate of 

Adverse Analytical Findings is approximately 1% in recent 

years [1]. But banned substances and methods may not be 

detectable and effective doping controls may not be feasible, 

e.g. because of their enormous costs in economic terms. 

Therefore, we believe, in line with [2]-[3], that [1] 

underestimates the true extent of doping behavior in elite 

sports. Recent research activities in this field are based on 

various methods to approximate the extent of doping but 

estimates differ widely. To begin with, [4] make use of 

projection-methods and estimate the extent of doping as 

approximately 72%. Applying a forensic approach, [5] 

analyze 7,289 blood samples collected from 2,737 athletes. 

The authors detect abnormal blood profiles and calculate the 

extent of blood doping as approximately 14% [5]. In a world 

wide web survey, [6] ask 448 German elite athletes about 

their doping behavior, making use of a randomized response 
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technique to ensure that answers are anonymous. The 

authors present a lower interval limit of 25.8% and an upper 

limit of 48.1% for the use of banned substances or methods 

by German elite athletes [6]. Also applying a randomized 

response technique, [7] conduct a study of 1,394 

international top athletes and find the extent of doping is 

approximately 6.8%. To sum up, we find in the literature 

estimations for extents of doping in a range of 1% to 72% 

[1]-[7]. Further investigations also differ in the extent of 

doping estimated, which supports our notion that identifying 

the real extent of doping is a complex problem [8]-[13]. 

 

 To address this problem of complexity in professional 

sports doping researchers have developed various game 

theory models based on rational choice theory [14]-[17]. A 

common feature of these models is to depict doping behavior 

patterns in professional sports. But we think that these 

models exhibit a low degree of complexity because of 

analytical solvability.  

 

 Therefore, the main purpose of the paper is to address the 

complexity problem by presenting an agent-based concept to 

analyze elite athletes’ doping behavior. If we have no clue 

what the real extent of doping may be how can we provide 

reliable policy recommendations? An agent-based approach 

might allow determining detected as well as undetected 

dopers within populations of elite athletes under varying 

environmental conditions. We describe below an agent-

based framework that may serve in the future as a basis for 

generating simulation results and follow-up contributions. 

For instance, we incorporate elite athletes’ decisions that 

affect more than one time period; an issue frequently 

neglected in the literature and which allows the investigation 

of lapse-of-time effects.  

 

 The paper is organized as follows. The next section 

presents a brief literature overview of game theory models 

that describe doping behavior patterns in professional sports, 

with a focus on strategic and inspection games. The third 

section proposes an agent-based concept to analyze elite 

athletes’ doping behavior. The final section discusses 

implications and provides an outlook. 

A  
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II.  LITERATURE OVERVIEW OF GAME THEORY MODELS 

A. Strategic Games 

In this subsection we survey briefly a series of game theory 

models that make use of strategic interactions based on 

rational choice theory to elucidate doping behavior patterns 

in sports. The seminal paper [14] appeared in 1987 and by a 

simple and simultaneous game theory model similar to a 

prisoner’s dilemma situation describes an athlete’s doping 

decision. The authors’ so-called ‘doping dilemma’ consists 

of two rational-acting athletes endowed with identical 

characteristics who have to decide independently from each 

other to dope or not to dope. To do so, the athletes make use 

of an expected utility maximization approach as follows. An 

athlete decides to dope if her expected utility is higher in the 

case of doping abuse compared to the abandonment of 

doping. Therefore, athletes take benefits and costs of doping 

into account. The author concludes that without an anti-

doping control, checked in turn by an international 

inspection procedure, the doping problem cannot be 

eliminated. In the case such a strategy does not work within 

a few years the legalization of doping is the only solution. 

To our best knowledge [18] implements for the very first 

time a doping-control-scheme in strategic games to verify if 

athletes act rule-consistently so that detected doping athletes 

may be punished. Two interacting athletes make use of a 

linear expected utility function concerning whether to take 

banned substances or not. Although the authors invent a 

novel doping-control-scheme, their focus is on strategic 

interactions among athletes because of controls conducted at 

random and not on the basis of a specific decision-making 

process. The authors find that, beyond the investments made 

in the dope-testing system, other factors, such as prevention 

measures, the number of events and the prizes offered, have 

a non-negligible effect on doping behavior in elite sports.  

Contrary to the assumption in both strategic games above, 

[19] assumes that athletes do not have an identical chance to 

win a competition. Hence, the author creates two artificial 

athletes endowed with heterogeneous characteristics and, 

therefore, having an unequal probability to win a 

competition even under identical conditions. The result is 

that ranking-based punishments are less costly and more 

effective than the regulations announced by the International 

Olympic Committee. Further, based on [19], ‘unpublished’ 

[20] develop an evolutionary doping game considering more 

than one time period. The authors find situations where, in 

theory, all athletes either break anti-doping rules or act 

totally rule-consistently. Furthermore, the authors provide 

evidence that highly talented athletes are more likely to dope 

than athletes with a lower degree of talent. 

