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Abstract

In this thesis we study constraining cosmology when combining spectro-
scopic and photometric galaxy survey. The photometric survey measures
galaxy shape distortions from Weak Lensing (WL), while high precision
redshift information makes spectroscopic surveys ideal for redshift space
distortions (RSD). The combined analysis is performed entirely in angular-
correlation functions, which simplifies the joined analysis, in particular the
inclusion of covariance between then.

The first chapter introduce a novel algorithm for efficiently calculating
the cross-correlations of multiple tracers (i.e. galaxy types/luminosities)
and including WL in narrow redshift bin cross-correlations. Estimating the
angular-correlations function is in particular demanding since the number
for cross-correlations increase O(n2) with n being the number of redshift
bins.

Later the chapter study the effect of Limber approximation and RSD
on the modeling of auto- and cross-correlations. For thin redshift bins, the
Limber approximation completely breaks down and does not allow cross-
correlations between redshift bins. Decreasing the bin width increases the
amplitude of the galaxy correlations and the effect of RSD, which will benefit
the cosmological constraints. One interesting trend is the baryon acoustic
oscillation (BAO) contribution in the cross-correlations of redshift bins. The
redshift separations between two bins reduce small-scale clustering, hence
increasing the BAO contrast. We also study the signal-to-noise of different
cross-correlations.

The second chapter forecast the constraints on the cosmic expansion and
growth history, using two fiducial 14000 sq deg. spectroscopic and photo-
metric galaxy surveys. Overlapping surveys (same sky) has improved con-
straints from additional cross-correlations and sample variance cancellations
(covariance in multiple tracers). We study first separate how redshift bin
width, RSD, BAO and WL affect the forecast. We find gains equivalent to
30% larger areas when using overlapping surveys. Last, we discuss the origen
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of this moderate gain in the context of existing literature. Different groups
reports either none or high benefits for overlapping galaxy surveys. We sug-
gest the covariance between surveys and different same-sky definitions (i.e.
different observables) can explain the differences.

Galaxy bias relate the galaxy overdensities to the underlying matter
fluctuations, and the uncertainty in galaxy bias strongly affects the forecast.
We therefore investigate in detail how cross-correlations, RSD, BAO and
WL affects constraints on galaxy bias. Overlapping surveys in particular
increase constraint on the bias from the photometric sample. Last section
quantify the benefit of priors and the effect of bias stochasticity. The impact
of uncertainties in bias stochasticity is less for overlapping surveys.



Resumen

En esta tesis se estudia el acotamiento en los paraámetros cosmoloǵıa al com-
binar observaciones en catálogos de galaxias espectroscópicas y fotométricos.
Los catálogos fotométricos miden las distorsiones de lente gravitacional débil
(WL), mientras que los catalogos espectroscópicos, con más alta precisión
en la información de redshift (o corriento al rojo), son ideales para el estu-
dio de distorsiones espaciales de redshift (RSD). El análisis combinado se
realiza únicamente com funciones de correlación angular, lo que simplifica
el estudio, en particular en lo que respecta a la inclusión de la covarianza
entre observables.

El primer caṕıtulo presenta un nuevo algoritmo para el cálculo eficaz de
las correlaciones cruzadas de varios marcadores, incluidos WL en correla-
ciones cruzadas con bines estrechos. Estimar la función de correlación angu-
lar es particularmente costoso dado que el número de correlaciones cruzadas
aumenta como O(n2), donde n es el número de bines en redshift.

Más adelante, el caṕıtulo estudia el efecto de aproximación de Limber, y
RSD en el modelado de correlaciones auto y cruzadas. Para bines de redshift
delgados, la aproximación de Limber deja de funcionar y no permite incorpo-
rar las correlaciones cruzadas. Al disminuir el ancho de los bines en redshift,
crece la amplitude de correlacion y el efecto de RSD, lo que redundará en
beneficio del acotamiento de parametros cosmológicos. Una tendencia in-
teresante es la contribución de las oscilaciones acústicas de bariones (BAO)
en la correlacion cruzadas entre bines de distitnto redshift. La separacion
en redshift entre dos bines reduce la amplitud de las correlaciones en escalas
pequeñas, lo que aumenta el contraste en el BAO. También estudiamos la
relación seal-ruido de diferentes correlaciones cruzadas.

El segundo Caṕıtulo presenta un pronóstico de cotas en la historia de
la expansión y del crecimiento cósmico, usando un catalogo spectroscópico
y otro fotométrico ficticios de 14000 grados cuadrados cada uno. Cuando
estos catalogos se sobrelapan en la misma region del cielo, encontramos
mejores cotas en los parametros cosmológicos. Esto es debido a las cor-
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relaciones cruzadas adicionales entre catálogos y la reducción de la varianza
en el muestreo (debida a la covarianza entre trazadores). En primer lugar
mostramos un estudio por separado de la dependencia en el ancho de bin en
redshift, en RSD, en BAO y en WL. Encontramos ganancias equivalentes
a tener el 30% mas de área en los catalogos cuando estos se superponen
en el cielo. Por último, analizamos el origen de esta moderada ganancia
en el contexto de la literatura existente. Diferentes grupos han reportado
que al solapar los catalogos o bien no encuentran ningún beneficio o bien
encuentran grandes beneficios. Nosotros sugerimos que la covarianza entre
observables y el uso de diferentes observables puede explicar estas diferen-
cias.

El sesgo (bias) en galaxias, relaciona las sobredensidades de galaxias con
las del campo de fluctuaciones de materia, de manera que la incertidumbre
en el bias limita las predicciones. Por ello investigamos con detalle como
las correlaciones cruzadas, RSD, BAO y WL afectan las medidas del bias
en galaxias. En particular, cuando los catalogos sobrelapan disminuyen los
errores en el bias para la muestras fotométrica. La última seccion cuantifica
los beneficios de los “priors” y los efectos de la estocasticidad en el bias. El
impacto de las incertidumbres en las estocasticidad es menor cuando hay
sobrelapamiento.
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Chapter 1

Introduction

The last century and especially the last decades changed our knowledge of
the evolution of the universe. Einstein introduced general relativity (GR)
in 1915, which fundamentally changed the theory on how space and matter
relate. Space was no longer a static coordinate system for particles and mat-
ter to exist. Matter can shape space and space determines the trajectories
of particles. The work of [43, 44, 73] derive the evolution of the Universe
geometry from general relativity assuming the Universe is spatial homoge-
neous and isotropic. At first the Universe was assumed static, motivating
the introduction of a cosmological constant (Λ). Later Hubble (in 1929) ob-
served an expanding Universe. As a consequence, the cosmological constant
was no longer needed.

In 1998 two observational groups discovered an acceleration of the Uni-
verse using distant Super Novae type Ia (SN Ia) as standard candles [97,
105, 96]. Because of several previous indications (e.g. see [131, 37, 85] and
references therein) the astronomical community already expected an addi-
tional energy component, and after the WMAP data [121] the accelerated
expansion was quickly accepted. Today ΛCDM , the commonly accepted
standard model of cosmology, consist of a cosmological constaint with cold
dark matter (CDM), needed to explain structure formation and cluster dy-
namics [134, 119, 39].

Observational constraints on cosmological models using the Cosmic Mi-
crowave Background (CMB) [32, 120, 121, 70, 98, 99, 100], Large Scale
Structure (LSS) [126, 28, 103], Redshift Space Distortions (RSD) [14] and
Clusters (see review article [130] and refrences therein) shows a remarkable
agreement to ΛCDM. The Planck CMB measurements [100] already con-
strain Ωm to 3 percent level. Further, General Relativity combined with
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2 CHAPTER 1. INTRODUCTION

physical understanding of CMB, Galaxy clusters and Galaxy formation al-
lows the detection of anticipated observational features like the Integrated
Sachs Wolfe effect [41, 60], Sunyaev Zel’dovich effect (SZ [123]) CMB lens-
ing [101] and one observe the BAO peaks in the CMB [62]. Therefore the
ΛCDM is both contraints from different probes and provide a consistent
picture of the Universe.

Introducing the cosmological constant is motivated from observations.
Instead of a cosmological constant one can introduce a previously unde-
tected energy, the dark energy or modify general relativity. The problem is
perhaps even more profound and a theoretical understanding of dark energy
could emerge during the next years, decades or even futher in the future. In
the observational side, the discovery motivated funding large observational
programs, such as the dark energy survey (DES). Over five years DES will
photograph one eight of the sky and detecting more than 200 million galax-
ies in several broad band filters. The increased precision could potentially
discard a cosmological constant. Nature has surprised scientists before and
while many only expect observations the next years to confirm ΛCMB, the
answer is still awaiting.

A cosmological model predicts how the Universe expands and, from that,
how matter overdensities grow with time. When fitting a model, adjusting
parameters can tune a model to fit either the expansion history or the growth
history, but is harder to fit both simultaniously. Since GR relates the ex-
pansion and growth history, measuring both test for modifications of gravity
[23, 84, 28, 104, 132]. Weak lensing (WL) from a photometric survey and
redshift space distortions (RSD) from a spectroscopic survey, respectively
measure well the exspansion and growth history. In this thesis, we focus on
how to combine Weak gravitational Lensing and Redshift Space Distortions.

PAUcam is an astronomical camera, with 40 narrow and 6 broad bands,
aiming to start observing spring 2014. Providing the science forcast and
studying the impact of filter configurations was the beginning of this thesis.
From the narrow and broad band photo-z the expected photo-z performace
is σz = 0.0035(1 + z) for iAB < 22.5, which allows measuring RSD. And
since the broad band reaches deeper for the same exposure, there is also a
sample 22.5 < iAB < 24.1 with larger σz suitable for weak lensing. The
PAU survey therefore is effectively an overlapping pseudo-spectroscopic and
photometric survey. Overlapping surveys benefit from cross-correlating the
samples and sample variance cancelations (cite). This thesis also quantify
the benefit of overlapping surveys.

Two common estimators are the angular-correlations and the 3D power
spectrum, respectively often used for photometric and spectroscopic surveys.
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For non-overlapping surveys, the data can be analyzed separately in angular
correlations and power spectrum before combining the constraints. The
overlapping surveys require including both cross-correlations of photometric
and spectroscopic galaxies and the cross-correlations between the surveys.
Using either a 2D or 3D would simplify the combination. The 3D power
spectum capture the accurate redshift information, but require assuming
a fiducial cosmology when converting distances. Recently [6] showed a 2D
analysis in narrow redshift bins capture the bulk of the information. This
thesis study combining a photometric and spectroscopic survey using the
2D formalism.

In chaper 2.1 we first summarize the 2D correlation-function theory and
introduce a new effecient algorithm to calculate the cross-correlations. Then
the chapter quantify the effect of the Limber approximation, RSD and BAO
in the auto and cross-correlation between close near reshift bins. The last
section study the signal-to-noise, discussing in particular the effect of using
narrow redshift bins.

Chapter 3.1 present the fiducial galaxy samples, forecast assumptions,
the Fisher matrix formalism and defines the Figures of Merit (FoM). The
paper then study how redshift binning, different cross-correlations, RSD
and BAO contributes to the forecast. Next section focus on the benefit of
overlapping surveys, before the last discuss the existing litterature.

Chapter 4.1 detailes study the effect of galaxy bias. First a theory
section present the bias derivative formulas, bias distance priors and a simple
bias stochasticity model. Next section study errors on the galaxy bias, effect
of marginalizing over cosmology and in particular for overlapping galaxy
surveys. A section then changes the bias amplitude, to see the impact on
bias errors and the forests. In the last section, we first study how bias priors
and priors on bias evolution, before seeing how bias stochasticity affects the
forecast.
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Chapter 2

Algorithm and modeling

2.1 Introduction

Galaxy surveys provide data for constraining cosmological models. In the
next year and decades, the constrains will improve from current and up-
coming surveys. The completed CFHTls survey (stage-II) measured shear
[cfhtls1, 58, 48] in the wide fields 155 sq deg. to i < 24.5. The dark energy
survey has completed the science verification phase and plan observing 5000
sq deg to i < 24.1 over the next five year. Another ongoing survey is KIDS,
which aim to map 1500 sq. deg in four filters. In the next decade the EU-
CLID [71, 4, 5] and LSST [63, 83] surveys (stage-IV) will provide the next
generation of deep lensing surveys, both covering around 15000 sq. deg.

For spectroscopic surveys, the Wiggle-Z [93] measured almost 240000
galaxies over 1000 sq. degrees in the redshift range 0.2 < z < 1.0. The BOSS
survey mapped the redshift of 1.5 million galaxy to z ≈ 0.7 in 10000 sq.deg.
A stage IV spectroscopic survey is DESI[77], which merged the previous
BigBoss [107, 106] and DESpec [1] collaborations. Expected starting in
2018 at Mayall telescope, DESI aim at measuring RSD and BAO through
targeting 20 million galaxies in between 14000 to 18000 sq.deg. Also, a new
generation of narrow band cosmological surveys will start the next years.
Through using 40 narrow band filter, e.g. the PAU survey [10] will achieve a
high accuracy photo-z for iAB < 22.5. The PAUcam [19] in addition contains
u,g,r,i,z filters, so the survey provide a deep photometric (iAB < 24.1) over
the same area.

How does overlapping photometric and spectroscopic survey change the
constraint on dark energy and modified gravity? A photometric survey is
with imaging ideal for weak lensing, while redshift space distortions and
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6 CHAPTER 2. ALGORITHM AND MODELING

BAO benefit from accurate redshifts from spectroscopy. Combining the
spectroscopic and photometric surveys brings additional benefit. Two over-
lapping surveys allows cross-correlation of data, e.g. the foreground spec-
troscopic galaxies with the background shear. Further, the overdensities
in both surveys trace the same underlying matter which allows for sample
variance cancellations.

Several groups, including the authors, have investigated the effect of
overlapping galaxy surveys [13, 51, 18, 68, 40, 30]. The conclusions vary
between essentially no and large benefits. This thesis is follow up the previ-
ous paper [51], where studied overlapping galaxy surveys by combining a 3D
P (k) and Cl estimators for respectively the spectroscopic and photometric
surveys. To simplify the combination and to avoid assuming a cosmology,
both surveys are analyzed using angular cross-correlations.

