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Abstract - A model of a double auction market of zero-

intelligence traders was replicated as an agent-based model 

using the same market supply and demand curves. The orig-

inal results were reproduced, and these results and other 

behavior of the model were examined under different 

schemes of agent activation, both exogenous and endoge-

nous. While the qualitative differences were typically minor, 

there were statistically significant differences in all the 

measures of all the markets in the original research and im-

portant divergence in the extended evolution of the simula-

tion. These differences have important implications for all 

follow-on replications of a zero-intelligence trading model, 

and for the replication process in general.  

Keywords: agent-based simulation, activation, updating, 

model replication, standardization, market design, zero-

intelligence traders. 

I. INTRODUCTION 

N the construction of agent-based simulations, there are 

a number of important design decisions that must be 

made, either explicitly or implicitly. Among these are 

model size, the presence and topology of networks among 

the agents, and the sequence of activation events in which 

agent-objects execute their methods. If the process of rep-

licating results is to become more common, the specifica-

tion of models in the research literature needs be suffi-

ciently complete so that the same conceptual model can 

be instantiated by separate researchers using different 

code and, perhaps, a different language.  

The determination of this sufficiency is an active area 

of research. Specifically, we examine the question of 

whether varying the activation scheme will result in dif-

ferent outcome behavior. It is most important to determine 

if these differences are so significant that they would af-

fect the quality and success of the replication process.  

It has been long recognized that activation can make a 

difference in social simulations [1], [2]. A number of re-

cent examinations into activation for various published or 

suggested models have been reported [3], [4]. Collective-

ly, this literature should motivate the examination of the  

impact of model design on a broad range of influential 

agent-based simulations. Unfortunately, the literature of 

such examinations is sparse.  

We have chosen to re-evaluate an influential finance 

model – the Zero-Intelligence Trader model first pub-

lished by Gode and Sunder [5]– under different activation 

designs to help explore the question of the importance of 

activation.  

Finance is an area of high activity for complexity sci-

ence and agent-based models. It was one of the primary 

motivations behind the founding of the Santa Fe Institute 

[6]. Agent-based models, with their many independent 

decision-makers, are excellent surrogates for traders in a 

securities market. Agents can be infused with a number of 

different strategies, and global information can be made 

available either market-wide or differentially to only se-

lect traders.  

One of the simplest market models is the "zero-

intelligence trader" or ZIT model. Pairs of traders are cho-

sen from a population of traders. In the most straightfor-

ward ZIT models, traders trade a single commodity. They 

cannot access market-wide parameters such as the last 

trade price or the trade price history or even the details of 

their counterparty’s financial position. The traders are not 

completely devoid of knowledge: the sellers know their 

own cost of acquisition, and the buyers know what future 

price at which they can expect to liquidate the asset. (The 

latter might seem a bit artificial, but is analogous to the 

book value of assets or the surrender value of a bond.) 

The simplicity of the ZIT model invites excursions on 

model format and design, such as studying the impact of 

activation.   
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The most referenced ZIT model was introduced by 

Gode and Sunder [5] in an article entitled “Allocative 

Efficiency of Markets with Zero-Intelligence Traders: 

Market as a Partial Substitute for Individual Rationality.” 

Nearly 1200 scholarly articles referred back to Gode and 

Sunder over the past two decades. Researchers were ini-

tially investigating whether a rule-based double auction 

market simulation would show the same market success 

as an experimental market of actual individuals. Gode and 

Sunder defined success in terms of “allocative efficiency” 

(the even distribution of wealth) and the market would 

approach the theoretical maximum profit over the course 

of the simulation. They used graduate students incentiv-

ized by academic grade credits in an experiment to repli-

cate profit-motivated traders. They then simulated two 

double auction markets to compare with the real-world 

experiment. A wide body of research extends the ZIT 

model [7], but none appear to evaluate activation. 