Reference [16] evolves a symmetric strategic game that 

takes two athletes into account who are endowed with 

homogeneous characteristica. The author aims to determine 

the influences of prize-money distributions and likelihoods 

to detect doping behavior. As an extension, [21] examines 

up to four athletes and focuses on comparisons between 

linear and non-linear prize-money distributions. While linear 

prize-money distributions lead to situations in which all 

athletes act (non-) rule-compliantly, non-linear prize-money 

distributions lead to more complex situations. Reference 

[22] refers to [16] as well as [21] and implements so-called 

‘fair play norms’ like pre-play communication about doping 

and formal anti-doping agreements, which may induce 

higher compliance levels with anti-doping rules. 

Reference [23] evolves an asymmetric strategic game 

within athletes’ performance that depends on individual 

talent, or rather, constitution. An athlete may make use of 

legal activities like training or may resort to banned and 

illicit substances. In consequence athletes can enhance their 

performance and thereby improve their competition result. 

The author examines effective strength of doping 

substances, doping costs, and income effects with respect to 

the influence on an athlete’s decision to dope or not to dope. 

The author identifies costs, likelihoods and base-salary 

effects that deviate athletes from doping abandonment. 

Reference ‘unpublished’ [24] provides an asymmetric 

strategic game appropriate to consider any desired number 

of athletes. The author models a ‘winner-takes-all’ effect, 

i.e. only the winner of a competition receives prize-money. 

Such an extreme prize-money distribution seems to be 

responsible for the finding that incentives to dope decrease if 

the number of athletes in competition increases. In addition, 

‘unpublished’ [24] deduces an optimal – in the sense of 

economic costs – quantum of doping controls if athletes are 

selected at random for testing. 

B. Inspection Games 

In this subsection we overview briefly inspection games 

applied to doping behavior, a recent development in game 

theory that [15] launched in 2002. It is important to 

distinguish between strategic and inspection games insofar 

as inspection games feature an institution which conducts 

doping controls on the basis of specific decision-making 

processes. After interactions among athletes in competition 

have taken place, an institution conducts doping controls. 

Thus, inspection games focus mainly on interactions 

between athletes and a doping-control institution whereas 

strategic games illuminate interactions among athletes. In 

the seminal paper on inspection games [15] shows that 

increasing fines leads to a higher level of rule-compliance.  

Reference ‘unpublished’ [25] models characteristica very 

similar to those modeled in [15] and presents an institution 

that conducts doping controls as facing two kinds of error. 

On the one hand a doped athlete is not detected despite being 

tested (error of the first kind) and on the other hand a clean 

athlete may be erroneously found guilty of taking banned 

substances (error of the second kind). The author finds that 

an athlete’s optimal choice – with respect to maximization of 

expected payoffs – depends on the preferences of the 

institution in terms of how to conduct dope controls and on 

the quality of those controls. 

Miguel, Amblard, Barceló & Madella (eds.) Advances in Computational Social Science and Social Simulation
Barcelona: Autònoma University of Barcelona, 2014, DDD repository <http://ddd.uab.cat/record/125597>



 

 

 

Reference [17] extends [19] with respect to a doping-

control institution that decides subsequently to the 

competition whether to test the winner or not. Hence, the 

authors extend a strategic game to obtain an inspection 

game. Recall that the basic model, i.e. [19], consists of two 

athletes; a winner and a looser. Among other things, the 

doping-control institution takes information into account 

from the losing athlete, the so-called ‘whistleblower’ [17]. 

The authors conclude that whistleblowing reduces economic 

costs of doping controls, since testing athletes is costly. 

Reference ‘unpublished’ [26] provides an extension of an 

inspection game model. The authors model three steps, 

which are, (i) competitions among athletes, (ii) doping 

controls, and (iii) decisions of customers or sponsors. The 

latter step is innovative and concerns in particular customers 

or sponsors’ point of view with respect to their option to 

withdraw their financial support after a doping scandal. The 

authors find that doping controls should be carried out by an 

independent institution. A doping-control institution that 

depends on the financial support of customers or sponsors 

has no incentive to detect doping athletes. 

To summarize, we surveyed briefly more than ten 

contributions to game theory models of doping behavior 

patterns. We find that the strategic and inspection models 

above often consider fewer than four athletes; a feature far 

from reality in professional sports. Reference ‘unpublished’ 

[24] is an exception that allows any desired number of 

athletes to be considered. However, game theory models 

applied to doping have a low degree of complexity. 

Therefore, we propose in the following section an agent-

based concept to analyze an elite athletes’ doping behavior. 

III. AGENT-BASED CONCEPT 

A. Aims and Basics 

In line with the literature we think that agent-based modeling 

has potential as a ‘third way’ of doing social science in 

addition to argumentation and formalization [27]. Reference 

[28] provides a toolkit for agent-based modeling and 

computational economics. Reference [29] overviews agent-

based modeling applied to economic problems and social 

dilemmas. Reference [30] presents recent advances in 

computational econophysics including agent-based 

econophysics. Making use of agent-based modeling we are 

able to formalize theories on complex social processes like 

doping behavior patterns in professional sports. Thus, 

modeling a high degree of complexity is an essential 

advantage of an agent-based approach compared to game 

theory models. 