The photometric surveys allows measuring galaxy shapes, which are
gravitationally lensed direct by the underlying dark matter distribution.
While galaxy shapes are intrinsically correlated due to the environment [59,
20] and measuring shapes are difficult [113, 129, 89, 69], weak lensing is po-
tentially the most powerful probe in the next decade [2]. The broad lensing
kernel reduce the importance of radial information and broad band photo-z
is sufficient for measuring weak lensing. For analyzing the data, the angular
correlation in broad bins recover most of the information.

Spectroscopic surveys accurately measure galaxy redshifts through tar-
geting galaxies with fibers. The spectroscopic surveys achieve the excellent
redshift information on the expense of lower densities, no shape measure-
ments and potential biases from the target selection. Matter overdensities
attracts galaxies, causing a shift in redshift along the line of sight, the linear
redshift space distortions. Second, the power spectrum contains a char-
acteristic peak around 150 Mpc, caused from acoustic waves in the early
Universe. The RSD and BAO effects are visible in photometric survey, but
benefit greatly from high accuracy redshifts. Traditionally spectroscopic
surveys are analyzed using a power spectrum approach to benefit from the
high resolution in redshift.

Angular correlations are constructed from sky positions (ra, dec), galaxy
shapes and redshifts. The shape and redshift can be determined without as-
sumptions on cosmology. To estimate the power spectrum, one need to
convert sky position and redshift into distances. Distances on cosmological
scales depends on the cosmological model and parameter values. Construct-
ing the power spectrum therefore require assuming a cosmological model
and parameters before the measurement. Assuming the cosmology when
measuring the power spectrum later require the uncertainties through the
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AP-effect [3, 117]. The angular correlations has the advantage of needing
no assumptions on cosmology.

The redshift bin projection in angular correlation remove the radial in-
formation in angular correlations. Recently [6] showed using narrow redshift
bins, the angular correlations recover the bulk of available galaxy clustering
information in the power spectrum. Analyzing two separate spectroscopic
and photometric surveys, the spectroscopic survey could measure the power
spectrum and the photometric survey the angular correlation function [51].
This thesis study improvements from combining spectroscopic and photo-
metric over the same area. Two problems when combining the surveys
including the covariance between surveys and not over-counting the infor-
mation. Using the 2D angular correlations naturally solve these problems.

Section 2.3 discusses the numerical implementation of the equations for
evaluating the angular correlations. The computational time is especially
important for parameter constraints, which often require 105 to 106 sample
points in the parameter space. Including the RSD and lensing for many thin
redshift bins are computationally challenging, especially when also including
multiple galaxy populations, different measurements and finally the cross
correlations between all of them. Further subsection 2.3.7 discuss partial
calculations as a method for evaluating the results.

In section 2.4 we study the effect of Limber approximation, BAO, RSD
and redshift bin width on the auto and cross-correlations. Last subsection
focus on the expected error bars. Analyzing the spectroscopic sample require
narrow redshift bins to capture the radial information. The thin redshift has
a large impact on the amplitude, effect of RSD and impact of BAO for both
auto and cross-correlations. Understanding these are essential to interpret
the forecast in chapter 3.1and 4.1. Especially we note the BAO signal is
stronger than expected in cross-correlations between redshift bins. Last
subsection focus on the expected error bars.

2.2 Angular correlation function

2.2.1 Theoretical angular correlation in Fourier space.

The observable considered are galaxy number counts and galaxy shapes.
Galaxy overdensities are both an intrinsic quantity, affected by redshift space
distortions and graviationally lensed. Galaxy shapes have an intrinsic com-
ponent in addition to the most important contribution which is lensing.
These contributions can be written as
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δ = δIntrinsic + δRSD + δLens (2.1)

This subsection will first describe the intrinsic correlations and redshift space
distortions are the important contributions for the number counts and then
the lensing contribution. Calculation of the intrinsic correlations and the
contribution of redshift space distortions are described in [92]. Following the
notation of [26] the angular correlation in Fourier space can be calculated
by

Cl =
1

2π2

∫
4πk2dkP (k)ψ2

l (k) (2.2)

in the linear regime where the kernel is

ψl(k) =

∫
dzφ(z)D(z)b(z, k)jl(kr(z)) (2.3)

Here P (k) is the power spectrum of the underlying dark matter distribution,
ψ(z) is the galaxy selection function, D(z) is the growth of structure and jl
the spherical Bessel function. Galaxy overdensities are related to the matter
overdensities through the relation

δg(z, k) = D(z)b(z, k)δm(z, k) (2.4)

where δg and δm are the galaxy and matter overdensities. Details of the
galaxy bias are discussed in chapter 4.1. Including redshift space distortions
adds an additional contribution

ψl(k) = ψl(k)
real + f(z)ψl(k)

RSD (2.5)

to the real space contribution. The RSD term (Kaiser effect [67, 54] is given
by

ψRSD
l (k) =

∫
dzf(z)φ(z)D(z)[L0(l)jl(kr) + L1(l)jl−2(kr)

+L2(l)jl−2(kr)]

=

∫
dzf(z)ψ(z)D(z)[

(2l2 + 2l − 1)

(2l + 3)(2l − 1)
jl(kr)

− l(l − 1)

(2l − 1)(2l + 1)
jl−2(kr)

− (l + 1)(l + 2)

(2l + 1)(2l + 3)
jl+2(kr)] (2.6)
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where f ≡ Ωm(z)γ and the last line defines L0(l), L1(l) and L2(l).

Weak lensing changed the galaxy shape and the number densities through
magnification effects. Both of these can be described by the convergence
field. The convergence in a redshift bin j caused by dark matter lenses at z
is [9]

pκj (z) ≡
3Ωm0H0r(z)

2H(z)a(z)r0

∫ ∞

z
dz′

r(z′; z)
r(z′)

φ(z′) (2.7)

where Ωm0 and H0 are the matter density and Hubble distance at z=0. The
quantity r(z′; z) is the angular diameter distance between z′ and z.

Lensing changes the observed number counts through two effects. First
the number of galaxies in a magnitude limited sample is through magnifi-
cation. A galaxy observed close to a foreground matter overdensity appear
brighter. The number of galaxies entering into the sample due to magnifi-
cation depends on the slope of the number counts. The magnification also
affects the area. The observed area close to a matter overdensity is in reality
smaller. For a fixed number of galaxies this would reduce the galaxy density.
Combining these two effects the change in galaxy density from weak lensing
magnification is

δLensingg = 5sn(zi)− 2 (2.8)

where the slope of the number counts sn comes from

sn(zi) ≡ dlog10Nn(< m, zi)

dm
(2.9)

and Nn(< m, zi) is the number of galaxies at redshift zi which an observed
magnitude in the flux limited sample less than m. For galaxy shapes, the
overdensity is directly proportional to κ.

δLensg ≈ (5s− 2)δκ ≡ αδκ (2.10)

where the last equivalence defines α.

2.2.2 The Limber approximation

Two approximations greatly simplifies evaluating the analytic correlation
function. The first is the narrow bin approximation assuming no redshift
evolution within a redshift bin. For narrow bins it can be a good approx-
imation. Second is the Limber approximation, using the relation [79, 82,
65]
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2

π

∫
k2dkjl(kr)j(kr

′) =
δD(r − r′)

r2
(2.11)

one can remove one additional integration. The symbols r and r′ are the
distances to the two redshifts to correlate. In the case of r �= r′, which is
the case for cross-correlations between redshift bins, the contribution is zero
for the Limber approximation. Later we will compare the exact calculations
and the Limber approximation in detail.

In the notation CAiBj then A and B is the observable, i.e. galaxies
(g) or shear (κ). An additional letter behind g indicates a specific galaxy
population. The indices i and j denote the redshift bin and i = j is the
auto-correlation, while i �= j is a cross correlations. Below follow a short
summary of the formula given in [51]. For simplifying the notation we define

P(k, z) ≡ P (k, z)

rH(z)r2(z)
(2.12)

where P(k, z) is the power spectrum and rH(z) ≡ ∂r(z)/∂z. The auto
correlations can then be written

Cgnigmj ≈ [bnibmj

δij
Δi

+ αmjbnipij ]Pi + αniαmjCκiκj (l) (2.13)

where b are the galaxy biases, δij is the Kronecker delta. The second term
is correlation between the intrinsic galaxy lenses and the magnified galaxy
counts. This magnification term include the lensing potential

pij =
3Ωm0H0

2H(zi)ai

rir(zj ; zi)

r0rj
(2.14)

which is evaluated in the narrow bin approximation. The r(z; z′) notation
indicates an angular diameter distance between z and z′. Further zi and zj is
the redshift in bin i and bin j respectable. The term Ωm0 denote the matter
density at z = 0 and r0 = c/H0. Last term in (2.13) correlates magnifies
sources with magnified lenses. In practice the two first terms dominates.

The galaxy-shear correlation is

Cgniκj ≈ bnipijPi + αniCκiκj (2.15)

when zi < zj , otherwise zero. In the end, there is the Cκκ term, which is
proportional to the shear-shear signal and also enters into Cgg and Cgκ.
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Cκiκj ≈
∫ zi

0

dz

rH
(
3ΩmH0

2Har0
)
2 r(zi; z)r(zj ; z)

rirj
P(k, z) (2.16)

Here one integration is left since the lensing is affected by all the matter in
front of the redshift bin. Using a thin bin and only integrating over the lens
or source bin would lead to wrong results.

2.3 Algorithm for 2D correlation function

2.3.1 Motivation

Estimating the angular correlation function involves integrating (2.2) using
(2.3) and (2.6) for the intrinsic and RSD contributions, and then (2.7) to
add lensing. For the intrinsic and redshift space distortion the calculations
are three dimensional integrals, two for each of the redshift bins and one
over scale. When adding lensing one should, if being fully correct, use two
more integration, corresponding to the dark matter lensing the source and
the lens redshift. This section looks at how to collapse the multi dimen-
sional integrals into matrix multiplications. It both results in efficient and
understandable algorithms.

Next level of complication includes using multiple observations, like
galaxy counts and shear, splitting tracers into multiple populations and
doing the analysis with a large number of redshift bins. One could approach
this problem by constructing a function or equivalent returning the correla-
tion for a given observation, tracer and pair of redshift bins. The negative
with this general approach is the lack of efficient calculation. In general
organizing a code introducing additional layers help the organization, while
removing layers improve the speed. Part of the section discusses how to
simultaneously calculate the correlations for different tracers, observations
and pairs of redshift bins. The idea is to save time by reusing parts of the
interactions.

Estimating correlations including multiple dimensional integration and
the spherical Bessel functions. If not treated carefully the integration can
lead to numerical errors. Two common approaches for making sure the
calculations are accurate is to compare against other codes and to increase
resolution settings within the code. A third is inspecting if partial results of
the calculations make sense. In subsection 2.3.7 we discuss how this can be
done in practice and potential problems in the integration.

Alternatively one could consider using publicly available software like
CAMB Sources [21, 22] or CLASS [74, 16, 75, 76, 15, 128]. There became
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available in 2011 after the project had already started. Using CLASS is
not possible since it lacks the ZZZZ contribution, which recently became
available through CLASSgal [31]. Integrating the codes for using arbitrary
n(z), bias parametrization and magnification slopes would itself be work.
We hope the formalism provided here give another view on how to evaluate
the correlations in Fourier space.

2.3.2 Implementation

For the overdensities of galaxy counts and galaxy shear the three most im-
portant contributions are the intrinsic, redshift space and lensed contribu-
tions

δ(k, z) = δI(k, z) + δr(k, z) + δLens(k, z). (2.17)

When correlating these overdensities in two redshift bins,

Cij(l) =

∫
dk

∫
Bini

dzi

∫
Binj

dzj 〈δ(k, zi), δ(k, zj)〉 (2.18)

the final correlation includes nine different terms. There are not all equally
important. For the time being all the effects will be included without further
approximation. In subsection 2.4 we discuss the minor correction of includ-
ing redshift space distortions into the gal-shear lensing signal. Following
this approach leads to a simple implementation with a good performance.

2.3.3 Tomographic integration

Numerical integration of a function f over a finite interval is for several
deterministic integration 1

∫
dyf(y) =

∑
x

wxf(yx) (2.19)

where Wi is a set of weights and yi is a set of sample points. Different
algorithm has different weights and sample points. Adaptive algorithms are
often on the form above and then subdividing the integral domain where
the required accuracy has not been achieved. The algorithm outlined here
is not adaptive, but we discuss possible extension in the end.

1Integration algorithms can also be stochastic. For one example in astronomy, see [29]
use of the Vegas algorithm in the MPTBreeze to efficiently evaluate the two-loop propa-
gator. Further, some integration algorithms use knowledge of the function derivatives.
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Ignoring multiple tracers and observations by now, the integration to
evaluate the Cls can be written

Cij(l) =

∫
dkGi(k)Gj(k) ≡

∑
x

wxGi(kx)Gj(kx) (2.20)

where the form of G follows in (EqREF) and i and j denote two redshift
bins. One could evaluate the integral (2.20) for each pair (i, j) of redshift
bins. Alternatively by defining

Hsx ≡ √
wxGs(kx) (2.21)

the integration (2.20) can be rewritten in terms of (2.21) as

Cij(l) =
∑
x

HixHjx. (2.22)

In this form the matrixH can be constructed once and then used to compute
the correlations between all bins. More importantly, the form (2.22) is
closely related to the matrix product. If we consider C to be a matrix where
Cij is the correlation between bin i and j, the whole C can be calculated as

C = HHT (2.23)

where T denotes the transpose. The calculations are normally expressed
as loops over i, j and k. Expressing the operations as matrix multipli-
cation makes it possible to evaluate the expression using DGEMM from
level-3 BLAS 2. This is particularly important in higher level languages, like
Python, where looping is very slow. Also FORTRAN, c and c++ should
benefit since DGEMM has highly efficient implementations like MKL from
Intel and the open source OpenBlas. In addition the expressions looks read-
able and require less lines of code.

