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Abstract—In dyadic models of indirect reciprocity, the re-
ceivers’ history of giving has a significant impact on the donor’s
decision. When the interaction involves more than two agents
things become more complicated, and in large groups cooperation
can hardly emerge. In this work we use a Public Goods Game
to investigate whether publicly available reputation scores may
support the evolution of cooperation and whether this is affected
by the kind of network structure adopted. Moreover, if agents
interact on a bipartite graph with partner selection cooperation
can thrive in large groups and in a small amount of time.
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I. INTRODUCTION

Two neighbors may agree to drain a meadow, which they

possess in common: because it is easy for them to know

each other’s mind; and each must perceive that the immediate

consequence of his failing in his part, is the abandoning of the

whole project. But it is very difficult, and indeed impossible,

that a thousand persons should agree in any such action; it

being difficult for them to concert so complicated a design,

and still more difficult for them to execute it; while each seeks

a pretext to free himself of the trouble and expense, and would

lay the whole burden on the others.

David Hume, A Treatise of Human Nature (London: J. M.

Dent, 1952, II, p.239) - From reference [1].

Humans show levels of cooperation among non-kin that are

unparalleled among other species. This difference becomes

striking when facing social dilemmas, i.e., situations in which

cooperation is hard to achieve because the best move for an

individual does not produce the best outcome for the group.

Public goods games (PGG) represent a clear exemplification of

this conflict between individual incentives and social welfare.

If everybody contributes to the public good, cooperation is

the social optimum, but free-riding on others’ contributions

represents the most rewarding option.

If norms, conventions and societal regulations have been

proven effective in preventing the collapse of public goods

(for a review, see [2], [3]), when individuals are faced with

unknown strangers, with little or no opportunities for future

re-encounters, cooperation easily collapses, unless punishment

for non-cooperators is provided [4]. An alternative solution

is represented by reputation, through which cheaters can be

easily identified and avoided [5], [6]. Indirect reciprocity

supported by reputation [7] can be one of the mechanisms

explaining the evolution of cooperation in humans [8], espe-

cially in large groups of unrelated strangers who can, through

language, actively communicate about their past experiences

with cheaters [9].

As such, gossip may effectively bypass the “second-order

free-rider problem”, wherein the costs associated with solving

one social dilemma produces a new one [10], [11]. This is

the case of punishment: cooperators who do not sustain the

costs of punishment are better off than cooperators who also

punish. Therefore this solution to social dilemmas itself entails

a social dilemma, whereas gossip, being essentially free should

not imply such a second-order free-rider problem. In addition

to costly punishment and reputation, ostracism of free-riders

may represent a third solution. However, the direct effect

of ostracizing a member is that the group size decreases,

which automatically reduces maximal contribution levels to

the public good for all remaining periods. Maier-Rigaud

and colleagues show that in the lab PGG with ostracism

opportunities increases contribution levels and contrary to

monetary punishment, also has a significant positive effect on

net earnings [12].

Models of indirect reciprocity usually take into account

dyadic interactions [5], or group interactions in a mutual aid

game [13], in which providing help has a cost for the helper but

it also increases her image score, i.e., a publicly visible record

of her reputation. Image score increases or decreases according

to individuals’ past behaviors, thus providing a reliable way

to discriminate between cheaters and cooperative players.

Both in computer simulations [5], and in lab experiments

with humans [14], cooperation can emerge and be maintained

through image score.

When individuals facing a social dilemma can know other

players’ image score, cooperation can emerge in small groups,

as showed by Suzuki and Akiyama [15]. In their work,
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cooperation can emerge and be maintained for groups of

four individuals; though, when group size increases there is a

concomitant decrease in the frequency of cooperation. The au-

thors explain this decline as due to the difficulty of observing

reputations of many individuals in large communities. This can

be true in unstructured communities, but this rarely happens

in human societies, characterized by interaction networks.

To account for the role of societal structure, we designed a

PGG in which players’ interactions depend on the kind of

network and on the possibility of actively choosing a subset

of group members. More specifically, we compare cooperation

levels among agents placed on a small-world network [16],

defined by short average path lengths and high clustering, to

the performance of agents on a bi-partite graph [17], [18].

The latter is generally used to model relations between two

different classes of objects, like affiliation networks linking

members and the groups they belong to. This structure is

especially interesting for us because it is especially suited

for partner selection, as it happens when a club refuses

membership to a potential associate.