Note that we do not aim to present an agent-based model 

of doping behavior for the purpose of estimating or 

predicting the real extent of doping in professional sports. 

Instead, we intend to model a complex social system to test 

how parameters – e.g. bans, fines, prize-money distributions 

and subjective detection probabilities – may influence elite 

athletes’ doping behavior and how policymakers may fight 

against doping.  

Our multi-period agent-based doping concept is based on 

three interacting objectives, namely, (i) elite athletes, (ii) an 

anti-doping laboratory, and (iii) an anti-doping agency. The 

agency announces anti-doping rules and imposes fines as 

well as bans. Anti-doping laboratory executes doping 

controls whereby control frequency and efficiency are 

imperfect, so that not every doped and tested elite athlete is 

detected as a dope user. In each time period any elite athlete 

competes for income in a rank-order tournament. We assume 

that using dope increases an elite athlete’s chance of success 

in rank-order tournaments in the short term but such an 

illegal practice causes an adverse reaction in the long term. 

To put it differently, in the long term the harm caused to 

elite athletes by doping is higher than the benefits. We 

justify such an adverse reaction to doping in terms of 

potential health risks. However, in the following subsections 

we introduce key parameters and explain in detail our three 

interacting objectives (i) elite athletes, (ii) anti-doping 

laboratory, and (iii) anti-doping agency. 

B. Anti-doping Agency 

We create an ‘artificial’ anti-doping agency within our 

agent-based concept to reflect the ‘real world’ institution, i.e. 

the WADA. The anti-doping agency announces anti-doping 

rules the elite athletes have to comply with. Hence, the anti-

doping agency sets a Complexity of Anti-doping Rules 

(CAR). Furthermore, the anti-doping agency determines 

pecuniary levels of FINes (FIN) and states BANs (BAN). 

Thus, detected dope-taking athletes face a system of 

punishment that consists of fines paid in Tokens and bans 

with respect to time periods an elite athlete is forbidden to 

participate in rank-order tournaments. The maximum 

number of time periods applied, i.e. the maximum ban 

(maxban), depends on minimum and maximum age (minage, 

maxage) within a population of elite athletes. Table I 

provides characteristica of parameters and attributes used in 

our agent-based doping concept. 

At the end of any time period the anti-doping agency 

publishes statistics on doping. In particular, we aim at 

calculating figures like the Share of DEtected elite athletes 

(SDE), the Share of DOped elite athletes (SDO) and the 

Share of Detected and Doped elite athletes (SDD).  
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TABLE I. 

AGENT-BASED DOPING MODEL: CHARACTERISTICA OF PARAMETERS AND ATTRIBUTES 

Parameter / Attribute Abbreviation Characteristica 

 

Anti-doping Agency 

Complexity of Anti-doping Rules CAR [0;1] Exogenous 

FINes FIN [0; ∞] Exogenous 

BAN BAN [0; maxban] Exogenous 

Anti-doping Laboratory 

  Number of Tested elite Athletes NTA [0; N] Exogenous 

  Number of Preannounced-tested elite Athletes NPA [0; N] Exogenous 

  Number of Randomly-tested elite Athletes NRA NTA-NPA Exogenous 

  Control EFficiency  CEF [0; 1] Exogenous 

  Number of Controlled Periods NCP [1; ∞] Exogenous 

Share of DEtected elite athletes SDE [0; 1] Endogenous 

Share of DOped elite athletes SDO [0; 1] Endogenous 

Share of Detected and Doped elite athletes SDD [0; 1] Endogenous 

Elite Athletes 

  Population of elite athletes N [1, ∞] Exogenous 

  Identification number I [1, N] Exogenous 

  AGe AG [minage; maxage] Endogenous 

  Behavioral-Type BT [A; B; C; D] Exogenous 

  PErformance PE [0, maxperformance] Endogenous 

  FItness FI [0; 100] Endogenous 

  COnstitution CO [0; 100] Endogenous 

  DIsturbance DI [0; 100] Endogenous 

  INcome IN [-∞; maxprize] Endogenous 

  Income due to Detected doping  ID [-∞; maxprize] Endogenous 

  Income due to Undetected doping  IU [-DC; maxprize] Endogenous 

  Doping Decision DD [+; -] Endogenous 

  Realized Rank in tournament RR [0; N] Endogenous 

  Doping Costs DC [0; ∞] Exogenous 

  Doping Efficiency  DE [0; 1] Exogenous 

  Doping Harm DH [0; 1] Exogenous 

  Prize-Money PM [0; maxprize] Endogenous 

  Weighting of Fitness WF [0; 1] Exogenous 

  Weighting of Constitution WC [0; 1] Exogenous 

  Weighting of Disturbance WD [0; 1] Exogenous 

  Time index T [0; ∞] Endogenous 

  Weighting of doping Efficiency WE [0; 1] Exogenous 

  Weighting of doping Harm WH [0; 1] Exogenous 

  Expected Utility   EU  [0; 1] Endogenous 

  Subjective detection Probability   SP  [0; 1] Endogenous 

  Risk Perception   RP  [0; 1] Endogenous 

  Size of an elite athletes’ social Network   SN  [1; N] Exogenous 

  Number of periods an elite athlete has to act Rule-compliant   NR  [0; maxage-minage] Exogenous 