One suitable algorithm for evaluating oscillating integrands is the Clenshaw-
Curtis (CC) quadrature. The appendix A includes a brief introduction and
how to handle changes of integral domain for the tomographic integration
and here we include the explicit formulas.

Using the CC-algorithm one needs to split (2.23) into two parts

C = H+(H+)
T
+H−(H−)T (2.24)

2http://www.netlib.org/blas/
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where

H+
sx =

√
kwWxGs(k̄ + kw cos

nπ

n
) (2.25)

H−
sx =

√
kwWxGs(k̄ − kw cos

nπ

n
) (2.26)

k̄ =
1

2
(kmin + kmax) (2.27)

kw =
1

2
(kmax − kmin) (2.28)

(2.29)

and the weights W are given in the appendix A.

2.3.4 Intrinsic correlations and redshift space distortions.

This subsection focus on the expression for G in equation 2.20 taking into ac-
count the intrinsic correlation and RSD contribution, while next subsection
explains the lensing contribution.

The integration over the redshift binning can be done through the rela-
tions

Gi = G̃

∫
Bin i

dzψI(z, k) (2.30)

GRSD
i = G̃

∫
Bin i

dzψRSD(z, k) (2.31)

G̃ =
2

π
k
√

P (k) (2.32)

using (2.2), (2.3) and (2.6). As stated earlier, the goal is to express the
integration through matrix multiplication. First the redshift range where
some bin has support is divided into a grid. For narrow top-hat bins one can
simply use the bins themselves. The function φi(z) in equation (2.3) denote
the probability of a galaxy in bin i having true redshift z. In photometric
surveys the bins are not top-hat, but are for each bin given by a probability
distribution. The probability is found by binning in photometric redshift
and the comparing with the spec-z in the calibration sample.

The probability distributions are then combined into one matrix

φ ≡
⎛
⎝φ00 φ01 ψ0n

φ10 φ11 ψ1n

φn0 φn1 ψnn

⎞
⎠ (2.33)
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where φij is the part of φi overlapping with the underlying grid bin j. In the
case of narrow non-overlapping redshift bins using the bins itself as a grid,
the φij = δijφij . Integration in redshift is also done using the Clenshaw-
Curtis algorithm inside each of the redshift grid bins. The evaluation points
in redshift, using Nz integration points inside grid bin j, are

z+jx ≡ z̄j + zwj cos
nπ

Nz
(2.34)

z−jx ≡ z̄j − zwj cos
nπ

Nz
(2.35)

z̄j ≡ 1

2
(zMin

j + zMax
j ) (2.36)

zwj ≡ 1

2
(zMax

j + zMin
j ) (2.37)

(2.38)

with z+j and z−jx denoting two contribution to the integral over bin j. In

practice one concatenate the two 1D arrays z+j and z−jx into a larger array
before evaluating the probability functions.

One also need weights for integrating over the redshift bins. The weight
arrays wi...wngrid for each of the ngrid redshift grid bins are then concate-
nated into the array

wz ≡ [w0, w1...wngrid]. (2.39)

If using the same number of integration points in each bin, which our im-
plementation use, then the operation reduces to repeating the same weight
matrix ngrid times. The probability functions (2.3) and (2.39) can then be
combined into

(WGal)ij = φWz (2.40)

where the multiplication is with the second index in φ. Integration over
redshift bins in (2.31) and (2.32) can, dropping the superscript, be written

G = φy(z, k) (2.41)

where the z binning is the one used for the redshift grid when evaluating
φ. The function y(z, k) is defined through ψ(z, k) = φ(z, k)y(z, y), and can
explicitly be written as

yI(z, k) = G̃(k)D(z)b(z, k)jl(kr(z)). (2.42)
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In the case of redshift space distortions one should add a similar term

yRSD(z, k) = G̃(k)f(z)D(z)[L0(l)jl(kr) (2.43)

+ L1(l)jl−2(kr) + L2(l)jl−2(kr)]

where L0(l), L1(l) and L2(l) are defined in (2.6). For implementing one can
construct splines of the spherical Bessel functions. Instead of evaluating jl,
jl−2 and jl+2, the linear combination used in (2.43) is calculated once and
then stored in splines.

2.3.5 Weak gravitational lensing

The weak gravitational lensing affects the galaxy shapes and counts in one
redshift from the foreground matter, while the intrinsic correlations and RSD
contributions are caused by the matter overdensities at the same redshift.
In addition to integration over the scale and the two redshift bins, evalu-
ating the lensing contribution require integrating over the foreground dark
matter. While five dimentional integrals sounds tricky, they can be evalu-
ated efficiently by reusing terms and considering the correlations between
all redshift bins at once.

For including the lensing effect described in (2.7), define

η(zj , zi) ≡ 3Ωm0H0r(z)

2H(z)a(z)r0

r(z′; z)
r(z′)

(2.44)

where zi is the lens and zj the source redshift. Second index is the lens to
later add lensing using left matrix multiplication. The lensing contribution
is then

GLens ≡ (φWz)(η̃Wz)y
Mat (2.45)

yMat(z, k) ≡ G̃D(z)jl(kr(z)) (2.46)

where η̃(zj , zi) ≡ α(zj)η(zj , zi) to include the magnification factor or set to
unity for cosmic shear. When evaluating η one use the same redshift binning
as φ. In this notation the same φ is used for the intrinsic correlations, redshift
space distortions. The disadvantage is using the highest redshift resolution
needed for any effect in the redshift grid. However this allows us to reuse
evaluated terms, e.g. the spherical Bessel functions jl, for all contributions
to the overdensities.
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2.3.6 Combining multiple terms

In the previous subsections the focus was efficiently evaluation the contri-
bution for intrinsic correlations, RSD and lensing for all cross correlations.
These could be included in the terms GI , GRSD and GLens. Including all
effects is done by summing the contributions

G = GI +GRSD +GLens (2.47)

and calculating the Cl. These calculations alone could require 7 nested loops
if implemented in a straight forward and naive approach. In addition comes
the following layers:

• Cosmological parameters

• l value

• Galaxy population in Bin 1

• Galaxy population in Bin 2

• Observable in Bin 1

• Observable in Bin 2

For running Monte-Carlo chains to compare data with theory or param-
eter forecast using a Fisher matrix, one need to evaluated the correlations
at more points. The algorithm focuses on calculating the correlations for an
MCMC which often requires of the order 105 to 106 sample points in the
parameter space is challenging. Quantities like φ and integrations weights.
Further one can optimally vary parameters (CITE... ) to minimize the
computational time, but this is not discussed here.

Galaxy bias, the magnification slopes, the power spectrum, the spherical
Bessel function can in many loops be evaluated for as a matrix with all re-
quired values for the correlation function integration. This effect come from
how the multi dimensional integrations has been decomposed into matrix
multiplication. How this is done is code specific, but mostly comes down to
book keeping.

The efficiency of the multiple integrations is affected by the order. Matrix
multiplication is an associative operation, i.e.

A(BC) = (AB)C (2.48)
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where A, B and C are matrices. In term of implementation the order matter.
Assume the matrix dimensions are

A = k ×m (2.49)

B = m× n (2.50)

C = n× s (2.51)

Evaluating A(BC) require mns+ kms operations and the right side kmn+
kns operations. Depending on the values inserted one or the other will be
most efficient. For the accuracy used in our implementation, we calculated
the number of operations needed for different orders of integrating using the
default resolution in redshift, scale and around 100 redshift bins. The most
efficient choice was first integrating out lensing, then binning in redshift and
last integrating over the scale. This order is reflected both in the formulas
and the presentation.

2.3.7 Investigating partial calculations.

Previous sections described an algorithm for calculating the 2D correlations
in Fourier space including the intrinsic correlation, redshift space distortions
and lensing. An additional method to comparing the resulting Cls to public
software is checking steps of the calculations. The algorithm first integrates
over all redshift variables and last over the scale. Using the notation of
(2.23) one can construct a cumulative sum

CPartial
ij (kc) =

k(x)<kc∑
x

HixHxj (2.52)

of the correlations, where k(x) < kc means the sum of indices x until the
one corresponding to kc. The kc used in (2.52) is only used for seeing which
scales contribute to a correlation and is not the maximum k considered in a
forecast.

In the case of insufficient integral precision in redshift, the numerical
artifacts often enters at high k due to the product kr(z) in ψl(k) (2.3).
These inaccuracies which can create serious problems for Fisher matrices
where high precision is needed are easily detectable looking at e.g. CPartial

and more difficult to spot looking at the final correlations. Plotting onlyH as
a function of scale is harder to interpret, especially for the cross correlations
between redshift bins.
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Figure 2.1: Cumulative contributions to Cls for different scales. The redshift
bins in the figure are 0.22 < z10 < 0.23, 0.34 < z20 < 0.36, 0.64 < z40 < 0.65
and 1.00 < z60 < 1.02

In the remainder of this subsection we present figures of Cpartial of auto
and cross correlations between galaxy counts and shear. These figures are
not only useful for detecting errors, but also helps to understand which
scales contributes to the correlations. The fiducial cosmological model used
is ΛCDM using Ωm = 0.25, Ωb = 0.044, ΩDE = 0.75, h = 0.7, w0 = −1,
wa = 0, ns = 0.95 and σ8 = 0.8 corresponding to the values used in the
MICE simulations [42, 27]. Galaxies are bias through the relation b(z) =
2 + 2(z − 0.5), except for the thick redshift bins in figure 2.5 which has
a galaxy bias of b(z) = 1.2 + 0.4(z − 0.5). These bias values are chosen
to exactly match the bright and faint population introduced in the next
article, where the bright galaxies has accurate redshift information and is
analyzed in narrow bins. The power spectrum used for these correlation is
Eisenstein-Hu (EH) [38].

Figure 2.1 includes four CPartial lines corresponding to the auto corre-
lations for l = 50 of galaxy counts in four narrow redshift bins. These
include redshift space distortions and a sub dominant magnification term.
One expect from the Limber approximation and narrow bin approxima-
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Figure 2.2: Cumulative contributions to Cls for different scales. The first
correlation is between 0.22 < z10 < 0.23 and 0.23 < z11 < 0.24 the second
between 0.34 < z20 < 0.36 and 0.36 < z21 < 0.37, the third between 0.64 <
z40 < 0.65 and 0.65 < z41 < 0.67, and the fourth between 1.00 < z60 < 1.02,
and 1.02 < z61 < 1.04.

tion, the largest contribution from k = (l + 1/2)/χ(zm) where χ(z) is the
comoving distance and zm the mean of the redshift bin. For the fiducial
cosmology one expect the main contribution to the correlations around
k = 0.078, 0.052, 0.03, 0.02 Mpc h−1 for the redshift bins in increasing order.
The estimated scale for the main contribution to the correlation agrees well
with the figure.

In figure 2.2 four thin redshift bins are cross-correlated with the adjacent
redshift bin. The first redshift bin for each cross-correlation in the figure
corresponds to one auto correlation in figure 2.1. Comparing the two fig-
ures, similar scales are contributing both to the auto and cross-correlation.
A characteristic feature of the cross-correlation is sharp peak. An auto-
correlation has only positive contribution as a function of scale, while for a
cross correlation the spherical Bessel functions can be slightly out of phase.
This results in k values with negative contributions.

Over densities of galaxy counts are correlated with background shear
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Figure 2.3: Cumulative contributions to Cls for different scales. Cross cor-
relation of foreground galaxy counts with background galaxy shear. For all
the correlations the background is 1.16 < z68 < 1.19 and the foreground
redshift bins are 0.22 < z10 < 0.23, 0.34 < z20 < 0.36, 0.64 < z40 < 0.65 and
1.00 < z60 < 1.02
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Figure 2.4: Cumulative contributions to Cls for different scales. Shear-shear
auto-correlations in the following thin redshift bins: 0.90 < z55 < 0.92,
1.00 < z60 < 1.02, 1.10 < z65 < 1.12, 1.16 < z68 < 1.19

in Figure 2.3. All lines use a thin source redshift bin at 1.16 < z < 1.19,
while the foreground redshift are the same as for the foreground bin in
the previous two figures. The scales contributing to the counts-shear cross
correlation is precisely the ones contributing to the auto correlation. That
is expected from looking at the Limber equations for counts-counts (2.13)
and counts-shear (2.15), both including the power spectrum evaluated at
k = (l+0.5)/χ(zm). Further, in the auto-correlation the amplitude increases
with redshift from the power spectrum and bias increasing with redshift.
For gal-shear the correlation peak with redshift and is lower for the highest
redshift bin. The lensing efficiency (2.14) is directly proportional to the
angular diameter distance between the lens and source redshift bin, leading
to smaller contributions for close redshift bins. One can also see there is
oscillations around the peak in k, coming from the galaxy counts being
negatively correlated with a redshift range of nearby matter which again
lenses the background shear.

In figure 2.4 is the shear-shear auto-correlation for four redshift bins,
which are different from previous figures since the lensing signal is stronger
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Figure 2.5: Cumulative contributions to Cls for different scales. Auto corre-
lations and the cross correlations for two overlapping thin and thick redshift
bins. The thin redshift bins 0.497 < z < 0.512 and the faint 0.44 < z < 0.54.
These bins are selected for both include z = 0.5 and the thick bin is 6.7x
wider than the thin redshift bin. To show all three lines together, they are
normalized to 1 at the asymptotic value and shown in a narrow range of
scale.

for higher redshift. The signal results from a range of scales resulting from
the lensing kernel is broad and the shear-shear the convolution of two such
broad kernels. This can be contrasted to gal-gal and gal-shear which peaks
around around a specific scale. Even if the lensing kernel is broad, correlating
with a narrow foreground redshift bin results in a contribution from a narrow
range of scales. One often describe the shear-shear as a 2D signal, while
counts-counts and counts-shear being 3D.