I. BOUNDED ZIT MODEL DESCRIPTION 

Both computer simulations began with a small number 

of traders: six buyers and six sellers. Traders trade one 

‘share’ at a time. One simulation was unbounded, with the 

buyers and sellers making offers randomly selected be-

tween 0 and 200. The more rational simulation was 

termed a ‘bounded’ or constrained simulation. The buyers 

have a ‘supply’ curve in which the cost for their next 

share to be sold is determined by an escalating price 

curve. The sellers likewise have a redemption price, at 

which they may liquidate any item they buy. This re-

demption price curve decreases depending upon how 

many shares the buyers have already. After each trade, 

buyers and sellers calculate their profit. Buyers subtract 

the cost from the trade price, and sellers subtract the trade 

price from the redemption price. Buyers and sellers are 

bounded in that they are not allowed to make an offer that 

would lose money.  

Gode and Sunder made a three simplifications to a 

double auction model: 

 Only one unit was traded at a time.  

 Once a trade took place, all outstanding offers were 

canceled. 

 If bid and ask offers crossed (seller asked less than the 

best buyer bid or vice versa), the price was set by that 

of the earliest offer. 

Buyers are informed ‘privately’ of the redemption val-

ue of each share. This value, vi, depends on the number of 

shares the individual buyer has already bought. The buyer 

knows his own demand curve, but the market demand 

curve is not available to any trader. Similarly, sellers are 

endowed with a supply curve that represents the cost, ci, 

of the i
th

 unit sold. This supply curve applies to each indi-

vidual seller and the market supply curve is also not 

known to any trader. Each trade, therefore, created a prof-

it. For the seller the profit is the net of the price and the 

cost, i
p c

. Similarly, the buyer’s profit is the net of the 

redemption value and the price, i
v p

. Buyers and sellers 

form offers at a rate and in a sequence determined by the 

activation scheme. All buyers have the same individual 

demand curve, and all sellers have the same individual 

supply curve. The offer for buyers is a random value be-

tween 0 and their current redemption value, vi. The offer 

for sellers is a random value between their cost, ci, and 

200. This is what was meant by the bounded market. The 

unbounded market was also examined, but that is not con-

sidered here. (Nor is the experiment using graduate stu-

dents.)  

Figure 1. Market 1 Trade Price vs. Trade Number and  vs. Turn 
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Gode and Sunder conducted six runs of the bounded 

market, with all values reset at the beginning of each run. 

The runs were terminated after 30 seconds. They exam-

ined five markets, or five sets of supply and demand 

curves. These curves were described in market-by-market 

graphs beside the trade price series. For the first four mar-

kets it was possible to estimate these values by inspection, 

but the fifth market had supply and demand curves with 

too fine a structure to reliably estimate. Only markets one 

through four were replicated here.   

II. MODEL REPLICATION 

Working in Python, we were able to create a double-

auction model in which the traders behave in the manner 

described in the source article. In order to perform diag-

nostics it was necessary to impose some structure on the 

dynamic processes of the model. We introduced the con-

cept of a turn, which we define lasting as long as one full 

population of traders have generated offers. A turn, there-

fore, is driven by events and not by computing time. This 

deviates somewhat from the source article, but allows 

side-by-side comparison of a variety of activation 

schemes (see below).  

Once the turn in which trades take place is recorded, a 

price series of trades can be observed in market time in-

stead of trade time. The Gode and Sunder paper plotted 

trade price per (ordinal) trade number. Thus, they did not 

observe the fact that later trades occurred much later in a 

run, after many, many offers had been made. See Figure 1 

for a depiction of this dynamic behavior for Market 1. 

Figure 1 also shows a number of other aspects of our 

market model. Instead of stopping after 30 seconds of 

execution, we have chosen to stop after a constant number 

of turns. For this graphic, we chose 600 turns, but in the 

full experiments we ran the market out to 5000. Even with 

5000 runs there still appear to be trades taking place. That 

is, even after many turns and many offers are generated 

there is still one buyer or seller who has redemption or 

cost set just above or below the market-clearing price.  

Figure 2 shows a market with the asymmetry in the op-

posite direction – a steeper demand curve and a shallower 

supply curve. In both cases the trades approach the market 

clearing price from the direction of the steepest curve. In 

Market 1, they approach from below because the supply 

curve is steeper. In Markets 2 and 3, trades arrive at the 

market clearing price from above because the demand 

curve is steeper.  