Note: Table I offers an overview of characteristica used within the agent-based concept sorted according to (i) anti-doping agency, (ii) anti-doping 
laboratory, and (iii) elite athletes. The first column displays the parameters or attributes; the second column shows related abbreviations, and the last column 

presents characteristica with respect to the domain and whether the parameter or attribute is determined endogenous or exogenous. 
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C. Anti-doping Laboratory 

We suppose an ‘artificial’ anti-doping laboratory that 

conducts doping controls according to anti-doping rules 

announced by the anti-doping agency for the whole 

population of N elite athletes. In each time period doping 

controls are carried out as follows. Immediately after a rank-

order tournament some participants are selected for testing 

so that we obtain a Number of Tested elite Athletes (NTA). 

Note that the number of tested elite athletes is made up of 

two terms. First, we assume a Number of Preannounced-

tested elite Athletes (NPA) in the sense that participants are 

always tested if they achieve preannounced placements in a 

rank-order tournament – usually placements near the winner, 

for instance, winners of medals at the Olympic Games are 

always tested. Second, we suppose a Number of Randomly-

tested elite Athletes (NRA), reflecting doping controls at 

random to ensure that doped elite athletes face the risk of 

being caught and punished regardless of their placement in 

the rank-order tournament. Equation (1) guarantees some 

randomly tested elite athletes will be selected, since 

otherwise a feasible strategy for doped participants is to 

achieve placement NPA +1 so that any risk of being tested 

and caught is circumvented. Thus, Equation (1) is necessary 

and sufficient to generate deterrence of the use of banned 

substances. 

0 NPANTANRA                           (1) 

Numbers of tested and preannounced-tested elite athletes can 

be freely selected according to Equation (1) before executing 

the source code to obtain simulation results. Eventually, in 

analogy with the literature of game theory models, we 

assume that doped and tested elite athletes will not be 

detected as doping athletes for sure in this time period 

because of imperfect Control EFficiency (CEF).  

Regarding time periods, we suppose two treatments 

concerning how to conduct doping controls. First, in the 

baseline treatment we require that elite athletes face 

doping controls in the actual time period only. Obviously, 

the Number of Controlled Periods (NCP) then equals one. 

Further, an objective likelihood of being caught in the 

baseline treatment depends on control efficiency, placements 

in rank-order tournaments, and numbers of tested and 

preannounced-tested elite athletes. Second, in the back-

controlling treatment we postulate that elite 

athletes are tested in the actual time period as well as for 

some time periods in the past. Thus, the number of 

controlled periods is now greater than one. Further, the 

objective likelihood of being caught in the back-controlling 

treatment depends on the number of controlled periods in 

addition to control efficiency, placements in rank-order 

tournaments, and numbers of tested and preannounced-tested 

elite athletes.  

Finally, at the end of any time period the anti-doping 

laboratory and the anti-doping agency exchange information 

on doping rules, the number of tested elite athletes (i.e. 

executed doping controls), Share of DEtected elite athletes 

(SDE), Share of DOped elite athletes (SDO) as well as Share 

of Detected and Doped elite athletes (SDD). Based on that 

information the anti-doping agency regularly publishes 

doping statistics and assigns fines and bans to elite athletes. 

Among other things, we describe in the following subsection 

how punishment of detected and doped elite athletes might 

take place. 

D. Elite Athletes 

We create ‘artificial’ elite athletes endowed with 

heterogeneous attributes to populate our agent-based 

framework. In particular, among the population of N elite 

athletes each one has ten attributes at any specific Time 

index (T), namely Identification number (I), AGe (AG), 

INcome (IN), Doping Decision (DD), Realized Rank (RR), 

PErformance (PE), FItness (FI), COnstitution (CO), 

DIsturbance (DI), and Behavioral-Type (BT).  

Identification numbers are allotted in the initial time period 

and remain constant for all future periods to identify elite 

athletes in computational simulations. For simplicity, we 

drop abbreviations I, N, and T whenever possible.  

An elite athlete’s age is assigned, also in the initial time 

period, to an integer between minimum and maximum age 

but in every period the population grows one period older. 

As a consequence elite athletes retire mandatorily after 

reaching the maximum age, i.e. their career in professional 

sports ends. Retired elite athletes are replaced by newcomers 

at the minimum age. During replacement all other attributes 

of newcomers are set to the initial values of retired elite 

athletes. Note that such a procedure of replacement ensures 

that the distribution of elite athletes’ attributes like 

Behavioral-Type (BT) remains identical over time and, 

therefore, allows for observing age-effects under ceteris 

paribus conditions. 

In each time period elite athletes compete for income in a 

rank-order tournament [31]. In such a rank-order tournament 

the income depends on elite athletes’ relative performance. 