Here, we are interested in exploring the effect of network

structure on the emergence of cooperation in a PGG. We

compare two different network topologies and we show that

reputation-based partner choice on a bi-partite graph can make

cooperation thrive also in large groups of agents. We also show

that this effect is robust to number of generations, group size

and total number of agents in the system.

II. THE MODEL

We consider a population of N individuals. In each round

of the game, g agents are picked up at random to play a

PGG among themselves. Players can cooperate contributing

with a cost c to a common pot, or can defect withouth

paying anything. Then, the total amount collected in the pot

is multiplied for a benefit b and equally distributed among all

the group members, without taking into account individual

contributions. At the end of each interaction, cooperators’

payoffs equals (ib/g−1)c, whereas defectors’ payoffs is ibc/g.

At the collective level, the best outcome is achieved when

everyone cooperates, but cheaters are better off, because de-

fection permits to avoid a loss when the number of cooperators

is lower than gc/b.
Among the many solutions offered [4], Suzuki and

Akiyama [15] designed a modified PGG in which agents can

identify cheaters thanks to the so-called image score [5],

[19]. The basic features of our model are the same of the

one by Suzuki and Akiyama: in particular, each player i
is characterized by two integer variables: the image score

si ∈ [−Smax, Smax] and the strategy ki ∈ [−Smax, Smax+1],
being Smax ≥ 0 a parameter of the model. When selected

to play a round of the game, an individual cooperates if the

average image score 〈s〉g of its opponent is equal to or higher

than its own strategy ki, otherwise it will not contribute. At

the end of the round, the image score of the player is increased

by 1 in case of cooperation, otherwise it is decreased by the

same quantity. In any case, si remains in the allowed interval

[−Smax, Smax]. At the initial stage, all the image scores and

fitness levels are set to zero, whilst the strategies are randomly

distributed among the individuals.

The image score is intended to give a quantitative evaluation

of the public reputation of an individual in the scope of indirect

reciprocity: if contributing once is rewarded by future con-

tributions by others individuals, then any cooperative action

must be recognized and considered positively by the entire

population; on the other hand, the variability of the strategies

describes the different attitudes and expectations of the single

agents [5].

After m rounds, reproduction takes place. Again, we ap-

ply the same evolutionary algorithm used by Suzuki and

Akiyama [15]. For N times we select at random a pair of

individuals and with probability P we create a new individual

inheriting the strategy of the parent with the highest fitness.

Then parents are put again in the population, and offspring

is stored in another pool. When this selection process has

happened N times, the old population is deleted and replaced

with the offspring. It is worth noticing that offspring inherit

only the parents’ strategy, while their image score and fitness

is set equal to zero. Finally, we repeat all the procedure (m
rounds followed by the reproduction stage), for an adequate

number of generations. The simulation lasts until the system

reaches a final (steady or frozen) configuration.

For sake of clarity, we observe that strategies defined as

(k ≤ 0) are the more “cooperation prone”, with the limit case

of k = −Smax which is an unconditional cooperator, while

the positive ones are the “cooperation averse” strategies, with

the limit case of k = Smax representing an inflexible defector.

Moving from the model described above, we are interested

in testing whether two different network structures can pro-

mote cooperation for different group size and what effects

partner selection can have in such an environment.

III. RESULTS

A. Robustness of Suziki’s and Akiyama’s results

Suzuki and Akiyama tested their model for a given set of

parameters with the following values: N = 200, c = 1, b =
0.85g, Smax = 5, m = 800. Their results show that a

cooperative strategy can evolve and invade a population when

group size g is small, but it does not survive when groups are

large. For medium-sized communities, a coexistence between

cooperators and defectors is possible.

The first step of our study is a check of the robustness of

Suzuki and Akiyama results with respect to the values of the

model parameters. A check of the role of m and N is reported

already in [15]: it is claimed that the outcome is not relevantly
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influenced by the value of these two quantities, so we focus

here on b, P and Smax.