Gode and Sunder were investigating how much of the 

rationality associated with human traders could be at-

tributed to human decision-making motivated by profit 

and intelligence and how much is due to simple market 

discipline – the requirement that a seller can’t sell below 

cost and a buyer can’t buy above redemption value. While 

the bounded market’s appears to be in between the ran-

dom and the human market (by inspection), and the 

bounded market appears to converge to the same equilib-

rium price as the human market (determined by a regres-

sion of the bounded market curves, averaged over five 

runs), Gode and Sunder measured the outcome with two 

quantitative measures: market efficiency and wealth dis-

tribution.  

In the market evolution figures the supply and demand 

curves for each market was determined from the reference 

paper, but the price time series results were from our own 

replication of this double-auction model coded in Python.  

III. ALTERNATIVE ACTIVATION SCHEMES 

In replicating this model, it was possible to postulate a 

broad spectrum of different activation schemes, but not 

all. There does not appear to be an elegant method to im-

plement synchronous activation, in which agents’ future 

states are stored as all agents decide, followed by simulta-

neous state-change. Thus, only asynchronous activation 

was implemented. 

Figure 2. Market 2 Trade Price vs. Trade and vs. Turn 
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A. Random Activation 

There are several suggestions in the original paper that the 

authors chose asynchronous random activation. Activa-

tion was just demonstrated to be important in the same 

year (1992) [2], [8], so it is not unexpected that Gode and 

Sunder would not consider elaborating on the issue.  

In our instantiation, random activation merely means 

that traders are chosen at random from the set of all trad-

ers. These traders form an offer. A turn is defined as com-

plete when a number of traders equal to the total number 

of traders has made an offer. No data points are collected 

at the end of one turn, and no values (other than turn 

number) are reset. All offers to sell or buy that are in ef-

fect at the end of a turn continue in force at the beginning 

of the next turn. Once a trade takes place, all other offers 

are canceled. 

Initialization and reinitialization:  On the first activa-

tion, and every time the offers have been canceled, the 

first trader’s offer will establish the new “best offer” of 

that type. Thus, if a seller is chosen first, he will propose a 

sell price that is a uniform random variable between his 

cost (for this item in his inventory sequence) and the max-

imum of 120. A buyer will, likewise, establish the new 

“best buy” offer between zero and his redemption value. 

Trading can commence as early as the second offer.  

B. Uniform Activation 

Asynchronous uniform activation is executed in a man-

ner similar to random activation. At the beginning of each 

turn, the array of traders is shuffled. In one turn of uni-

form activation, all traders will be activated. Otherwise, 

the trade rules are the same: offers are carried over from 

turn to turn, but are canceled once a trade is complete. 

Initialization and reinitialization are conducted in the 

same manner.  

The trade timing plots for market 3 are shown for the 

uniform activation scheme. There does not appear to be 

any significant difference in trade timing behavior be-

tween random and uniform.  

C. Poisson Activation 

Poisson activation is a process in which agents are acti-

vated according to an exponential distribution with an 

arrival rate, λA. This will mean that activations for any 

given agent are a Poisson process. In its simplest form, a 

Poisson activation scheme would have all agents activated 

with the same λ. This, however, would merely replicate 

the random selection method so we explore only the case 

of heterogeneous values for λA.  

Poisson activation differs from other asynchronous 

methods in that this variation among the agents can be 

based on the state of each agent or some internal parame-

ter value. This is known as endogenous activation, and 

has been the subject of several recent studies [4], [9]. For 

our explorations, we chose agent wealth, which was cal-

culated at the beginning of each turn. Thus, agent activa-

tion rates are made proportional to agent wealth values. In 

order to investigate the ‘leveling’ nature of these comput-

er-based trading markets – a key question for the original 

researchers – we chose to make activation rates propor-

tional to the absolute distance between the agent’s wealth 

and the average wealth of the population of agents. In that 

way, agents that are at the extremes (rich or poor) will 

likely trade more often. 