Rank externalities in combination with the so-called 

‘superstar effect’ may result in a situation where small 

variations in performance lead to strong differences in the 

distribution of income [32]. Thus, we assume a prize-money 

distribution as follows. Winners of a rank-order tournament 

get a maximum prize of 1,000 Tokens and the next-highest 

finishers until rank 99 get a positive amount of Tokens – but 

less than each finisher’s predecessor. If elite athletes realize 

rank 100 or worse they earn nothing in this time period. 

Table II presents a non-linear prize-money distribution 

intended to be used for theoretical considerations and 

computational simulations. In particular, we make use of this 

prize-money distribution to provide a numerical example in 

the course of the paper. Nevertheless, to allow for a higher 

degree of generality we introduce a parameter for the 

maximum prize (maxprize) available. 
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An elite athlete’s income in a time period is calculated as 

follows. We suppose elite athletes have only one source of 

earnings, which is prize-money earned from successful 

competition in rank-order tournaments. Depending on 

Realized Rank (RR), any participant can earn a non-negative 

amount of Prize-Money (PM) according to Table II. An elite 

athlete’s spending depends on the individuals’ Doping 

Decision (DD), Doping Costs (DC) and proposed FINe 

(FIN) in the case of detection. Note that doping decisions are 

binary. We explain how elite athletes make their doping 

decision in the behavioral-type paragraph later on in this 

subsection. However, subscript ‘+‘ indicates that an elite 

athlete uses dope and subscript ‘–‘ indicates an elite athlete 

does not use dope. Thus, we obtain Equation (2) presenting 

three cases with respect to feasible income. 

FINDC

DCPM

PM

ID

IU

IN 





















                          (2) 

First, an elite athlete dopes and remains undetected for 

whatever reason. Then, she has to pay her doping costs (DC) 

from her prize-money (PM+) so that she obtains an Income 

due to Undetected doping (IU). Second, a doped elite athlete 

is detected and as a consequence she earns no prize-money 

and has to pay a fine (FIN) in addition to her doping costs 

(DC), which leads to a non-positive Income due to Detected 

doping (ID). Third, an elite athlete does not make use of 

doping so that she can enjoy her prize-money (PM_) for 

certain. Note that we implement an error of the first kind if 

and only if control efficiency of the anti-doping laboratory is 

less than one. Further, we do not model an error of the 

second kind. To put it differently, we may find in our agent-

based framework a dope-using elite athlete who is not 

detected despite being tested but a clean elite athlete cannot 

erroneously be found guilty of taking banned substances. We 

adhere to this feature since an accused and innocent elite 

athlete may go to court and we are confident that she will get 

justice sooner or later. Moreover, intuition may favor the 

notion that prize-money is always higher when making use 

of doping than not. Note that this notion is not true since an 

elite athlete’s placement depends on her performance in 

TABLE II. 

EXAMPLE: PRIZE-MONEY DISTRIBUTION OF RANK-ORDER TOURNAMENT IN TIME PERIOD T 

Realized Rank 
Prize-Money 

in Tokens 
Realized Rank 

Prize-Money 

in Tokens 
Realized Rank 

Prize-Money 

in Tokens 
Realized Rank 

Prize-Money 

in Tokens 

1 1,000 26 135 51 63 76 24 

2 700 27 130 52 61 77 23 

3 500 28 125 53 59 78 22 

4 400 29 120 54 57 79 21 

5 350 30 115 55 55 80 20 

6 310 31 112 56 53 81 19 

7 280 32 109 57 51 82 18 

8 260 33 106 58 49 83 17 

9 250 34 103 59 47 84 16 

10 240 35 100 60 45 85 15 

11 230 36 97 61 43 86 14 

12 220 37 94 62 41 87 13 

13 210 38 91 63 39 88 12 

14 200 39 88 64 37 89 11 

15 190 40 85 65 35 90 10 

16 185 41 83 66 34 91 9 

17 180 42 81 67 33 92 8 

18 175 43 79 68 32 93 7 

19 170 44 77 69 31 94 6 

20 165 45 75 70 30 95 5 

21 160 46 73 71 29 96 4 

22 155 47 71 72 28 97 3 

23 150 48 69 73 27 98 2 

24 145 49 67 74 26 99 1 

25 140 50 65 75 25 100 0 

Note: Table II shows a regressive non-linear prize-money distribution used within the agent-based concept. We assign each realized rank a specific amount 

of prize-money in Tokens due to an elite athlete’s placement in the rank-order tournament. Note that if elite athletes achieve rank 100 or worse they receive 

a prize-money of zero. 
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rank-order tournaments and includes randomly allotted 

disturbance-effects.  

In this paragraph we explain an elite athlete’s PErformance 

(PE) used to model rank-order tournaments in the presence 

of doping behavior. Performance takes into account an 

individual’s FItness (FI), COnstitution (CO), and 

DIsturbance (DI). In addition, we need to introduce three 

related figures as real numbers between zero and unity. 

These numbers are Weighting of Fitness (WF), Constitution 

(WC), and Disturbance (WD). If a weighting factor is zero, 

performance is not influenced by the respective attribute. An 

increase in the weight of a factors leads to higher influence 

of respective attributes; maximum influence is reached at 

unity. To ensure that clean elite athletes can get only a 

preannounced maximum performance (maxperformance) we 

suppose that weighting factors sum up to unity. Equation (3) 

formalizes this weighting-condition. 