The role of b in the PGG is quite clear in literature. Nor-

mally it is set to 3 independently from the group size. Using

this value, we found that the final cooperation level decreases

sharply as g increases, as shown in Fig. 1. The slower decrease

in Suzuki’s and Akiyama’s model can be explained by the

fact that being b proportional to the group size the number of

contributors needed in order to make cooperation convenient

remains constant in g instead of decreasing with it. On the

other hand, even though less dramatic, the decrease is anyway

observed, indicating that the negative effect of large groups

on cooperation is stronger and it might depend on the PGG

dynamics.

Concerning the behaviour of the model as a function of the

parameter P , we tested three different values: P = 0.9 as

in [15], P = 0.75 and P = 1.0. As it can be easily seen

in Fig. 2, there is no fundamental difference due to the exact

value of this parameter.

Finally, changing the value of Smax, we see that up to

Smax ≃ 15, the behaviour of the system is rather homoge-

neous, as shown in Fig. 3.

Our results show that the behaviour of the model is actually

robust for a large range of the paramenters at stake, thus

replicating Suzuky and Akiyama’s results.

B. Small-world networks

In order to enlarge the scope of the model, we inserted

network structure in it, thus introducing some adaptations

of the original model. The first change we made was in

the mechanism of assortment. In the original model, every

player had the same probability to interact with every other

agent, therefore the population is placed on a totally connected

graph (CG). This configuration is rather unrealistic, especially

when we consider groups bigger than a given size. It is then

interesting to test the model behaviour over more realistic,

even though still abstract, networks. The first example we

take under consideration is the so-called small-world network

(SWN), as conceived by Watts and Strogatz in [16]. In short,

a SWN, is a regular ring with few short-cuts linking originally

far away nodes. It is constructed as shown in Fig. 4: we start

from a ring where each node is connected with 2k nearest

neighbours. Then, with probability p, each link is rewired (one

of the node is left fixed, the other is changed), so that it finally

leads to the creation of a network with pNk short-cuts. As

shown in reference [16], for 1/Nk < p < 1/10 the network

shows the typical small-world effect: even though at local

level the system behaves as a regular lattice, i.e., an individual

placed in a SWN cannot distinguish the network from a regular

one just watching his/her neighbours, at a global level the

average distance between two randomly selected individuals

is very low (proportional to the logarithm of the system size),

unlike the regular case.

Fig. 4. Construction of SWN according Watts-Strogatz procedure. From
reference [16].

In order to make the model work with this topology, we

had to adapt the model dynamics to the specific situation.

In particular, instead of extract g agents at each round, we

picked up a single player at each round and g − 1 of its

neighbours. In order to be sure that each individual had at

least g − 1 neighbours, we set k = g − 1. Moreover, at the

end of each generation, the offspring was randomly placed

on the preexistent network, which is defined at the beginning

and does not change until the end of the simulation. Anyway,

averaging over different realizations, each one has its own

networks, so that the averages are also over the topology.

In Fig. 5, Fig. 6 and Fig. 7 we see cooperation levels

for three different values of g, each one corresponding to

a different size of the system. Actually, apart for the case

g = 2, there is a not trivial dependence on the system

size. In particular, the dynamics is always driving the system

towards the achievement of complete cooperation, even if the

timing is different: full cooperation is achieved fastly with

small values of g and N , whereas it slowes down when both

group and system sizes increase. Indeed, with g = 10 and

N = 800, 1600 total cooperation cannot be achieved even

with 105 generations, even if it is possible to anticipate the

increase of the cooperation level towards the highest point.

Moreover, it is remarkable how for g ≥ 4 a plateau of high

but not total cooperation appears. Our results show that the

dynamic in itself makes full cooperation possible, but for

bigger populations the time needed to reach it is so long that

practically we see a coexistence between the two kinds of

behaviour for a long time.

C. Bipartite graphs

Another topological configuration that accounts better for

the complexity of real interactions among individuals is

the so-called bipartite graph (BG) [17], [18]. A bipartite

representation contains two types of nodes denoting agents

and groups, respectively. It implies that connections can be

established only between nodes of different types and no

direct connection among individuals is allowed. Thus, such

a bipartite representation preserves the information about the

group structure: if two individuals belong to the same three

groups, they are “more” connected than two other individuals

who are members of the same group. These two pairs would

be equally represented in the classical one-mode projected
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Fig. 1. Behaviour of the final frequency of cooperative actions as a function of the group size g. All the parameters are the same of reference [15], except
b = 3. Each point averaged over 1000 realizations.