In order to make appropriate comparisons between 

Poisson activation and other activation methods, it is nec-

essary to re-normalize all of the values of λA so that, on 

average, each turn there will be one full population of 

traders’ activations. we accomplish this by building acti-

vation time for each agent and adding it to an ‘event list’. 

Trader-agent activation times are drawn sequentially from 

an exponential distribution and each added to the previous 

until the times exceed 1.0. These times are then all sorted 

and the trader agent sequence that results from that is 

passed to the program as a list of activations. Offer-

making proceeds in accordance with this list for a given 

turn. At the beginning of the next turn the values of λA are 

again calculated and another sequence is generated. The 

order of each turn’s sequence is dependent on the current 

values of trader wealth and on a random draw.  

Figure 3. Market 3 (Uniform) Trade Price vs. Trade  and vs. Turn 
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This process works well once the model is established, 

but at the beginning of the model no trades have taken 

place and, thus, traders have no wealth. In these cases the 

values of λA are merely assigned randomly (and normal-

ized as above). Once one trader has acquired some wealth 

the process can proceed as designed.  

The Poisson process takes advantage of the 

‘memoryless’ feature of the underlying exponential distri-

bution. Thus, for every trader at the beginning of each 

turn can treat the ‘wait time’ as starting anew. It does not 

matter, given the waiting time is exponentially distributed, 

how long each trader has been waiting since the last acti-

vation.  

D. Inverse Poisson Activation 

The process of activating agents faster if they are fur-

ther from the average has an interesting counterpart: acti-

vation rates that favor proximity to the average. Thus, we 

examined a λ–setting process that slows down agent acti-

vations when the trader wealth is farther from the mean 

wealth. This inverse Poisson activation rate is the fourth 

activation scheme to be examined in the four markets.  

It is important to note that the two Poisson schemes 

represent a conceptual departure from the other two asyn-

chronous schemes. Both of these represent the relatively 

new concept of endogenous activation. At least one article 

[4] has found that this can show differences in outcome 

behavior when compared with the more normal exoge-

nous activation.  

IV. OUTCOME BEHAVIOR METRICS 

Gode and Sunder do not rely heavily on precise quanti-

fication of the market results. This is consistent with their 

goal of measuring the performance of an automated mar-

ket against that of a human market. They are trying to 

determine how much market efficiency (in profit creation 

and distribution) is due to the constraints of profit and loss 

rules and how much is due to human trading. Thus, they 

take the unconstrained automated market and the human 

market as two extremes and see where the bounded ZIT 

market falls. They judge that it falls much closer to the 

human market, but this is generally a qualitative judg-

ment.  

We chose to measure three aspects of the constrained 

ZIT market: its efficiency in generating wealth (or prof-

its), its effectiveness in evenly allocating wealth among 

the traders, and the time it takes to reach equilibrium. 

Gode and Sunder used the first two measures in their pa-

per, but left the third unexamined.  

A. Wealth Generation 

It is a straightforward matter to measure total wealth at 

the end of a run. One of the key (and unstated) influences 

on this total is the length of a run. Gode and Sunder ran a 

trading ‘day’ for 30 seconds. In our runs, we made use of 

the turn structure to better standardize the runs, choosing 

5000 turns as a standard run.  

The total wealth in the market is compared with the to-

tal theoretical wealth. Smith’s definition of market effi-

ciency was used [10]. Thus, the allocative efficiency of a 

market is the total profits earned in one run (added across 

all traders at the end of the run) divided by the maximum 

profits available. Actual human markets quickly converge 

to 99% efficiency. Markets only vary from this, the au-

thors noted in 1992, when typographic errors in market 

orders create a distortion in the price time series. (Consid-

ering the events of the past two decades, the Gode and 

Sunder paper could be seen as an important early warning 

of such market ‘errors’.) 