1 WDWCWF                                    (3) 

Further, we assume Equation (4) represents an elite athlete’s 

performance. 

DIWDCOWCFIWFPE                    (4) 

In the initial time period an individual’s FItness (FI), 

COnstitution (CO), and DIsturbance (DI) are randomly 

allotted between zero and 100. Thereafter, we suppose that 

disturbance is calculated each time period randomly, 

whereas physical fitness and constitution change due only to 

doping. Thus, a clean elite athlete can reach only a 

maximum performance of 100. COnstitution reflects an elite 

athlete’s physique in terms of long-term effects. For 

instance, we assume that Doping Harm (DH) affects 

constitution as follows. Effects of doping harm increase over 

time, reach a maximum, and then need some time periods to 

vanish. Fitness represents an elite athlete’s physique 

regarding short-term effects. Thus, Doping Efficiency (DE) 

affects fitness as follows. Effects of doping efficiency occur 

immediately at a high positive level and then need some 

time periods to vanish (see Table III). Finally, disturbance 

may reproduce an elite athlete’s fortune or misfortune in 

competition. Realized rank depends on an individual’s 

performance; in each period the highest value of 

performance wins the rank-order tournament.  

To provide an example, we assume that an elite athlete 

makes use of doping in time period T only. Further doping 

has positive effects on fitness for three time periods whereas 

such an illegal practice has negative effects on constitution 

for seven periods. Regarding strength of effects we introduce 

two related figures as real numbers between zero and one. 

These are Weighting of Doping Efficiency (WE), and 

Doping Harm (WH). Furthermore, we assign in Table III 

numerical values to these weighting factors. For a sequence 

of time periods we obtain then Equations (5) and (6), which 

describe effects on constitution and fitness, respectively, if 

an elite athlete makes use of doping in time period T 

   8...;;0,1
0

 


 atDHWHCOCO
at

t

tatT      (5) 

and  

   8...;;0,1
0

 


 atDEWEFIFI
at

t

tatT      (6) 

Of course, we have to adjust Equations (5) and (6) if elite 

athletes make use of doping in more than one time period to 

incorporate overlapping-effects. However, in the following 

paragraph we describe how elite athletes may behave with 

respect to making their multi-period doping decisions. 

We postulate four Behavioral-Types (BT) of elite athletes, 

namely, (i) rational-acting A-types, (ii) suggestible B-types, 

(iii) compliant C-types, and (iv) erratic D-types. Rational-

acting A-type elite athletes might make use of doping 

substances with respect to an expected utility maximizing 

approach. A suggestible B-type elite athlete is influenced 

strongly by doping behavior committed in her social 

TABLE III. 

EXAMPLE: SHORT- AND LONG-TERM EFFECTS OF DOPING IN TIME PERIOD T 

Parameter Weighting of Doping Efficiency (Short-term Effects) Weighting of Doping Harm  (Long-term Effects) 

Period T WE0=1 WH0 = 0 

Period T+1 WE1=0.5 WH1=0.25 

Period T+2 WE2=0.25 WH2=0.5 

Period T+3 WE3=0 WH3=0.75 

Period T+4 WE4=0 WH4=1 

Period T+5 WE5=0 WH5=0.75 

Period T+6 WE6=0 WH6=0.5 

Period T+7 WE7=0 WH7=0.25 

Period T+8 WE8=0 WH8=0 

Note: Table III contrasts doping efficiency and doping harm over time. While doping has a decreasing positive effect over three periods, the negative effect 

of doping increases from time period T+1 to T+4 and declines afterwards until it becomes zero in time period T+8. 
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network. A compliant C-type elite athlete accepts and 

follows strict announced anti-doping rules. An erratic D-type 

elite athlete wants to act rule-consistently but may commit 

doping unintentionally because of her ignorance of 

announced anti-doping rules or other misbehaviors. Note 

that these proposed behavioral-types stem originally from 

agent-based tax evasion models [33]-[39]. For instance, [33] 

makes use of an exponential utility function to model 

expected-utility-maximization behavior of rational-acting 

taxpayers. Thus, we transfer recent advances in tax 

compliance research to doping behavior patterns. 

Rational-acting A-type elite athletes constrain their doping 

decision based on whether taking banned substances 

increases their Expected Utility (EU) or not. Thus, we make 

use of an exponential utility function displayed in Equation 

(7). Distinguishing the doping use and doping abandonment 

cases, we aim to model expected-utility-maximization 

behavior of rational-acting elite athletes, that is  






















PMRP

IURPIDRP

e1

)eSP)(1(1)eSP(1 

EU

EU
)(INEU     (7) 

In order to maximize their expected utility, A-type elite 

athletes take Income due to Detected doping (ID) and 

Income due to Undetected doping (IU) into account. Further, 

we introduce a Subjective detection Probability (SP) that 

reflects an A-type elite athlete’s perception of being caught 

as a doped participant. In the course of the paper we provide 

a numerical example of the maximizing procedure. 