Fig. 2.5 includes the count-count auto-correlation for two redshift bins
and the cross-correlation between them. A thick redshift bin has as expected
contributions for a wider range of scales. When the width of the redshift bin
decreases, the correlation does not become a delta function of scale. The
peak of the spherical Bessel function jl(kr(z)) entering in (2.3) still con-
tribute to different k values when fixing z since the peak in jl has a width.
Further, the cross-correlation between two overlapping bins has both pos-
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itive and negative contribution. One can understand this by decomposing
the cross correlation in the overlapping and non-overlapping regions in red-
shift. For the overlapping part the cross-correlation behaves similar to the
auto-correlation in figure 2.1, which the non-overlapping parts are like the
cross-correlations between adjacent bins in figure 2.2. The cross-correlation
of overlapping bins combines these contribution and is closer to the auto-
correlation which has the strongest signal.

2.3.8 Converting Cls to w(θ)

In this chapter the correlations had been expressed in Fourier space. Equiv-
alently they could be defined and calculated in w(θ), which is the 2D cor-
relation function in configuration space. Converting from Cls to w(θ) is a
linear combination (CITE)

w(θ) =
∑
l

2l + 1

4π
C(l)Ll(cos θ) (2.53)

where Ll is the Legendre polynomial of order l. The sum is theoretically
infinite and one in practice sum until a given l where one know the con-
version is precise enough. Defining precise enough depends on the required
accuracy needed and the smallest angle, since these require the small scale
contribution. In this subsection we explicitly show how to convert from Cls
to w(θ) using matrix multiplication to convert multiple correlations at once.
This is then extended to also including integral over the bins in θ efficiently.

Let Cxl be the 2D correlations in Fourier space stored with first index
(x) corresponding to a observable and the second the l-value. Converting to
w(θ) is done through the matrix multiplication

wxi =
∑
l

SxlC
T
lx (2.54)

where S is defined by

Sil =
2l + 1

4π
Ll(cos θi). (2.55)

and θi denote the mean of angular bin i. The angular bins has a thickness,
therefore the correct solution

w[θA, θB] =
1

θB − θA

∫ θB

θA

dθw(θ) (2.56)
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when considering w(θ) in an angular bin [θA, θB]. Using a linear binning
in angle, this effect can often be neglected, but results in problems at large
angles using logarithmic spacing in angle and too few bins. The formulas
for the integration below uses the Clenshaw-Curtis algorithm. One could
instead use a simpler algorithm leading to less complicated formulas. A key
to implementing these formulas is using a mathematical library or language
with good support for array calculations. In Python with Numpy Eq. (2.60)
both reduces to one-line expressions.

To integrating over angular bins first define

km ≡ cos

(
mπ

Nwbin

)
(2.57)

x±[θA, θB]n ≡ θB +
1

2
(±km − 1)(θB − θA) (2.58)

where Nwbin is the number of integration points inside each angle bin. The
expressions x± is integral points for the two contributions to the integration
in a angular bin [θA, θB]. If A and B denote edges of the angular bins and
n the number of angular bins, then

θInt ≡ (
x−[θ0, θ1] | x+[θ0, θ1] | · · · | x−[θn, θn+1] | x+[θn, θn+1]

)
(2.59)

gives a vector with all intermediate angles in the integration for all angular
bins. The integration weights is combined in

φInt ≡

⎛
⎜⎜⎝

w w
w w

. . . . . . . . . . . .
w w

⎞
⎟⎟⎠ (2.60)

which is a block diagonal matrix. Converting from Cl to w(θ) when inte-
grating over angle can then be done using

S′ ≡ φIntS (2.61)

w = S′CT
l (2.62)

where the matrix S (2.55) is evaluated using θInt (2.59). Evaluating θInt,
φInt and constructing s′ is compared to calculating the correlations very
fast. In addition these formulas requires estimating S′ only once for one
specific angular bin and maximum summation value in l. A chain using
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w(θ) as observable could require converting from Cl to w(θ) around 105 to
106, which is a normal number of steps in parameter space. All steps which
can be moved outside is therefore an improvement.

2.4 Effect of Limber approximation, RSD and BAO
in the correlations

2.4.1 Motivation and outline

Before entering into the cosmological forecast in chapter 3.1 , we want to
study the 2D auto and cross correlations using thin redshift bins. First this
quantifies the importance of using the exact integrals instead of applying
doing the Limber approximations. Then we study in detail the effects of
redshift space distortions and BAO, to show how they affect the auto corre-
lations and cross correlations. In particular, the importance of these effects
depends strongly on the redshift bin width. Since a 2D analysis is most
widely applied to photometric surveys in broad redshift bins (i.e. Δz ≈ 0.1),
this is important to study before using thin redshift bins (Δz = 0.01(1+ z))
to measure RSD in the next chapter.

The text on studying the effect on correlations is divided into two parts.
First subsection focuses on the auto-correlation and the next on the cross-
correlations. A special case is cross-correlations between partially overlap-
ping bins, which has traits of both auto and cross correlations will be studied
in the next section. For many of the figures, the same correlations is pre-
sented both in Fourier space (Cl) and converted to w(θ). Plots of Cls are
closer related to the formalism presented in 2.2, but effects like BAO are
easier to understand looking at plots of w(θ). For forecasts the Cls are pre-
ferred since the covariance is block diagonal which simplifies the calculations.
For analyzing data one might prefer using w(θ), since Fourier space can be
harder to interpret. Therefore including plots in w(θ) aims to make the
section more general than only supporting the forecast in the next chapters.

Error bars is an essential part of observational physics. Decades of prepa-
ration and hundreds of millions of dollars are spent, looking at it narrowly,
to reduce the error bars on the measured correlations which again results in
better cosmological constraints. Effects affecting the correlations are mainly
interesting when being large compared to the error bars. In the two first
subsections on the auto and cross, all figures are without error bars. Then
the last subsection investigate the errors on the correlation and the signal
to noise. This discussion is important for the cosmological forecast, since a
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signal which naively looks promising can be uninteresting due to large error
bars.

2.4.2 Auto correlations

Comparing effects

The auto-correlations varying with the redshift bin width and are to have
a baseline included in Fig. 2.6. Figure 2.7 show the ratio of the Limber
approximation, without redshift space distortion to the exact in two different
auto-correlation. All the correlations are centered around z = 0.5 and the
wide bin width is Δz = 0.1 and the narrow bin correspond to Δz = 0.01.
For RSD the ratio is less than one, meaning the redshift space distortions
contribute positively to the correlations. Plotting the correlations for two
bin widths next to each other is done to illustrate how these effects depends
on the redshift bin width.

In comparing the effects in a wide and narrow bin, the largest effect is
the inaccuracy of the Limber approximation for narrow bins. The Limber
approximation is known to break down for thin bins. This follows from the
division on the redshift bin width in the Limber formula (2.13), which would
results in infinite correlations when the bin width reaches zero. At l = 150
the Limber approximations account for 3% for bin width 0.01 which can be
tolerated depending on the survey accuracy, while for a narrow redshift bin
the effect is close to 50% which is too large for all purposes.

Limber approximation

The figure 2.8 includes the ratio of the Limber approximation to the exact
calculations in real space both for the Cls and w(θ). Looking at the ratios
of the correlations in Fourier space, there is a huge difference is using a wide
or a narrow redshift bin. In particular, in the next subsection we focus on
the cross-correlation between adjacent redshift bins which can be used for
measuring radial correlation. The cross-correlation declines using a larger
redshift bin, and requires bins around Δz = 0.01(1 + z) for not being too
weak. Analyzing the auto and cross correlations using one redshift binning
requires modeling the auto-correlations in thin redshift bins. From figure
2.8, it follows the Limber approximations is unusable even for the auto-
correlations.
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Figure 2.6: The amplitude of auto-correlations for different redshift bin
widths. In both panels the redshift bin centered in z = 0., with the four
lines corresponding to redshift bin widths Δz = 0.01, 0.02, 0.05, 0.1. The top
and bottom panels correspond respectively to Cl and w(θ), with prefactors
indicated in the y-label.
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Figure 2.7: Effects of Limber approximations, redshift space distortions,
BAO and the combination of widhout RSD or BAO in a narrow redshift bin.
The redshift bin is centered around z = 0.5 and has a width of Δz = 0.01.
Except for the Limber approximation line, all ratios are with respect to the
exact calculation including RSD and BAO. The Limber approximation is in
real space.
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Figure 2.8: Impact of Limber approximation for different bin width. All
correlations use a redshift bin centered around z = 0.5 and the bin widths
used are 0.01, 0.02, 0.05 and 0.1. The width is slightly smaller and larger
than later used in the forecasts. For the ratios neither the exact or Limber
approximation include redshift space distortions.
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Figure 2.9: Ratio of the correlations including redshift space distortions to
the equivalent in real space. Unlike the overview figure of all effects, a ratio
higher than one means RSD adds to the correlations. For all correlations
the mean is z = 0.5 and the bin widths used are 0.01, 0.02, 0.05 and 0.1.
The first panel shows ratios in Fourier space, while the next one is exactly
the same using w(θ).
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Redshift space distortions

Redshift space distortions affects, as described in section 2.2 and references
therein, not only the 3D power spectrum, but also the 2D correlations.
Figure 2.9 compare the effect when varying the redshifts bin width. Analysis
of large scale structure, looking at the galaxy counts, in a photometric is
mostly done using thick redshift bins. The photo-z determines the redshift
which an RMS uncertainty of around 0.01(1+ z) to 0.1(1+ z) depending on
details like survey depth, optical filters, exposure times and photo-z method.
Analyzing the data in narrower bins would lead to little improvements since
the bins are already close to the photo-z. More over one would need to model
the transitions between the redshift bins and account for the uncertainty in
the photo-z transitions [51]. In analyzing a spectroscopic or narrow-band
photometric survey, the redshift is accurately determined and one can either
use a 3D analysis or as we will discuss here very narrow redshift bins.

The ratio in Cls in Fig. 2.9 shows a strong dependence on bin width.
For broad redshift bins, then RSD effect only the large scales. A lower bin
width results in a higher amplitude. For low values, 10 < l < 30, the effect
for the broad bin (Δz = 0.1) is 10 − 30% and 45 − 50% for the narrow
bin (Δz = 0.01). More importantly, the scales affected is depending on the
bin width. For the thick redshift in the figure, redshift space distortions
only seems to contribute significantly for l < 50. But note that in w(theta)
the effect is larger than 10% for theta¿1 deg which corresponds to larger l
than l = 50. This just show that there is no one-to-one correspondence of
harmonic and configuration scales: a large effect in configuration scales can
translate into a smaller effect over a wider range of harmonic scales, and
viceversa. Looking at the ratios, the RSD is a 10% effect for a thin bin at
l = 300. One can understand this looking at (2.6) and thicker bins leading
to canceling oscillations. More physically the RSD is a boundary effect and
decreasing the bin width increases the boundary to bulk of the redshift bin.

In configuration space Fig.2.9, the redshift space distortions peaks around
4.5 degrees, depending also slightly on the redshift bin width. The ratio for
the wide redshift bin (0.1) includes a small bump around 3.5 degrees, while
for the thin redshift bin (0.01) the contribution of RSD nearly doubles from
looking at 3 degrees. The BAO peaks around 4.5 degrees for correlations
with zMean = 0.5. Plotting the same ratios without BAO, which is not
included, results in the peak of the RSD contribution disappearing. The
higher contribution of RSD to 3.5 degrees, can be described as a BAO ghost
contribution in redshift space. In the additional term (2.6) added when in-
cluding redshift space distortions, there is three contributions with different
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orders of the spherical Bessel function. A small shift in l, converts to a
shift in w(θ) with respect to angle and results the RSD results has a BAO
contribution shifted in angle.

Baryon accustic oscillations

The three panels 2.10 are included to study how the baryonic accustic os-
cillations affect the correlation. The correlations calculated in Cls are the
first panel. One can see how including BAO or using a no-wiggles models
leads to oscillation in the ratios. The BAO physically corresponds to larger
probability of two galaxies being separated by approximately 150 Mpc from
acoustic waves in the early universe [95]. Studying the effect of BAO is
therefore more natural either in the 3D correlations or the angular correla-
tions. The second panel shows how the correlation peak around 4.5 degrees
for z = 0.5, shifting towards lower angles for higher redshifts. One see the
effect of BAO in redshift space increases when using wider redshift bin. This
is counterintuitive, since integrating over the redshift bin results in a con-
volution in angle. This effect comes from looking at redshift space. Third
panel displays the same ratios in real space where thicker redshift bins leads
to a slight decrease in the BAO signal and a shift in the angle due to pro-
jection scales. Including redshift space distortions increases the correlation
amplitude, but lower the BAO ratio. The last effect enters since the RSD
effect is stronger at lower angles than where BAO peak. For thin bins con-
tribution of redshift space distortions is sharper peaked, which explains why
thick bins see a higher contribution on BAO looking at the redshift space.

The ghost BAO peak

The last figure in this subsection, Fig. 2.11, provides an additional illustra-
tion of the contribution of redshift space distortions. As discussed before,
the contribution of RSD is sharply peaked in redshift space and can be seen
as a ghost of the real BAO peak. All previous figures have assumed general
relativity and therefore a growth factor of 0.55 (ref .. ). In modified grav-
ity the value of γ can change. Also, showing how the correlations changes
with γ shows the relative strength of the clustering and the redshift space
distortions. Increasing γ leads to a higher amplitude of the clustering, but
lowers the effect of redshift space distortions. This follows from ∂D

∂f < 0 and
f ≡ Ωm(z)γ . One see in the figure the correlation at all angles increases for
a higher γ, except around 3.5 where there is a peak in the contributions from
redshift space distortions. While being an interesting effect, note that the



34 CHAPTER 2. ALGORITHM AND MODELING

0 50 100 150 200 250 300

l

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

C
l 
R

a
ti

o
s

Impact of BAO for different bin widths, redshift space.

Width: 0.01

Width: 0.02

Width: 0.05

Width: 0.1

0 1 2 3 4 5 6

θ (deg)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

w
(θ

) 
R

a
ti

o
s

Impact of BAO for different bin widths, redshift space.