B. Profit Allocation  

The second metric chosen by Gode and Sunder was the 

profit allocation among the traders. To determine this, 

they calculated the cross-sectional root mean squared dif-

ference between the actual and the equilibrium profits 

across the traders. They defined the value ai as the profits 

(or total wealth) acquired by trader i. They also calculated 

Figure 4. Market 4 (Poisson) Trade Price vs. Trade and vs. Turn 
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the theoretical profits for this trader as πi. Thus, the dis-

persion across all traders becomes  

21 ( )
i ii

D a
n

 
  (1) 

They left unstated how they calculated the equilibrium 

values. We divided equilibrium profits into those for buy-

ers and those for sellers. We assumed buyers’ equilibrium 

profits as the profits they could earn if they traded all the 

shares they could at the market clearing price. This, of 

course, would only include those shares with a redemp-

tion value above the market clearing price. Similarly, the 

sellers values of πi was determined as the profits a seller 

would earn if all those shares held with costs below the 

market clearing price were sold at the market clearing 

price. Thus, to calculate D, it is necessary to separate the 

calculation of the sum into two parts. More correctly, it 

should be: 

   
2 21

s s b bs b
D a a

n
       

  (2) 

Where s = seller s ∈ S and b = buyer b ∈ B and n = the 

total number of traders. This separation is necessary be-

cause the supply and demand curves are not symmetrical. 

Sellers’ equilibrium profits differ from those of buyers in 

essentially all markets.  

C. Time to Last Trade 

Gode and Sunder did not examine the model behavior 

over the long term for a variety of reasons. They were 

comparing simulated markets with actual human experi-

ments. The human experiments had a finite duration be-

cause they were limited by many factors that are not pre-

sent in simulations. Thus, the simulated markets were 

truncated and the long-term data are missing (or, in the 

terminology of statistics, the data were ‘censored’).  

We expected to run the markets to exhaustion. That is, 

we experimented with a number of lengths of runs in the 

random and uniform activation types to find a reasonable 

point at which trading ended. We chose a run length of 

5000 turns, believing this would encompass all trades for 

all markets and all activations. As noted in the result sec-

tion, there was still censored data even at these extended 

runs. In fact, this represents a major difference among the 

activation schemes. Thus, while we didn’t collect a com-

prehensive set of data, analysis of the turn at which the 

‘last trade’ took place certainly achieved one of the key 

goals of this project – differentiating among activation 

schemes.  

V. MODEL RESULTS 

A full spectrum of experiments was run: four activation 

schemes across four markets. Each experiment consisted 

Figure 5. Total Wealth (All Traders) After 5000 Turns – Variable Scale 
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of 2000 runs of the market and activation, with each run 

extended to 5000 turns. At the end of each run, total 

wealth, wealth dispersion, and the turn of the last trade 

were recorded.  

Market analysis shows that the exogenous activation 

schemes run to completion and the endogenous schemes 

(the Poisson activation types) still have some trading op-

portunities available at the end of 5000 turns. This is most 

apparent in the Last Turn measurements in Figure 7.  

Figure 5 shows the four histograms of total wealth for 

all markets. The inverse Poisson activation exhibits ex-

treme values of low wealth, but actually bunches much of 

the wealth closer to the maximum value for each market.  

 
Table I. Mean Total Wealth at End of  Run (2000 Runs) 

 

 

With 2000 runs, it is possible to test the hypothesis that 

these means are drawn from different populations against 

the null hypothesis that the variation is simply due to ran-

dom errors (and that the random errors are normally dis-

tributed).  

With four activation schemes there would be sixteen 

pairwise comparisons. It is not necessary to examine these 

exhaustively to see differences among the activation 

types. As Table II shows, most of these comparisons are 

highly significant. Even the random-uniform comparisons 

– the closest averages for all the markets – allow the re-

jection of the null hypothesis for markets 2 and 4. Note 

that values that are too small to calculate are reported as 

 

 
Table II. p-values for Total Wealth Pairwise Comparisons 

 

Average Total Wealth Market 

Activation 1 2 3 4 

Random 899.0 1016.6 791.6 1497.7 

Uniform 899.2 1017.2 791.7 1498.2 

Poisson 892.2 1003.2 785.4 1480.5 

Inverse 
Poisson 

881.3 999.6 785.1 1488.8 

Max Wealth 900 1020 792 1500 

p-values Market   

 Comparison 1 2 3 4  

 Random  - 
Uniform 

0.021 <0.001 0.035 <0.001 

 Random - 
Poisson 

<0.001 <0.001 <0.001 <0.001 

 Random – 
Inverse Pois-
son 

<0.001 <0.001 <0.001 <0.001 

 Poisson - 
Inverse Pois-
son 

<0.001 <0.001 0.525 <0.001 

Figure 6. Wealth Dispersal, Market 3 (Constant Scale) 
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zero. (While the averages are close, the power of the test 

is derived from the n = 4000 combined data points for the 

pair.)  