However, note that the subjective detection probability may 

differ from an objective detection probability given by the 

anti-doping laboratory and the anti-doping agency. 

Furthermore, A-type elite athletes are endowed with a 

subjective Risk Perception (RP) to reflect their attitude to 

uncertainty. Subjective risk perception takes values between 

zero and unity whereby risk-seeking athletes have a value 

close to zero and risk-averse athletes have a value of nearly 

unity. According to [40] elite athletes become more risk 

seeking over time because of increasing opportunity costs in 

the course of their biographical fixation. While young elite 

athletes have more opportunities to find employment beyond 

professional sports, older elite athletes have often to persist 

in the system. A-type elite athletes are assigned to one out of 

four risk groups appropriate to their age. Table IV provides 

details with respect to classification of A-type elite athletes 

in risk perception groups. Risk perception is randomly 

allotted to elite athletes between the upper and lower 

threshold of their respective risk group. However, A-type 

elite athletes make use of doping if expected utility is higher 

in the case of doping abuse (EU+) than in the case of anti-

doping rule compliance (EU-).   

B-type elite athletes are suggestible and therefore their 

doping behavior depends on the doping behavior committed 

in their social networks. Therefore, B-type elite athletes 

decide to dope if at least one athlete in her social network 

dopes but none is caught as a doped participant. The size of 

the elite athletes’ Social Network (SN) is equal for all 

athletes. For simplicity we assume a ring-world structure so 

that an elite athletes’ I social network includes athletes with 

the identification numbers I+1, …, I+SN. If N is reached the 

social network includes elite athlete I=1 and so on until SN 

athletes are chosen. Note that [33] have used such a ring-

world structure to investigate tax evasion behavior in a 

society of heterogeneous agents. Reference [37] examine 

various social network structures and find that Erdös-Rényi 

and Power-law-distributed networks influence taxpaying 

behavior particularly strongly. However, in line with the 

literature we assume that a convicted B-type elite athlete has 

to act for a designated Number of periods Rule-compliantly 

(NR). 

Compliant C-type elite athletes act always and deliberately 

in a rule-compliant manner. That is why C-type elite athletes 

do not make use of a specific decision-making calculation. 

Erratic D-type elite athletes also want to act in compliance 

with anti-doping rules but may break these rules 

unintentionally because of a lack of knowledge about anti-

doping rules in force. The probability for such misbehavior 

depends on the Complexity of Anti-doping Rules (CAR) set 

by the anti-doping agency. For instance, CAR=1 

corresponds to anti-doping rules with the highest level of 

complexity. In this case D-type elite athletes are more likely 

to act against anti-doping rules. Contrarily, CAR=0 displays 

anti-doping rules with the lowest level of complexity so that 

TABLE IV. 

CLASSIFICATION OF RATIONAL-ACTING A-TYPE ELITE ATHLETES IN RISK PERCEPTION GROUPS 

Age (AG) Subjective Risk Perception (RP) 

                                   minage  ≤ AG <  minage + (maxage-minage)∙0.25 [0.75;1] 

minage+ (maxage-minage)∙0.25 ≤  AG <  minage + (maxage-minage)∙0.5 [0.50;0.75] 

minage + (maxage-minage)∙0.5  ≤  AG <  minage + (maxage-minage)∙0.75 [0.25;0.50] 

minage + (maxage-minage)∙0.75 ≤ AG <  maxage [0;0.25] 

Note: Table IV displays classification of rational-acting A-type elite athletes into four risk perception groups with equal intervals. The first 

column illustrates age intervals and the second column is associated with the related subjective risk perception interval.  
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all D-type elite athletes are able to follow anti-doping rules. 

In the latter case D-type agents behave like compliant C-type 

agents.  

E. Simulation Process 

Above we have described three interacting objects. The aim 

of this subsection is to depict the simulation process within 

which these objects interact. After running some initial 

rounds to create objects and to generate initial information 

we repeat a simulation cycle as often as required. Fig. 1 

illustrates this simulation cycle and its seven steps. 

As a first step, in each time period any elite athlete grows 

one time period older until reaching maximum age 

(maxage). On reaching maximum age an elite athlete retires 

and is replaced by an agent at minimum age (minage), all of 

whose other attributes are set to the initial values of the 

retired elite athlete to allow for investigations under 

ceteris paribus conditions. 

Subsequently, elite athletes make their doping decision on 

the basis of their behavioral-type specific decision calculus 

described above. Using the information concerning doping 

decisions a rank-order tournament takes place (step II). In 

the third step, a disposed ranking is drawn up. According to 

the rank-order tournament, all elite athletes are sorted 

according to their performance in competition. Both clean 

and doped elite athletes are listed on this disposed ranking. 

Afterwards an anti-doping laboratory executes an anti-

doping control (step IV) in which the preannounced-tested 

elite athletes are chosen on the basis of the disposed ranking 

and additional athletes are selected at random. Note that 

since doping test efficiency and frequency is imperfect not 

every doped athlete will be caught. Convicted dopers are 

noted and are punished by the anti-doping agency.  