1 10 100 1000 10000

generations

0,5

0,6

0,7

0,8

0,9

1

co
o
p
er

at
io

n
 f

re
q
u
en

cy

g=4; P=0.75

g=4; P=0.9 

g=4; P=1.0

g=20; P=0.75

g=20;P=0.9 

g=20; P=1.0

Fig. 2. Behaviour of the frequency of cooperative actions as a function of the number of generations for three different values of P : 0.75, 0.90 and 1.0.
The remaining parameters are the same of reference [15]. Each curve averaged over 1000 realizations.
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Fig. 3. Behaviour of the final frequency of cooperative actions as a function of Smax. The remaining parameters are the same of reference [15], the vertical
line for Smax = 5 specifies the value utilized in reference [15]. Each point averaged over 1000 realizations.
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Fig. 5. Behaviour of the frequency of cooperative actions in a SWN with p = 0.05 as a function of the number of generations for g = 2 and different
values of N (from top to bottom: 100, 200, 400, 800 and 1600). The remaining parameters are the same of reference [15]. Each curve averaged over more
than 1000 realizations.
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Fig. 6. Behaviour of the frequency of cooperative actions in a SWN with p = 0.05 as a function of the number of generations for g = 4 and different
values of N (100, 400 and 1600). The remaining parameters are the same of reference [15]. Each curve averaged over more than 1000 realizations.
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Fig. 7. Behaviour of the frequency of cooperative actions in a SWN with p = 0.05 as a function of the number of generations for g = 10 and different
values of N (100, 400 and 1600). The remaining parameters are the same of reference [15]. Each curve averaged over more than 1000 realizations.
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Fig. 8. Structure of a bipartite graph compared with a classical network.
From reference [18].

network, while with the bipartite graph this mesoscopic level

of interactions is better depicted, as illustrated in Fig. 8.

Also in this case we adapted the original dynamics of the

model to make it work on this kind of network. In particular,

the graph has N individuals distributed into M groups, each

group composed of g members. At the beginning of each

round, the network is built in this way: given F ∈ (0, 1), we

set gF initial members for each groups so that each individual

belongs exclusively to one group. For instance, if N = 150,

g = 20 and F = 0.75 (then M = 10), at this stage we would

have 15 agents in the first group, other 15 in the second one

and so on until the last 15 in the tenth group. Then, each group

must be completed choosing (1−F )g = 5 individuals from the

pool of those which do not belong to the group already. This

can be accomplished in two different ways: first, by randomly

picking (1 − F )g agents among the rest of the population;

second, by selecting them according to their reputation, i.e.,

their image scores.

When partner selection is available, an external player is

randomly selected by the group, but accepted only if its image

score is positive. Only if there is no player in the whole

population with good reputation, a candidate with negative

image score is accepted in the group. Alternative ways of

implementing partner selection were tested, like for example,

accepting candidates with image score equal or larger than the

average strategy of the initial member of the group, but this

did not produce any appreciable effects on the outcome of

the simulations. Once the network is completely defined, each

group plays a round of the game, with the same rules work-

ing on CG and SWN. The procedure (network construction

followed by a round of the game of each group) is repeated

10 times, then the evolution process takes place as previously

described.

In Fig. 9 and Fig. 10 we show the behaviour of the model for

N = 200 (or the closest integer compatible with the remaining

parameters), F = 0.75, with the other parameters equal to the

ones utilized by Suzuki and Akiyama [15].

Our results show that the final cooperation level is lower

here then in the CG case if the added members of the

groups are selected at random. However, when reputation-

based partner selection is available in a population distributed

on a bipartite graph, full cooperation is achieved in a very

short amount of time (about ten generations), and this is true

also for large groups (g = 20 in figure). This result does not

depend on F : even when partner selection is restricted to a

small percentage of agents, it can favour the invasion of the

cooperative strategies throughout the system. This effect can

be explained by the fact that, in general, in PGG it is better

for individuals to get involved in as many groups as possible

in order to maximize their income [20]. However, if this is

not linked to a reputation-based partner selection mechanism,

defection is still very profitable and cooperators are driven out

of the system. On the contrary, if reputation is used to select

group members, having a positive image score has a positive

effect on fitness.