Gode and Sunder compared the total wealth in the sim-

ulated markets to the maximum total wealth possible. This 

maximum is shown on the final row of the wealth table 

for each of the four markets. Their objective was to com-

pare how close the simulation came to maximum wealth 

with the proximity of the human markets. They deemed 

that their simulations across the four markets achieved 

essentially the same results as the human market, with 

efficiency percentages between 96 and 98%. These results 

were replicated in all markets by all activation types. The 

lowest percentage was 97.9% in the case of the inverse 

Poisson in Market 1.  

Similar analysis can be conducted on the much more 

bell-shaped wealth dispersion. Wealth dispersion is de-

picted on the histograms on Figure 6. These have all been 

adjusted so that they appear on the same x- and y-axis 

scales, which we designate with a white background. 

 
Table III. Mean Wealth Dispersion Over 2000 Runs 

 

 Table IV. p-values for Mean Wealth Dispersion in Pairwise 

Comparisons 

With the scales adjusted, it’s clear that the histograms 

appear significantly different. The Poisson activation his-

togram shows a significantly larger tail than the others. 

This may not be apparent from the small size of the bars 

on the far right hand side of that plot, but the automatic 

adjustment of the graphing program clearly adjusts for 

larger bins for the Poisson case to accommodate the larger 

range of data.  

While the wealth dispersion appeared to vary little 

across the runs, the large number of runs allowed us to 

determine that many of these differences were statistically 

significant. Using similar calculations to the averages of 

the wealth, we can develop another table of p-values.  

Table IV shows that somewhat fewer of the pairings show 

differences that are significant. Market 3 shows some 

interesting behavior in that even the random – uniform 

comparison results in a difference that is significant at the 

99% confidence level. Still, we reject the null hypothesis 

that the differences between these sample means is a 

product of random fluctuations in seven of the 16 cases 

p-values Market  

Comparison 1 2 3 4 

Random  - Uniform 0.23 0.20 0.002 0.36 

Random - Poisson <.001 0.278 <.001 <.001 

Random –  
Inverse Poisson 

0.14 0.28 <.001 0.457 

Poisson -  
Inverse Poisson 

<.001 0.59 0.67 <.001 

Average Wealth Dispersion Market 

Activation 1 2 3 4 

Random 29.2 51.2 54.9 110.3 

Uniform 28.8 50.5 53.2 111.0 

Poisson 31.6 51.9 57.0 102.9 

Inverse  
Poisson 

28.7 51.8 56.8 110.9 

Figure 7. Last Trades in 5000 Turns (Variable Scale) 
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examined. Activation type makes a difference, at least 

statistically. 

In addition to the odd shape of the Poisson activation 

histogram, it’s also clear that the inverse Poisson activa-

tion type has a much tighter bunch of averages. The 

means between the two are quite similar (57 and 56.8), 

but the standard deviation is substantially larger for the 

Poisson activation scheme.  

Finally, we analyzed the evolution these markets and 

activation schemes over the long term. Gode and Sunder 

did not consider the dynamics of their simulation during 

extended runs because they were comparing them with 

human traders in finite-time markets. We recorded the 

turn at which the last trade took place before the end of 

run and use this as a metric for market closure. In evaluat-

ing the results, it appears that 5000 turns was more than 

adequate for the random and uniform activation methods, 

but that Poisson and inverse Poisson were still exhibiting 

trading behavior late during a 5000-turn run (!). 

Figure 7 shows the behavior of all four last trades for 

the four activation schemes. Clearly, for all markets, the 

extent of the trading varies substantially as the activation 

type is changed. Not only are the histograms of somewhat 

different shape, the Poisson and inverse Poisson clearly 

have censored trading activity.  