In the fifth step, convicted dopers are removed from the 

disposed ranking and a renewed ranking is created. The next 

step is to distribute income to clean elite athletes and 

undetected dopers based on the renewed ranking (step VI). 

Thus, we make use of the prize-money distribution described 

in Table II. In the seventh and last step, the anti-doping 

agency announces detected and undetected extent of doping 

and other statistics. This information is used in subsequent 

periods e.g. elite athletes base their doping decisions on 

them.  

F. Illustration of Doping Decision 

We describe in this subsection the decision-making calculus 

of a rational-acting A-type elite athlete in the course of a 

rank-order tournament as an example. In this example, 

parameters and attributes are set to values as follows. 

 N = 100; WF = 0.5; WC = 0.4; WD = 0.1; DC = 100; FIN = 

200. Furthermore, let us assume we are considering elite 

athlete 23 (I = 23) and suppose parameter values in the first 

period (T = 1) are as follows. AG23;1 = 37; FI23;1 = 86.4; 

CO23;1 = 78.5; DI23;1 = 95.0; RP23;1 = 0.01; SP23;1 = 0.002. 

Inserting these values in Equation (4) leads to Equation (8).  

 

1.840.951.05.784.04.865.01;23 PE         (8) 

Moreover, we assume that elite athlete 23 achieves rank 

eight (RR23;1 = 8) with respect to her performance (PE23;1 = 

84.1). Using the prize-money distribution described in Table 

II, she earns 260 Tokens if acting rule-compliantly.  

Elite athlete 23 may increase her FI23;1 value in the short 

term by 30 percent (DE = 0.3) through the use of banned 

substances. In this case her FI23;1 may increase to 112.32 

and, therefore, her PE23;1 to 97.06. If her doping abuse 

remains undetected, let us assume she achieves second place 

in the rank-order tournament and earns 700 Tokens, but has 

to pay 100 Tokens for doping substances, so that 600 Tokens 

(IU23;1 = 600) remains. If elite athlete 23 is detected her loss 

amounts 300 Tokens (ID23;1 = -300). Inserting IU23;1, ID23;1, 

RP23;1, and SP23;1 in Equation (7) leads to Equation (9).  

957.0

)1()002.01()1(002.0

1;23

)600()01.0()300()01.0(









EU

ee

        (9) 

In the case of doping abandonment, elite athlete 23 earns 

260 Tokens for certain, so that IN = 260 is inserted in 

Equation (7) leading to Equation (10) 

926.01 )260()01.0(

1;23  

 eEU                          (10) 

Since elite athlete 23 is rational and an expected-utility-

maximizer she decides to dope (EU23;1+ > EU23;1-). 

 

Fig 1. Graphical Illustration of Simulation Process 
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IV. DISCUSSION AND OUTLOOK 

To our best knowledge we have proposed in this paper for 

the very first time an agent-based concept to analyze elite 

athletes’ doping behavior. Varying parameters for various 

kinds of sport can be selected. Currently the computational 

simulation is in a preliminary state so that simulation results 

are not yet available. However, a benefit of such an agent-

based modeling approach is that doping behavior patterns 

may be investigated in a more realistic manner than with 

other methods like traditional game theory approaches. 

In theory we expect our basic concept to show that back-

controlling, i.e. doping controls with respect to competitions 

years ago, influences an elite athlete’s decision to dope or 

not to dope particularly strongly. Note that lapse-of-time 

effects with respect to doping behavior are frequently 

neglected in the literature. We think that such an agent-based 

approach may provide new insights concerning lapse-of-

time effects. For instance, deterrence effects that lengthen 

time spans regarding storage of necessary materials to 

conduct doping controls, e.g. blood and urine samples of 

elite athletes, are important. Moreover, interaction processes 

among elite athletes in competition may influence the 

effectiveness of lengthening storage time spans depending 

on behavioral type distributions in artificial populations.  

After generating simulation results, the next step in our 

research project might allow the sensitivity of various anti-

doping measures to be determined by varying the latter 

ceteris paribus. Based on simulation results we may 

provide policy recommendations to the WADA such as an 

optimal budget allocation for prevention policies. This will 

be very useful for future practice of doping prevention. In 

2014 a budget of 26 million US Dollar is available to the 

WADA, but the contributions of several anti-doping 

measures are still unknown [41]. Using an agent-based 

modeling approach, their efficiency and effectiveness can be 

estimated for the first time.  

With respect to extensions, we plan to implement a fixed 

budget for the anti-doping agency that finances various 

activities, e.g. control (delegated to anti-doping 

laboratories), education and prevention of doping behavior 

patterns. Within such an extended framework we can 

examine economic costs of doping controls and investigate 

optimal allocations of resources. In addition, several doping 

substances may be distinguished. The latter feature would 

lead to different detection probabilities and doping costs. 

Furthermore, consultants, e.g. team-managers or doctors, 

with an own advisor utility function could be implemented 

since consultants seem to play a main role in professional 

sports. Both outlook and extensions delineate a rather rich 

agenda for research activities in the future. 
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