Width: 0.01

Width: 0.02

Width: 0.05

Width: 0.1

0 1 2 3 4 5

θ (deg)

1

2

3

4

5

w
(θ

) 
R

a
ti

o
s

Impact of BAO for different bin widths, real space.

Width: 0.01

Width: 0.02

Width: 0.05

Width: 0.1

Figure 2.10: The ratio of correlations including BAO wiggles to a model
removing the BAO peak in the EH power spectrum. First two panels dis-
plays the ratios in redshift space for Cl and w(θ). To discuss the effect of
redshift space distortions on the BAO peak, the third panel is the angular
correlation in real space. All correlations uses a mean redshift of z = 0.5
and the thee different configuration is shown for the bin widths 0.01, 0.02,
0.05 and 0.1.
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Figure 2.11: The ratio of an auto-correlation for different values of the
growth rate γ to the general relativity prediction of γ = 0.55. The auto-
correlation is a thin redshift bin, Δz = 0.01 with mean z = 0.5. Four
different lines are shown, corresponding to 5 and 10 % lower and higher γ
with respect to general relativity.
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amplitude is quite low and the peak is at large scales so might be difficult
to measure.

2.4.3 Cross correlations in redshift.

The auto correlations comes when correlating one observable with itself,
while the cross are the correlation of two different observable. Examples
are the shear-shear or counts- counts correlation within one redshift bin.
A cross-correlation can either come from correlating different quantities,
using different galaxy populations or using different redshift bins for the two
observations. Correlating foreground galaxies with the background shear
[61] or correlating two populations of galaxies [88, 7] are examples of cross
correlations. The following chapters in this thesis will include forecast using
all these auto and cross-correlations for multiple galaxy populations. In
the previous subsection we studied the auto-correlation of galaxy counts
in narrow redshift bins. This section focuses on the 2D cross-correlations
between galaxy counts in nearby redshift bins.

Amplitude of correlations

In the Limber approximation there is zero cross-correlations between nearby
redshift bins (see the δ-function in (2.13)), which was one of our original mo-
tivation for implementing the exact calculations. The intrinsic correlations
between two redshift bins is weaker than the auto-correlations and depends
strongly on the separation between the redshift bins. We stress the correla-
tion between the bins presented here are from correlation of the underlying
matter distribution and not due to overlaps in photo-z space. Especially
when studying photo-z surveys in wide redshift bins one need to be careful.
The observed cross-correlations C̃ij including photo-z effects are approxi-
mately

C̃ij � rijCjj + rjiCii + Cij (2.63)

where rij is the fraction of galaxies actually in bin j, but observed in bin i due
to photo-z inaccuracies. If the two first term dominates, then the correlation
between nearby redshift bins does not measure radial information, but the
tail of the redshift distribution in the two bins.

Fig. 2.12 shows the cross-correlations for the first bin at z = 0.5 with
the adjacent bin for different thickness of the bins. The amplitude in Fourier
space changes with around one order of magnitude when increasing the bin
width a factor of 4 from 0.005 to 0.02. For angular correlations the amplitude
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Figure 2.12: Amplitude of cross correlations between adjacent redshift bins.
The first redshift bin starts at z=0.5 and the redshift bin widths is, as indi-
cated in the legend, 0.005, 0.01, 0.015, 0.02 and 0.1 for the five correlations.
First and second panel respectively show the Cls and w(θ) correlations. The
binning of 0.01 corresponds to the default binning used for a spectroscopic or
near spectroscopic redshift precision. One thinner bins of 0.005 is included
to motivate the potential gain by using even thinner redshift bins.
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also decreases quickly when increasing the bin width. In addition one see
a trend where the small scales are affected more than the BAO scale. The
amplitude double at 2 degrees using a width of 0.005 instead of 0.01, while
the change is 30% at the BAO peak.

Comparing effects

Similar to earlier figures of the auto-correlation, Fig. 2.13 demonstrates how
the cross-correlations are affected by redshift space distortions and BAO. In
the auto-correlations the effect of redshift space distortions increased when
using narrower redshift bins. For cross-correlations the effect depend on the
separation and can even become negative and suppress the signal. In figure
2.14 are the effect of RSD for bin widths. For small-scales the amplitude
increases slightly more when using a thin bin, but thinner bins lead to larger
suppression at larger scales.

Baryon accustic oscillations.

One characteristic effect in the enhancement of BAO in the cross-correlations.
The effect is also present in Fourier space, but is easier to understand in con-
figuration space. In Fig. 2.15 one auto and cross angular correlation with
and without BAO are shown together. For scales around 1 degree the auto
and cross correlations differs with a factor of 2, while the height of the BAO
peak is comparable. A geometrical interpretation follows from the galaxy
pair separation. Two galaxies separated by a distance r can be decomposed
into

r2 = r2‖ + r2⊥ (2.64)

where r‖ and r⊥ are the separation distance parallel and perpendicular to
the line of sight. The r⊥ is measured in an angular separation θ on the
sky and converted to distance through r⊥ ≈ χ(z)θ, with χ(z) being the
comoving distance to the closest galaxy. Looking at one fixed angle for the
BAO scale corresponds roughly to selecting galaxy pairs with one transverse
separation.

The auto and corr-correlations radically differs in the distribution of
r‖ for the galaxy pairs. In top-hat bins with thickness ΔR, the auto-
correlation has a distribution is peaked at 0 separation and linearly de-
clines towards a separation of ΔR which is the maximum separation. For
the cross-correlation of adjacent bin the highest probability is finding two
galaxies with a r‖ corresponding to ΔR, while lower separations being less
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Figure 2.13: Cross-correlations between two redshift bins where the first
start at z = 0.5 and the redshift bin width is Δz = 0.01. Four lines corre-
sponds to including different effects. A fiducial line include RSD and BAO,
then three lines are for removing RSD, removing BAO or removing both
RSD and BAO. The same plot is shown both in Fourier and configuration
space. This configuration is used so the reader can directly compare with
the auto-correlation from the last section.
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Figure 2.14: Ratios for the effect of RSD in the cross-correlations. The
correlation is using galaxy counts between two adjacent bins. First redshift
starts at z=0.5 and the bins are Δz = 0.01, 0.015, 0.02 thick. The ratio shows
the cross-correlation in redshift space over the equivalent in real space. For
ratios below 1.0 the redshift space distortions suppress the cross-correlations.



2.4. EFFECT OF LIMBER APPROXIMATION, RSD AND BAO IN THE CORRELATIONS41

0 2 4 6 8 10

θ (deg)

0.05

0.00

0.05

0.10

0.15

0.20

w
(θ

) 
θ
2

Effect of BAO in auto and cross correlations.

Auto

Auto, Without BAO

Cross

Cross, Without BAO

Figure 2.15: Effect of BAO for the auto and cross correlations. The auto
correlations starts at z=0.5 with a width of 0.01. For the cross-correlation,
the same bin is correlated with and adjacent bin also 0.01 wide. Each
correlation is included with and without the BAO wiggles.
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likely. The distance between the two redshift bins therefore filters out a
characteristic lengths. In Fig. 2.15 it can be seen as small scales being
suppressed and with less change around the BAO scale (see [49] for a radial
BAO measurement).

The argument for BAO in cross-correlations is also valid when there is
separation between the redshift bins, although there is some change in the
distribution of radial distances (r‖). In the figure 2.16 a thinner redshift bin-
ning of Δz = 0.005 is used, which allows for adding more cross-correlations.
For the cross-correlations of bins which is not close to each other, one see an
even further suppression of the small scales. An increasing distance between
the two redshift bins, which is the most probably radial distance for pairs in
the two redshift bins. In addition the gap between the redshift bins puts a
strict lower limit on the galaxy pair separation. As the separation between
the bins increase, the distance filtered out gradually grows above the BAO
scale of 150 Mpc affecting the peak.

For scales above 3.5 degrees the last cross-correlation in figure 2.16 is
negative. Unlike the auto-correlation which for the relevant angles is posi-
tive, the cross-correlation can also be negative. In the Cls, the behavior can
be understood looking at the Bessel function. For an infinitesimal thin red-
shift bin the fluctuations δl(z, k) are proportional to jl(kr(z)), where r(z) is
the comoving distance to the redshift bin. When cross-correlation two such
oscillating functions can be out of phase generating a negative contribution.
Integrating over the redshift bins is except for the power spectrum a lin-
ear superposition of such spherical Bessel function. Using thin redshift bins
increase the probability of finding negative correlation.

Partial overlapping bins

The correlations discussed so far has either been in the same redshift bin
or cross-correlating non-overlapping redshift bins. When correlation using
galaxy counts, one can use a multi-tracer strategy splitting the galaxies into
multiple populations. Cross-correlating the different sample, especially if
selected to have very different galaxy bias, helps reducing the sample vari-
ance. In the following chapter we will use the spectroscopic and photometric
observed galaxies as two different population. Since these are analyzed in
different binning, the case of having an overlapping photometric and spec-
troscopic survey would result in overlapping 2D correlations of different bin
widths.

In Fig. 2.17 the galaxy counts are correlated in two overlapping redshift
bins, with ΔZWide = 2ΔZThin. The ratio shown is CWT /CTT , where T
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Figure 2.16: Auto and cross correlations with the two nearest redshift bins.
In the panels the first redshift bin starts at z=0.5 and the redshift bin
width is 0.005. The very thin bins are used to include not only the auto
correlation (auto), correlation with the adjacent bin (cross 1) and the four
closest redshift bins at higher redshift. In the legend ”corr n” means the
redshift bin index of the two observable differs with n, i.e. 1 is the adjacent
bin and 2 means separated by one redshift bin. The top, middle and bottom
panels show respecively the fiducial, real space and no-wiggle correlations.
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Figure 2.17: Ratio of the cross-correlation of two partially overlapping bins
to the auto-correlation of the thinnest. The two redshift bins are centered
around z=0.5 and the thick bin is 2 times thicker than the thin redshift bin.
The Cl ratio is plotted using the bin widths 0.005, 0.01, 0.02, 0.04 and 0.08
for the thin redshift bin.
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and W stands for thin and wide. In the Limber approximation the auto-
correlation is inverse proportional to the bin width. If all the correlation of
the overlapping cross-correlation is due to galaxy pairs in the overlapping
region, one expect a ratio of 0.5. Using a bin width of 0.04, 0.08 and wider
redshift bins results in a ratio very close to 0.5. For the three thin redshift
bins of 0.005, 0.01 and 0.02 the overlapping correlation is higher than what
is expected from counting galaxy pairs in the overlapping region. When
using two overlapping bins, the galaxies are not only correlating inside the
overlapping redshift region. Part of the correlation also result from the
cross-correlation of the non-overlapping regions. The cross-correlation of
two overlapping redshifts is for a thin redshift therefore is a combined auto
and cross-correlation.

2.4.4 Auto and cross correlations

Redshift space distortions

The RSD effect depends strongly in the redshift bin width. In 2D, the
additional redshift from peculiar line-of-sight peculiar velocities can move
galaxies between redshift bins, causing the RSD signal in the correlations.
The RSD effect in 2D are therefore an edge effect. For thin bins more
galaxies move between bins, causing a stronger RSD signal. The auto-
correlation is has for the thinnest bin (Δz = 0.005) double the amplitude
in redshift compared to real space. When increasing the bin width, both
the signal and fraction of RSD signal decrease. For cross-correlations, the
redshift space distrortions can contribute positive or negatively depending
on the bin width. Below Δz ≈ 0.015 for this configuration the RSD increase
the cross-correlations, while suppressing it for larger redshift bins. For thick
redshift bins (Δz = 0.05− 0.1) the cross-correlations is negative in redshift
space.

Fig. 2.19 show cross-correlations when moving one redshift bin, while
the other is centered around z = 0.5. In the top panel, both redshift bins are
Δz = 0.01 wide, with the inner vertial lines marking the fixed bin. Two nar-
row and fully overlapping bins double the signal in redshift space. Reducing
the amount of overlap, both the clustering in real space and redshift space
decreases. When the redshift bins are right close to each other, markes
by the two outer vertical lines, the cross-correlations in real and redshift
space are still positive. For larger separation the redshift space distortions
suppress the signal, which is consistent with the behaviour in Fig. 2.18.

The bottom panel varying a thin (Δz = 0.01) bin indicated on the x-
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Figure 2.18: Effect of RSD for auto and cross-correlations for varying red-
shift bin width. Four lines show the w(2 deg) auto and cross-correlation
with the adjecent redshift bin in real and redshift space. The first red-
shift bin starts at z = 0.5, width a width indicated on the x-axis. For the
cross-correlation between redshift bins, both bins are equally wide.
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Figure 2.19: The cross-correlation changing one bin position. The figure
show the cross-correlations between two redshift bins in redshift and real
space. In both panels, one redshift bin has mean z = 0.5, while the second
redshift bin vary with mean shown on the x-axis. The top panel show
two thin (Δz = 0.01) redshift bins. There are four vertical lines in z =
0.49, 0.495, 0.505, 0.51. The two inner is the position of the fixed redshift
bin. The outer two mark where the bins have no overlap in redshift. The
bottom panel fixes a thick redshift bin of Δz = 0.01, while varying the
position of a thin redshift bin. The vertical lines in z = 0.45, 0.55 mark the
edges of the fixed redshift bin.
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Figure 2.20: The impact of non-linear effects. In the figure we show ratios
between auto and cross-correlations including Halofit to only the linear EH
power spectrum. This is shown for narrow redshift bins with width Δz =
0.01. The redshift in the label z = 0.5, 0.6, 1.0 is the start of the first bin.
We have plottet the auto correlations and then the cross-correlation.

axis and fix a thick (Δz = 0.1) redshift bin at z = 0.5, marked by two
vertical lines. For fully overlapping bins, the signal is fairly flat when the
centers are close. When moving the thin bin closer to the edge, but the
bins are still fully overlapping, the signal falls off. The cross-correlations
of partial overlapping bins are the combination of correlation in both the
overlapping and non-overlapping redshift range. For a thin reshift bin close
to the edge, one remove part of the non-overlapping cross-correlation with
the other redshift bin. When moving the bins appart, we find a clear negative
cross-correlation in redshift space.