This phenomenon would affect analysis of any ZIT 

models, especially if trading were cut off after a few hun-

dred turns. It is uncertain where Gode and Sunder stopped 

trading. They set their cutoff at 30 seconds of computer 

time, which itself might be a different measure for endog-

enous than for exogenous activation. In executing our 

simulations, the random and uniform experiments take 

about half the time as the two Poisson activation experi-

ments.  

Table V shows a full factorial analysis of the actual 

values of the mean. The sizeable difference can be ob-

served by inspection, but a complete analysis of the p-

values confirms the statistical significance of the result. 

There is no pairing that has a p-value larger than    
     . Thus, it can be concluded that activation makes a 

potent difference in the later stages of the ZIT model. 

 

 

 

 
Table V. Mean Last-Turn Over 2000 Runs 

 

VI. CONCLUSIONS 

There are several motivations behind the question: 

Does activation change the outcome of agent-based mod-

els? Our simulation appears to answer different aspects of 

this question in different ways.  

 

For the simple issue of statistical results, the analysis 

shows that for all three metrics (total wealth, wealth dis-

persion, and the last-trade parameter), there are statistical-

ly significant differences between at least some of the 

activation schemes, and for one metric there are signifi-

cant differences among all of them.  

We chose a ‘real world’ model – as opposed to a model 

of abstract agents engaged in mathematical game theory – 

to observe the impact of activation differences on policy 

recommendations. Gode and Sunder wanted to determine 

whether markets are made efficient by structural features 

(such as the requirement to make profitable trades) or by 

the rational decisions of human traders. They determined, 

using qualitative (but quite reasonable) analysis, that the 

constrained ZIT simulation essentially replicated the effi-

ciency of the human traders in achieving the total theoret-

ical wealth. They also concluded that simulated traders 

distributed the wealth close to -- but a little more than -- 

the human traders, at least in the early stages of trading. 

After a time, the human traders dispersed their profits 

more evenly, but this was undoubtedly due to the memory 

effect. Simulated traders forgot their supply and demand 

curves at the beginning of each experiment.  

Would Gode and Sunder’s conclusions have been dif-

ferent if they used different activation schemes? Probably 

not: 

 All activation schemes and all markets ended with a 

total wealth that was between 97.92 and 99.96% of 

maximum wealth.  

 Profit dispersion has a somewhat higher variance for 

the endogenous activation patterns, so it is possible 

that, given that they only did six runs, the authors 

might have generated outlier results. If they increased 

the number of runs, however, they would have returned 

to their original conclusion (simulated ZIT traders pro-

duce slightly larger dispersion, but far closer to human 

traders than unconstrained trading).  

Gode and Sunder did not examine the question of mod-

el convergence or trade evolution. Thus, they would not 

have noticed the significant differences that appear in the 

last-trade statistics among the different activation 

schemes. 

A third motivation for evaluating the importance of ac-

tivation schemes is to establish a proper standard for re-

search in which the agent-based models of one scientific 

team are replicated by subsequent researchers. The Gode 

and Sunder article was chosen because it appeared as a 

reference in 1171 subsequent articles. Clearly, many other 

Mean Turn of Last Trade 
5000- Turn Experiment 

Market  

Activation 1 2 3 4 

Random 1377.2  503.5  415.1  270.0 

Uniform 1273.4  438.3  357.6  234.2 

Poisson 1919.3 1718.9  947.4 1300.1 

Inverse 
Poisson 

2124.9 1927.7 2240.6 1695.1 
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researchers are at least working with the concept of simu-

lating markets, and many are actually building agent-

based models using the zero-intelligence trading para-

digm. (None of those 1171 use the words “updating” or 

“activation” – or their derivatives – in the title, so activa-

tion is not a major research focus in this domain.)  In the 

research reported above, the differential results from last 

trade analysis alone (if not all the results) show that if a 

replication of ZIT model is expanded beyond the work of 

Gode and Sunder, the results must be shown to be robust 

over different activation schemes. Thus, if agent-based 

researchers are to meet the standard of other sciences and 

work on replicating one another’s experimental results, 

then reports of their results must include the activation 

scheme used in the model.  
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