D. Final strategy distributions

In the model by Nowak and Sigmund [5], [19], based on the

same image score mechanism, when the system ends up in a

final configuration of complete cooperation, the only surviving

strategy is usually k = 0, that is, the “winning” strategy is a

rather moderately generous one. A similar behaviour appears

with our model in CG and SW topologies.

On the other hand, when working on BG topology, the

final system configuration, always totally cooperative, presents

all the negative strategies, i.e. the more cooperative ones, as

shown in Fig. 11. This means that taking into account more

carefully the real properties of the social interactions among

idividuals not only enhances cooperation rates throughout the

whole population, but it allows allows the most generous and

altruistic strategies to survive.

IV. DISCUSSION

In a PGG in which the history of agents’ past interactions is

publicly available as an image score, cooperation can emerge

and be maintained for small groups of agents. When we move

from a mean-field situation to a small-world network, we

observe that cooperation becomes stable after one hundred

generations and for g = 4. The real improvement is achieved

thanks to the introduction of a partner choice mechanism on a

bi-partite graph, where if a small percentage of group members

are chosen on the basis of their reputations, cooperation can

thrive.

In a social dilemma the introduction of a reputation mecha-

nism for partner selection on a bipartite graph makes deception

unprofitable, thus cooperators can thrive. In such an envi-

ronment, agents with a positive reputation are more socially

desirable, thus they can enter several groups in which their

contributions help to achieve the social optimum. On the other

hand, defectors with negative reputations are actively avoided,

thus driving them to complete extinction after ten generations.

Even more striking is the fact that, unlike other models [15],

[21], full cooperation is maintained even when group size

increases.
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Fig. 9. Behaviour of the frequency of cooperative actions in a BG with as a function of the number of generations for g = 4, and F = 0.75. The remaining
parameters are the same of reference [15]. Each curve averaged over 1000 realizations.
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Fig. 10. Behaviour of the frequency of cooperative actions in a BG with as a function of the number of generations for g = 20 and F = 0.75. The
remaining parameters are the same of reference [15]. Each curve averaged over 1000 realizations.
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Fig. 11. Final (relative) strategy abundance for a system on BG, same system of Fig. 9 (g = 4) with reputation-based choice of the added members of each
group. Values averaged over 1000 realizations.
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V. CONCLUSIONS AND PERSPECTIVES

The puzzle of the evolution of cooperation in humans can be

successfully addressed if we take into account features of hu-

man societies that could have paved the way for the emergence

of cooperative behaviors, like social networks and reputation.

Moving from a replication of Suzuky and Akiyama [15] we

showed that cooperation can emerge and be maintained in

groups of agents playing a PGG on a network. We used two

network topologies with different groups and total population

sizes, finding interesting differences especially in terms of the

maximum level of cooperation achieved. Our results show that

when partner selection is available in an affiliative network,

cooperation can be easily reached even in large groups and

for large system size.

The importance of social institutions [2] and informal social

control [6], [22] is well known to social scientists who, like

Ellickson [23], have stressed the importance of these features:

“A close-knit group has been defined as a social network

whose members have credible and reciprocal prospects for

the application of power against one another and a good

supply of information on past and present internal events

[. . . ]. The hypothesis predicts that departures from conditions

of reciprocal power, ready sanctioning opportunities, and

adequate information are likely to impair the emergence of

welfare-maximizing norms” (p. 181).

Introducing a small world network does not alter the dy-

namics of cooperation in a PGG in a fundamental way, and

this is also true for a bipartite graph with random partner

selection. However, when we model the world as made of

groups that can actively select at least one of their members,

cooperators outperform free-riders in an easy and fast way.

The evolutionary dynamics of our model can be linked to

a proximate explanation of psychological mechanisms for

ostracism and social exclusion, two dreadful outcomes for

human beings [24], [25]. In large groups of unrelated indi-

viduals, direct observation is not possible, and usually records

of an individual’s past behaviors are not freely and publicly

available. What is abundant and costless is gossip, i.e., reported

information about others’ past actions, that can be used to

avoid free-riders, either by refusing to interact with them,

or joining another crew in which free-riders are supposedly

absent. For this reasons we plan to run simulations in which

agents will be able to report private information about their

past experiences, thus overcoming the unrealistic limitations

posed by image score. We posit that the combination of a bi-

partite graph social structure and gossip like exchanges will

mimic human societies better and will provide useful insights

about the evolution of cooperation in humans.
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