Non-linear effects

Non-linear gravitational enhance the dark matter power spectrum at low
scales. The EH and CAMB [78] power spectrum models only the linear
power spectrum. For modeling the non-linear effectys, one can either use
pertubation theory or fit to simulations. The Halofit II model [118, 124]
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is a fitting formula based on simulations to model non-linear effects. In-
cluding the Halofit non-linear power spectrum only require the linear power
spectrum, where we use the EH, and implementing the fitting formula.

Fig. 2.20 show the ratio of Cls between with and without including
Halofit. The ratios are for auto and cross-correlations, in the redshift bins
z = 0.5, 0.6, 1.0 with l-values on the x-axis. The non-linear effects in the
power spectrum increase with comoving wavenumber, which is defined by
k ≡ l/χ(z). As expected close redshifts has higher non-linear contributions
and the effect increase with l, with the oscillations being the BAO wiggles.
For the cross-correlations, the non-linear effects suppresses the signal. Fig.
2.2 show how the cross-correlations has both a positive and negative con-
tribution from different scales, with the negative contribution coming at a
higher scale. When the non-linear affects increase with scales, this leads to
a negative contribution in the cross-correlations.

2.4.5 Errors and signal to noise.

The errors for Gaussian fluctuations are given by

Cov(Cij , Cmn) = N−1(l)(CimCjn + CinCjm) (2.65)

V ar(Cij) = N−1(l)(CiiCjj + C2
ij) (2.66)

V ar(Cii) = 2N−1(l)C2
ii (2.67)

where number of modes is N(l) = 2fSky(2l + 1) and fSky is the fraction of
the sky covered by the survey. The two last equations are the variance of
the auto and cross correlations follows from the general formula for the co-
variance. In addition the measurement includes noise terms. For the counts-
counts correlation (Ccicj ) there is an additional noise from sampling a finite
number of galaxies, while the shear observable (Cκiκj ) include uncertainties

in measuring galaxy shapes. Let C̃ denote the measurement including the
noise, then the observed correlations can be written

C̃cicj = Ccicj + δij
1

Ni
(2.68)

C̃κiκj = Ccicj + δij
σ2
κ

Ni
(2.69)

where Ni is the number of galaxies observed in redshift bin i per each stereo-
radian and σ2

κ is the expected variance for each shape measurement.
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Figure 2.21: Signal to noise for different types of correlation. Two galaxy
populations are included, a foreground population for measuring galaxy
counts and a background population for faint galaxies. In two lines corre-
sponding to count-counts and counts shear, a thin bin of Δz = 0.001 around
z = 0.5 is used, while the other two uses a thick bin of Δz = 0.01 around
z = 0.5. The background bin is Δz = 0.15 wide centered around z = 1.1.
In addition the figure includes a shear-shear S/Nratio for the background
shear used for both the counts-shear correlations.

For the fiducial value, we assume a dense spectroscopic sample using
a magnitude limited population of iAB < 22.4 with and overall density of
0.4 gal/ arcmin2. The galaxy count bias is b(z) = 2 + 2(z − 0.5), equal to
the one used in section 2.3 and the next chapters in this thesis. Plots in
this subsection uses bins around z = 0.5, which has b = 2. For the fiducial
configuration sample variance dominates over the measurement noise, which
is shown in figure 2.23. All figures are shown using 1000 sq deg.

In figure 2.21 are the signal to noise for a combination of counts-counts,
counts-shear and shear-shear observable. One important point is how the
redshift bin width affects the signal to noise. Therefore the counts-counts
and counts-shear correlations are shown with two different foreground bins
(see caption). In the limit of zero shot-noise, the signal to noise for counts-
counts auto correlations are
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(S/N)[Ccici ] ≡ C/ΔC
√

N(l)/2 (2.70)

which is independent of the redshift bin width. The two count-counts auto
correlation lines differs in shot-noise covering different redshifts since one
set of bins are wider. Except this, the signal to noise for the two auto-
correlations does not depend on the redshift bin width. The counts-shear
cross-correlation are directly affected from the bin width of the galaxy
counts. Looking at the Limber approximations, the count-counts is inverse
proportional to the bin width (Cii ∝ 1/Δi). On the other hand, the counts-
shear signal is for the narrow bin approximation independent of the fore-
ground bin width. Combining these expressions for the correlations and the
variance leads to

(S/N)[Ccs] ∝
√

Δi (2.71)

where Δi is the width of the redshift bin. This means the signal to noise
increase when using smaller redshift bins. In the figure 2.21 the two counts-
shear lines Δz = 0.01 and Δz = 0.1 for the foreground redshift bins. A
configuration with 10x lower redshift bin width results in around 3x lower
signal to noise. On the other hand, using thinner bins for the foreground
galaxy counts has two advantages. The thinnest bins locate the lenses better
in redshift leading to less projection effect. When decreasing the lens bin,
each correlation is as seen above noisier, but using thinner bins allows for
more correlations in the same redshift range. The number of correlations
scale proportional to 1/Δi, giving an overall increase of

√
Δi in signal to

noise.

Earlier subsections studied the cross-correlations of galaxy counts in ad-
jacent redshift bins. These correlations can be used for measuring radial
information. For measuring these radial correlation the signal to noise need
to be sufficient. The S/Nfor the cross-correlations between different red-
shift bins are directly related to the ratio of the cross-correlation to the
auto-correlations. It can be seen from
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Figure 2.22: Ratio of a cross correlation to an auto correlation for galaxy
counts. The auto-correlation starts at redshift z = 0.5 with bin widths of
0.005, 0.01, 0.015 and 0.02 as indicated in the legend. The cross-correlation
is between the redshift bin used for the auto-correlation and the adjacent bin
at higher redshift with the same bin width. First panel displays the ratios
in Fourier space (Cls) and the second panel in configuration space (w(θ)).
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(S/N)[Cij ]

(S/N)[Cii]
=

√
2
Cij

Cii

Cii√
CiiCjj + C2

ij

(2.72)

=
√
2
Cij

Cii

(
1 + (

Cij

Cii
)
2)−1/2

(2.73)

≈
√
2
Cij

Cii
(2.74)

where the first second line use Cii ≈ Cjj and the third Cii >> Cij . Approx-
imating the two auto-correlations works very well, especially for thin bins.
The last approximation is a rule of thumb valid when the auto-correlations
is a factor of a few larger than the cross-correlations.

One see from equation (2.74) that the ratio between the cross-correlation
and the auto-correlation is an important quantity for the signal to noise. It
can be understood by the error for measuring the cross-correlation being
dominated by the sample variance in the auto-correlation.

The figure 2.22 includes this ratio for different redshift bins. It is impor-
tant to note the ratio falls off very fast with distance, using a bin width of
0.005 instead of 0.01 doubles the ratio. Another interesting aspect is looking
at w(θ) the cross-correlations are having a larger signal to noise at larger
angles. For example the cross-correlation with bin-width of 0.01 is 40% of
the auto-correlation at 2 degrees and 80% at 4 degrees. This means the
cross-correlations is gaining a higher signal to noise at larger angles.

For the cross-correlations using a bin-width of 0.01 (1+z), which we will
use in the next chapter, the main from counts-counts contribution comes
from the auto-correlation and the correlation with the adjacent bin. To
illustrate the effect of cross correlation, the figure 2.4.5 displays the signal
to noise for extremely small redshift bins. These redshift bins use Δz =
0.001, which would correspond to 1100 redshift bins for 0.1 < z < 1.2. The
forecasts chapters in this thesis use thicker bins. One can see close here
there is a sharp drop in signal to noise when increasing the width between
the redshift bins. Also, the difference is much smaller when looking at large
scales compared to the large scales.

Last in this subsection is Fig. 2.23 showing the S/N for auto-correlations
in a redsift bin of Δz = 0.01, z = 0.5 for different densities. The line with
30 gal/arcmin2, which is close to the expected LSST galaxy density and
is approximately noiseless for the counts-counts auto-correlation. The line
with 0.4 gal/arcmin2 represent a dense spectroscopic survey and has the
density used in the next chapters. As one can see, the dense spectroscopic
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Figure 2.23: Signal to noise for a thin redshift bin of Δz = 0.01 centered
around z = 0.5. The signal to noise is calculated for galaxy densities of 0.01,
0.05, 0.1, 0.5 and 30 gal/arcmin2 for the complete sample.
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survey has S/Nclose to the noise-less limit for the l-values used here. These
conclusions does vary with lmax and also which redshift one study. Have
checked that, but not included the figures. Using a too sparse sample would
lead to a loss of signal, one can ask if it is worth targeting the galaxies for
achieving this density. We will return to that question in the last chapter
in this thesis.

2.5 Conclusion

In this thesis we have studied the forecast for upcoming surveys. For the
next 5-10 year, large new surveys will come. We are by now seeing DES is
taking data. Further, the surveys can either be considered photometric or
spectroscopic. Having those involve different probes. The spectroscopic and
photometric surveys are benefitting from the combined information.

We have focused on large galaxy surveys which will become available. In
particular, we have studied what will happen when having two overlapping
galaxy surveys. Then one is having cross-correlations between the surveys.
It is normally done with 3D P(k) for the spectroscopic, while using 2D
angular correlations for the WL survey. We have studied doing the forecast
using angular cross-correlations in narrow redshift bins.

First chaper gives a short introduction. It does not describe fundamental
physics, which some thesis do, but put the work into context. It tries to
motivate why we were studying the topic. Not everything is going in a
straight line. Lots of the parts which are included has become included not
because we needed to understand something better. The studied on their
own lead to a part of the thesis.

In the firt paper we have looked at the algorithms used for calculating
the correlations. Described how many of the operations can be described
through linear algebra. This has certain benefits when doing the impleme-
nation. For example, parts of the calculations can be reused for different
cross-correlations. We have looked at that. And then described how to
move parts outside of the for-loops. Further, specific tricks used for doing
the calculations. And that is quite good to see we can do.

Later in chaper one, we are looking at different effects which are in-
cluded. Part of analyzing the angular cross-correlations in narrow redshift
bins required us to look at the different effects. Some of those are surpris-
ing. We have found that the BAO signal in the cross-correlations are higher.
Can be thought of as the redshift bins are providing a filter. The distance
between the bins is imprinted on the signal. The pairs would on average
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have a larger separation. That leads to more peaks around the BAO scale
to become included. Further, the BAO peak can also be found in the RSD
peak. Depends on the bin width. Not present for broad bins, but enters for
narrow ones. That is features previously reported on in the litterature.

signal to noise chaper we signal-to-noise. Look at the different correla-
tions which are entering into the forecast. Previous work we had only looked
at this briefly, presenting order of magnitude arguments. Here we in detail
compare them. Also, we are looking in particular on the cross-correlations
between nearby redshift bins. An important point is the error-bars for the
nearby cross-correlations. The cross-correlations is falling off fast with dis-
tance, while the error is driven by the auto-correlation. We see for the
default binning the nearest one or two cross-correlations will contribute,
but ideally we should use a narrower redshift binning.

Second part is looking at the forecast for future surveys. We are using
some really large surveys. Quite some interesting surveys are coming. Trying
to combine the information from a spectroscopic and photometric survey.
And we are questioning if combining them over the same part of the sky
can give better constrains on cosmology. Different from earlier, we only find
moderate gains when overlapping surveys. This is more along the lines with
what other groups are finding.

We have seen that which cross-correlations one includes makes a big
difference. For example, one could choose to only cross-correlate the bright
foreground galaxies with the background shear. Also including the counts-
shear cross-correlations of the photometric information is important. They
include some of the same information. If one exclude those correlations, the
conclusious would be bias agains overlapping surveys.

We see similar to our previous paper and other recent work that an-
alyzing a spec and photoz survey together has great benefits. Even when
analyzing them over different parts of the sky, their combination helps. That
is something we want to look deeper into. Should be stressed for convential
galaxy surveys. Papers trying to do constraints, should not only present
their results alone, but combine with other galaxy surveys.

The magnification is contributing. However less than we expected. There
is strong degeneracy between counts-shear and the magnification signal.
When not having galaxy shear, the magnification is nicely contributing.
While with shear included it is for the setup and effects considered here
unimportant. We stress this is not the full part of the story. Since the
magnification and count-shear is stongly correlated, it could be the perfect
tool for studying systematics.

The third paper is studying the bias. We have introduced the formulas
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for one bias for each redshift bins. Require some calculations because the
photo-z also convolve the result and we are interested in the derivative of
the underlying bias. Introducing the priors are giving better constraints.
We are comparing the results when adding those constraints. Particulary,
we are studying how distance priors are adding. Those are assuming the
bias is evolving with a certain distance. We are in this chapter both looking
at the error on bias and the impact on the figures of merit. One key result
we find is that lensing does help constraining the bias. A key question is
the marginalizing over the other parameters. With a known cosmology the
auto-correlations would naturally be totally dominant. When not knowing
the cosmology having counts-shear lensing certainly helps.

Last chapter is looking that the dependence of different survey config-
urations. The part here is not very innovative. We do however stress that
none of the other papers are actually doing the same, so doing this is needed.
The numbers can be useful for survey strategy for upcoming surveys. We
find that for the current analyzis, the photo-z precision is higher impacting
the forecast. While having a spectroscopic survey is good, one can recover
more information using a PAU photo-z. The results are a bit dependent
on the bin with. Selecting more narrow redshift bins would result in the
photo-z having a different effect. We see how the priors are entering in the
scaling. When having small areas, then the priors are an important part.
This chaper also includes the errors for all the parameters and how much
each parameter is improving for overlapping surveys of not.
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Chapter 3

Parameter constraints

3.1 Introduction

The expansion of the universe provide a challenge for cosmology and funda-
mental physics. Understanding the relative recently accelerated expansion
of the universe is connected to dark matter and dark energy, either by de-
termining and predicting their property or using other concepts. Explaining
the accelerated expansion has resulted in high interest in theoretical models,
either being phenomenological or trying to connect the cosmic acceleration
to an underlying principle of the universe. There is no scarcity of suggested
models. No single model(s) beyond the standard Λ CDM has emerged a
natural candidate(s) for explaining the cosmic accelarations.

1 Observational cosmology has for the last decades become an active
field of research. The motivated by explaining the nature or dark energy
combined with technological advances of CCD and computerized data reduc-
tion and analysis , the data volumes of cosmological surverys are increasing.
Early surveys like ... and ... was restricted to ... and ... . DES observed X
sq.deg to full depth during the science verication phase and plan observing
5000 sq.deg over the next 4 years. In the future missions like Euclid plan
observing XX deg and LSST with XX deg. Euclid combined with CMB
from Planck [98, 99, 100] is expected to achieve XX higher constraints on
the dark energy equation of state. Either the next decades opens for insights
or hints on dark energy or confirm the Λ CDM with higher precision.

Galaxy surveys are designed for probing cosmology in different manners.
Weak lensing of all foreground matter affects the galaxy shapes. Observ-
ing the weak lensing throught galaxy shapes (shear) [86, 108] requires deep
imaging surveys like DES and the upcoming Euclid and LSST. Overdensi-

59
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ties of dark matter attracts nearby galaxies, creating an additional peculiar
velocity. The radial component of the extra velocity results in a shift in
redshift, which is the effect of redshift space distortions (RSD). Optimal
measurement of RSD require accurate redshift and the method is most suit-
able for spectroscopic surveys.

Observed light is not directly related to dark matter, but is affected by
galaxy formation, galaxy evolution and selection effects. Galaxies are the-
oretically [109] and observationally expected to form in overdense regions.
The galaxy bias is a parameterization relating the galaxy count overdensi-
ties with the underlying matter distribution. Unlike shear which includes a
projection over redshift, the galaxy counts relates to the underlying matter
distribution at a given redshift. The negative aspect is requiring to under-
stand and paramterizate over the uncertainty in galaxy bias [51]. One can
approach the issue of the galaxy bias by ignoring the information in LSS,
only using the BAO peak [115, 114] or parameterizate the bias [116]. In
this chapter use the full correlations and measure the bias parameters by
comining LSS and lensing in a multiple tracer analysis.

Several papers has explored combining weak lensing and spectroscopic
surveys, including [13, 51, 18, 68, 40, 30]. The two surveys can be over
separte parts of the sky, partly overlapping or be fully overlapping. For
two non-overlapping surveys, their information can be threated as inde-
pendent. In overlapping survers one can cross-correlate galaxy counts in
the spectroscopic sample with background shear from the lensing survey.
Further, correlating the galaxy counts from both overlapping samples use
the Seljak-McDonald method [88] to reduce the cosmic variance. While
non-overlapping surveys benefits from larger area, different authors report
stronger parameter constraints when combining weak lensing and spectro-
scopic surveys over the same area.

The lensing efficiency has a broad kernel and therefore the shear-shear
signal in lensing surveys is suitable to analyz using angular correlations
with 5-10 reshift bins [64, 11]. Spectroscopic surveys has the accuracy to
fully use redshift space distortion. The RSD signal is traditionally analyzed
using a 3D power spectrum analysis, which includes a cosmology dependent
conversion tranformation of angles and redshift to the 3D distances. Also
the angular correlations include redshift space distortion, as shown in and
chapter 2.1 detailed studied the effect in narrow redshift bins. A previous
study [6] found angular correlations in narrow redshift bins recover most of
the information of in the 3D power spectrum. Insprired by this article, we
use Cls for both the lensing and large scale structure observables.

One unified set of observables for Weak Lensing and Redshift Space
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Distortions give several advantages. When analyzing overlapping surveys,
one want to cross-correlatate the information in the two surveys. These
cross-correlations introduce a covariance between the 2D and 3D correla-
tions. While they could potentally be handled, but is straight forward using
angular correlations. Particular care is needed for not double counting in-
formation when joinly observing shear-shear in the lensing survey, the 3D
power spectrum for the spectroscopic survey and 2D correlations for the
counts-shear cross-correlations between the two. For example counting the
modes is insufficient if including photo-z effects in the 3D sample since these
affects radial and transverse modes differently.

Magnification is a weak lensing effect changing the overdensities of num-
ber counts through two effects. In the SDSS sample magnification has been
observed by correlating forground galaxies with background quasars [110,
90]. In a magnitude limited sample, lensed galaxies appear brighter and
entres into the sample if magnified over the magnitude cut. If magnification
adds or decreases the number of galaxies depends on the detailed luminousity
function. The magnification also magnifies the area which reduces the num-
ber density. While the shear-shear is a stronger signal, the magnification
provides an additional signal already present in the galaxy catalogs. This
thesis, not unlike previous papers [51, 34], study the benefits of magnifica-
tion when combining the analysis of spectroscopic and photometric surveys
in angular correlations.

The forecast separates the photometric and spectroscopic galaxies. In
addition galaxy counts and shear are for the overlapping surveys used for
both populations, including the cross-correlations between these observables.
The fiducial binning for the spectroscopic sample uses 71 redshift bins. To
efficiently calculate and handle all the cross correlations, we implemented
the algorithm described in chapter 2.1. Exploring the effects of different as-
sumtions and trends requires a flexible system for parallelizing calculations,
storing fisher matrices and creating plots. As a result the prediction in this
thesis is based on over 2600 fisher matrices, not using different priors on the
galaxy bias.

Photometric surveys are conventionally based on broad bands. Two
upcoming surveys, PAU 1 and J-PAS 2 [125]) plans to measure galaxies in
respetively 42 and 54 narrow bands. The PAU survey, and quite similar for
J-PAS, expect to observe with a photo-z precision of σ68(z) = 0.0035(1+ z)
for iAB <= 22.5. In addition the PAUcam includes ugrizY broad bands, with

1www.pausurvey.org
2j-pas.org
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acticipated photo-z accuracy of σ68(z) = 0.05(1 + z) for 22.5 < iAB < 24.1.
Observing in narrow band filters requires longer exposures for similar depth,
the survey strategy limits the the depth of the narrow bands to iAB < 22.5
cover 200 sq.deg. in 100 nights. Defining two magnitude limited populations
of bright galaxies (iAB < 22.5) and faint galaxies (22.5 < iAB < 24.1)
resemble two overlapping spectroscopic and photometric surveys.

The chapter is organized as follows. The first section introducing the ba-
sic modeling, building on the first chapter which introduced the correlation.
It contains the fisher matrix formalism, parameterization used, nomencla-
ture for the observables, assumtions on maximum scale and assumtions for
the galaxy populations. Next section the presents the main results, studying
the difference between overlapping and non-overlapping survey and discusses
the gains. The fourth section discusses the improvements in constrains when
including radial information. Finally the discussion section compares the re-
sults to the existing litterature.

Except studying the impact of redshift binning, this chapter has fixed
fiducial galaxy suveys, galaxy bias and the bias parameterization. Investi-
gating the impact of all details require space. This chapter study the effects
in the fiducial configuration. The benefit of overlapping galaxy surveys de-
pend on some of those details, e.g. the galaxy density in the spectroscopic
sample. In the next section we discuss and compare the results of this chap-
ter against existing litterature. How the conclusions depend on the galaxy
bias and survey specifications and the relation to similar forecasts in the
litterature, is discussed in the next two chapters.

3.2 Forecast assumptions

The first chapter in this thesis include the theorical expressions the Cl cor-
relation and therefore not included here. This section include further as-
sumptions on fiducial cosmology, survey definition, parameters used and
cuts applied. It also includes the definition of FoMs and nomenclature for
combinations of correlations (e.g. FxB, F+B) used throughout the thesis.

3.2.1 Fiducial cosmological model.

The cosmological model assumed is wCDM , which is General Relativ-
ity with Cold Dark matter and dark energy with an equation of state
w = pDE/ρDE. The Cls are correlations of fluctuations δ(z, k), which again
depends on the initial power spectrum, distances and the growth of fluc-
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tuations. For a Friedmann-Robertson-Walker (FLRW) metrix, the Hubble
distances are

H2(z) = H2
0 [Ωma−3 +Ωka

−2 + ρDE(z)] (3.1)

ρDE = ΩDEa
−3(1+w0+wa) exp (−3waz/(1 + z)) (3.2)

where the last equation expresses the dark energy density in terms of the
Linder [81, 80] parameterization

w(z) = w0 + wa(1− a) (3.3)

for the dark energy equation of state. Overdensities of matter attracts and
at large (linear) scales the equation [55, 94] determining the growth has the
solutions

δ(z) = D(z)δ(0) (3.4)

with the solution

f ≡ d ln(D)

d ln(a)
=

δ̇

δ
≡ Ωγ

m(a) (3.5)

where the last definition comes from the gravitational growth index [80, 81].
Normalizing the growt so D = 1 today, then

D(z) = exp

[
−
∫ 1

a
d ln af(a)

]
. (3.6)

Observing the expansion (3.2) and growth (3.6) history together is inter-
esting when searching for modification to gravity. Adjusting the free pa-
rameters in a theory can possible fit the right expansion history, but not
simulatiously the correct expansion and growth history . In this thesis (and
previous in [51]) the growth is parameterized through the parameter γ (3.5),
which is γ ≈ 3/11 ≈ 0.55 in General Relativity and a cosmological constant.
The DGPmodel [35] propose to explain the cosmological acceleation through
embedding the ordinary 3+1 dimensional Minkowski space in a 4+1 dimen-
sional Minkoski space. Alternatively modified gravity, which we have left of
future work, can be parameterizated by the Bardeen potentials [8].

For the fiducial cosmology we use the values Ωm = 0.25, Ωb = 0.044,
ΩDE = 0.75, h = 0.7, w0 = −1, wa = 0, ns = 0.95 and σ8 = 0.8 , which
corresponds to the cosmological model in the MICE simulation 3.

3http://maia.ice.cat/mice/
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3.2.2 Non-linear scales

Gravity at large scales grow fluctuations linear. In high density regions
structures collapses in a non-linear manner. Predicting the non-linear power
spectrum require either simulations [122], pertubation theory [25] or fitting
functions to simulations [57, 56, 72]. This series use the Eisenstein-Hu [38]
linear power spectrum. In section 3.3.1 we test the effect of including a
non-linear contribution by the Halofit II model [118, 124].

One need to limit the maximum scale (kmax) even when including non-
linear contributions. The Halofit II model is calibrated to 5% percent ac-
curacy for k ≤ 1hMpc−1 at 0 ≤ z ≤ 10. Also, the galaxy bias is scale
dependent for z ¡ k and we want to limit the observations to scales where
the galaxy bias is scale independent.

For this thesis the maximum scale is defined through

σ(Rmin, z) = 1 (3.7)

where σ(R, z) is the amplitude of fluctuation on scale R using a Gaussian
smoothing kernel. The minimum scale relates to kmax by

kmax(z) =
R(0)min

R(z)min
kmax(0) (3.8)

where kmax(0) = 0.1h−1Mpc is an overall normalization. In the MICE cos-
mology and Eisenstein-Hu power spectrum then

kmax(z) = exp(−2.29 + 0.88z) (3.9)

is a good fit for the kmax limit. Convering the scale limit into a limit into a
limit of l can be done with

kmax =
lmax + 1/2

r(zi)
(3.10)

which uses the scale contributing to LSS and counts-shear correlations in
the Limber equation. For the forecast we limit all correlation, including
shear-shear, with this criteria. Further, in addition the lvalues are restricted
to 10 < l < 300. In the forecasts correlations are calculated Δl = 10 to save
time. We have test using a discrete number of l-values does not affect the
forecast.
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3.2.3 Galaxy bias, stochasticity and parameterization.

Galaxy and overdensities can in a local bias model [47] be related to matter
overdensities through

δg(k, z) = b(z, k)δm(k, z) (3.11)

where in general the bias can both depend on redshift and scale. Each
galaxy population, or subset of galaxies, can have a different bias since
different galaxy types has different evolution . For population defined by a
magnitude split the bias also is different through each population containing
different mixture of galaxy types reciding in disting environments .

Each galaxy population in this chapter use a different bias (see section
X) and nuisance parameter to marginalize over. The default configuration
use one bias parameters for each redshift bin without additional priors. In
addition, the bias can include a stochastic component. Defining

r ≡
√

Cgm

CggCmm
(3.12)

where Cgg, Cgm and Cmm and the counts-counts, counts-matter and matter-
matter correlation, a deterministic bias results in r = 1. In the paper [51] we
showed by theoretical models and also observations the stochastisity can be
threated as a renormalization of the bias. This thesis fixes the stochasticity
to r = 1 and then explore the impact in the chapter 4.1.

3.2.4 Fisher matrix forecast

The Fisher matrix is a fast and relatively simple formalism for estimating
the expected errors and covariance for a set of parameters. Fitting data
to theory or theory to theory can more precisely be done using MCMC .
A fisher matrix approximate the Likelihood around the fiducial value with
a Guassian, while a MCMC method properly estimate the posterior dis-
tribution. The estimation using MCMC relies on random walk over the
parameter space, while a Fisher matrix require only estimating derivatives
of the observables with respect to all parameters in the fiducial values. Ex-
pected relative time for estimating errors through MCMC or Fisher matrix
is 1000x-10000x times.

For the correlations Cij and covariance Cov, the Fisher matrix is

Fμν =
∑
ij,kl

∂Cij

∂μ
Cov−1

∂Ckl

∂ν
(3.13)
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where μ and ν are parameters and the sum is over the different correlations.
If an observable is not included, it does not enter neither in the sum or the
covariance. One example is the removal of non-linear scales explained in last
subsection.

The Cramer-Rao bound states that

σ2
μ ≤ F−1μμ (3.14)

where F is a Fisher matrix and F−1 denote the matrix inverse. Adding
constrains from uncorrelated observables is only a matter of summing the
Fisher matrixes. For example

FCombined = FLSS/WL + FCMB (3.15)

when assuming the CMB is sufficiently uncorrelated with the LSS/WL ex-
periment. One can prove (3.15) using the covariance for two uncorrelated
set of parameters is block diagonal and (3.13) can be split in two parts. For
the forecasts all results unless explicitly stated add Planck priors.

For the covariance matrix assuming Gaussian fluctuations results in the
expression [33]

Cov(CAB, CDE) = N−1(l)(CADCBE + CAECBD) (3.16)

where number of modes is N(l) = 2fSky(2l + 1)/Δl, Δl is the bin width in
l and fSky is the fraction of the sky covered by the survey.

3.2.5 Figure of merit

Figures of Merit provide a simplified view on the parameter constraints.
Instead of including all the information on errors and covariance between
parameters present in a covariance matrix, the figure of merit is only a single
number. One tend to optimize what is measured and one should keep this
in mind when comparing and designing galaxy surveys. However comparing
different probes, effects and configurations are greatly simplied with using a
single number. It allows plots showing how a FoM changes continuesly with
a parameters and add lines for different configurations to the same plot, or
displaying information along two dimentions in a 2D table.

The parameters included in the Fisher matrix forecast are:

w0, wa, h, ns,Ωm,Ωb,ΩDE , σ8, γ,Galaxy Bias

where the first 9 are the parameters used in the dark energy task force
(DETF) figure of merit. Galaxy bias which relates dark matter and galaxy
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counts is threated as a free parameter. The fiducial survey ignore bias
stochasticity , shear intrinsic alignmants [59, 20], other shear systematics
[12] and uncertainties in photo-z distributions [91, 87].

The DETF figure of merit is proportional to the inverse of the 1-σ contour
area for the parameters (w0, wa). Analogous we defined in a previous paper
[51] an extended FoM

FoMS =
1

det[F−1S ]
(3.17)

where S denote a sub parameter space. Parameters not in the subspace
are margninalized over. Other papers [7] introduce similar FoMs, since the
concept is a quite natural extension. Idential to [51] we define three figures
of merit,

• FoMDETF Dark Energy Task Force (DETF) [2] figure of merit. Pro-
portional to the error ellipse of (w0, wa).

• FoM Equivalent to FoMDETF, except of fixing γ to the GR value, it is
threated as a free parameter.

• FoMγ Inverse error on γ the growth parameter, while marginalizing
over the other cosmological parameters and the galaxy bias. In other
words FoMγ = 10 and FoMγ = 100 translates to 10% and 1% error on
γ.

• FoMwγ . Combined figure of merit for w0, wa and γ. Using the deter-
minant of the 3D volume include information on correlations between
DE and γ contraints.

Note that different authors introduce numerical prefactors of 1/4 (or 1/4π)
[17, 66] in the FoM. In these papers results are often presented in FoMwγ ,
while the others are used to disentange gains in measuring expansion and
growth history. One should be aware the FoMs scale with are in the following
way

FoM ∝ A

FoMDETF ∝ A

FoMγ ∝ A1/2

FoMwγ ∝ A3/2
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Figure 3.1: Number counts magnification slopes. The magnfication slopes
for a Bright (18 < iAB <= 22.5) and Faint (22.5 < iAB < 24.1) from the
COSMOS sample.

where A is survey area. When including priors increasing area is less effec-
tive, especially for low area where the priors might dominate. The scaling
above work good with the fiducial 15000 sq.deg survey.

3.2.6 Fiducial galaxy surveys

The two populations defined corresponds to a spectroscopic (Bright) and
photometric (Faint) survey. A spectroscopic survey would ultimately target
the galaxies to optimize the science. The populations, including the spec-
troscoping one, in this paer is magnitude limited. This definition is closer
to what is expected from a narrow-band survey which complete, except ad-
ditional photo-z quality cuts. Fiducial survey area is assumed to 15000 sq
deg, which is expected available the next 5-10 years.

Properties of the two populations, including galaxy distibution, is defined
in the next two subsections. The shape of the galaxy distributions and
also galaxy bias corresponds exactly to the ones in [51]. There the galaxy
distributions was constructed by fitting a Smail type [36] n(z) to the public
COSMOS photo-z sample. The galaxy counts magnification slopes are given
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in Fig. 3.1.

Bright population

The bright populations is defined throught the flux limit iAB and fiducially
has a Gaussian error in redshift determintation of σ68 = 0.001(1 + z), with
the galaxy density

dNB

dΩdz
= AB[

( z

0.702

)1.083
exp

(
−
( z

0.702

)2.628
)

(3.18)

over 0.1 < z < 1.2. Here AB is a normalization amplitude and the fiducial
density is defined to 0.4 gal/arcmin2, which is a relatively dense spectro-
scopic survey. The galaxy count bias is defined as

bB(z) = 2 + 2(z − 0.5) (3.19)

so the bias reaches unity as z = 0. For analyzing the bright sample, we
utilize redshift bins which are Δz = 0.01(1 + z) wide. Narrow redshift bins
are used to recover the radial information present in the bright sample.

Faint population

Weak gravitational lensing require imaging to measure the galaxy shapes.
The faint population resemble a wide field lensing survey with iAB and
a Gaussian photo-z accuracy of σ68 = 0.05(1 + z). Reaching deeper in
magnitude results in the galaxy distribution

dNF

dΩdz
= AF[

( z

0.467

)1.913
exp

(
−
( z

0.467

)1.274
)

(3.20)

over 0.1 < z < 1.4. The total density of the faint population is 17.5
gal/arcmin2 and in addition comes a completeness factor of 50% which be in-
troduced from photo-z or shear measurements. Similar to the spectroscopic,
the bias model is linear with

bF (z) = 1.2 + 0.4(z − 0.5) (3.21)

which also results in a bias of unity at z = 0. The Faint sample gain
most strength from weak lensing and is analyzed in redshift bins of Δz =
0.01(1 + z). Narrower bins would not lead to resolving RSD and radial
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information in galaxy counts because of the photo-z introduce and effective
binning in redshift [50].

3.2.7 Observables

The study of effect of overlapping surveys focus on cross-correlations of
galaxy counts and shear. In the sections describing the results we use the
following shortages

F - Faint population.
B - Bright population.
F+B - Non-overlapping surveys for the faint and bright.
FxB - Overlapping surveys for the faint and bright.

Overlapping surveys allows for cross-correlations between observables in the
two surveys. The following correlations are additional in FxB compared to
F+B

• Counts-Counts cross-correlating the two galaxy populations. This al-
low cosmic variance cancelation .

• Counts-Shear cross-correlating foreground galaxy cou- nts with back-
ground galaxy shear.

• Shear-Shear for the bright galaxies. In overlapping surveys the bright
galaxies is a subset of the photometric survery. This term is of minor
importance since the bright sample is less dense.

In determining which correlations contribute stronges to the constrating, we
include all possible correlations in FxB of counts(g) and shear(κ), and then
remove part of the observables. Under are examples on the notation

1Let zi denote the edges between redshift bins and where z0 is the start of the redshift
range. A common way of choosing the bins are such that

zn = zn−z + (1 + zn−1) ∗ w (3.22)

where the last term is the width of each bins. The edges can be written as

zn = (1 + w) ∗ z0 − 1 + (1 + w)n−1 (3.23)

which is valid for 1 <= n. The identity can be proved by mathematical induction.
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All-CBgFκ Removes cross-correlation of counts for the bright
galaxies with shear from the faint.

All-CFgFκ Removes cross-correlation of counts and shear for the
faint population.

All-Cgκ Removes all cross-correlation of galaxy counts and
shear.

Counts-CBgFg Removes the cross-correlation of galaxy counts be-
tween the spectroscopic and photometric survey. The
probe is used to test the covariance between popula-
tions.

l l

where not specifying the population mean removing all correlations of a
specific type. When looking at the one population case, ”all” is replaced by
”B” or ”F”.

3.3 Results

In this section we investigate the parameter constraints when combining
measurements of galaxy counts and shear. Each survey is threated as a
different population and we in particular focus on the potential gains from
overlapping photometric and spectroscopic surveys. Part of the gain is re-
lated to a better measurement of the galaxy bias. In chapter 4.1 we focus
on how well the bias is constrained.

3.3.1 Impact of non-linear scales

The fiducial forecast use lmax = 300, include Halofit II [118, 124] and remove
correlations which violated the kmax requiremend described in 3.2.2. For
testing, we have compared the result with and without Halofit. In the
plots 3.2 are the ratio of including Halofit to only the linear predictions for
different probes. Both plots include on the x-axis the the lmax-cut. In the
first graph is the ratio using all correlations untill the lmax cut. The second
plot require in addition the correlations to satisfy the kmax requirement.

Second plot illustrate the need for also cutting in kmax. The discrep-
ancy between the halofit and only linear scales power spectrum are for all
cases close to a linear relation. In the case of lmax = 300, the removing
Halofit results in 30% and 80% misestimate on FoMwγ when including and
not including the kmax criteria. For 300 < lmax removal of pairs limits the
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Figure 3.2: Ratio of a forecast including Halofit to one which only include the
linear power spectrum from Eisenstein-Hu. The figure of merit is FoMwγ and
the lines corresponds to FxB-gs, F+B-All, FxB-Counts and F+B-Counts.
The two graphs corresponds to either select only correlations satisfying the
kmax criteria or allowing all correlations. On the x-axis is the absolute
maximum lvale, which comes in addition to the kmax limitation.
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discrepancy which becomes very large in the case of including all correla-
tions. The FoMDETF and FoMγ follows the same pattern, but the ratios are
smaller. For FoM the discrepancy grows flatter for high lmax values and do
not cross 1.2 for any of the probes. Since the effect of including Halofit is sig-
nificant, we choose to not enter deeper into the non-linear scales where the
theoretical modeling requre better modelling than Halofit. An additional
motivation is avoiding non-linear galaxy bias.

The lines FxB-Counts and F+B-Counts lines in 3.2 depends only on the
galaxy clustering. For the two probes FxB-All and F+B-All the included
shear-shear signal is less dependent on non-linear contributions, leading to
an overall less importance of including Halofit. Comparing FxB-Counts and
F+B-Counts, the overlapping samples are less affected by the non-linearities.
The galaxy counts for the photometric population includes higher effect of
non-linearity than the bright. We attribute the difference to non-linearities
affecting auto and cross correlations for galaxy counts with the opposite sign.
This leads to FxB which includes more power from the Faint population to
be less affected.

3.3.2 Combining LSS, RSD and Weak Lensing

Correlations of galaxy counts and galaxy shear includes the effect of galaxy
clustering, redshift space distortions and lensing. Nearby correlations in
redshift are affected by galaxy clustering and redshift space distortions. On
large separations of redshift bins the intrinsic clustering is negligible and is
dominated by weak gravitational lensing. This section study the constraints
as a function of the redshift bin separation.

To separate the effect of galaxy clustering and lensing, we have intro-
duced the variable ΔZMax. All correlations Cij in the forecast are required
to satisfy

|zj − zi| <= ΔZMax (3.24)

where zj and zi is the mean redshift of bin j and i respectively. Auto corre-
lations are from this definition always included. For ΔZMax lower than the
bin width, then only the auto-correlation contributes. Around ΔZMax equal
the redshift bin withing in the spectroscopic sample, the cross-correlations
of ajecent bins in the spectroscopic sample is included. For large ΔZMax

one include correlations which are dominated by the lensing signal.

Including FxB and F+B in figure 3.3 illustrate the potential gain in sur-
veys in overlapping (FxB) regions of the sky. For All both galaxy counts,



74 CHAPTER 3. PARAMETER CONSTRAINTS

Figure 3.3: Dependence of the FoM on ΔZMax, the maximum redshift sepa-
ration included in the cross-correlations. The variable ΔZMax on the x-axis
limits the maximum redshift between the mean of the two redshift bins.
For a lensing observable, this amounts to a maximum separation of the lens
and source redshift bin. For ΔZMax = Δz/2, only auto-correlations are in-
cluded, slightly larger includes includes the counts-counts cross-correlations
of nearby bins and the lensing signal contributions at large separations. The
plots corresponds to FoMwγ and FoMγ , and the lines to the probes FxB-All,
F+B-All, FxB-Counts and F+B-Counts.
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shear and gal-shear cross-corelations are included, while Counts only in-
clude the galaxy counts. This allows us to see the gain in measuring the
galaxy shapes. Two figures of merit, FoMwγ and FoM, are included since
the different effects constraints the growth and expansion history differently.
Overlapping surveys (FxB-All, FxB-Counts) constrain for FoMwγ and FoMγ

is better than including two surveys from non-overlapping regions (F+B-All,
F+B-Counts).

For increasing distance the effect of lensing is higher for overlapping
redshift surveys. This results from the adding the cross-correlation of galaxy
counts and shear, which is only possible for overlaping surveys. In particular
it includes cross-correlations of galaxy counts in the spectroscopic population
with galaxy shear in the faint population. As demonstrated in chapter 2.1,
the thin binning of the bright sample result in more cross-correlations, but
with each correlation having a lower signal to noise. The effect is studied in
more detail in section 3.3.7.

For ΔZMax = 0 the correlations are including the shear-shear auto-
correlations, but not gal-shear or shear tomography, leading to a separation
between the lines including or not the shear signal. Overall including galaxy
shear leads to improvements of 4-5x for the combined figure of merit. An-
other lensing signal is the magnification effect in the galaxy counts. The
galaxy counts auto-correlation include a magnification component, but is
in contrast to the shear signal, dominated by the clustering signal. Cross-
correlation between galaxy counts in widly separated bins are dominated
by the magnification effect, except if inaccurated photo-z introduce corre-
lations. Comparing the FxB-Counts and F+B-Counts lines, one see how
magnification contributibutes to the contrains. Later in section 3.3.7 all
correlations are included with and without magnificaiton.

Figure 3.4 shows the cumulative gain of including cross-correlations with
wider separation, normalizing at ΔZMax = 1. The graphs therefore show
for a given figure of merit the relative gain of auto-correlations, correlations
with adjecent bins and lensing. While the information is already present in
figure 3.3, understanding relative gains are clearer plotting the cumulative
sum.

Comparing the cumulative FoMs normalized, the importance of the clus-
tring and lensing signal is widly different for FoMwγ and FoMγ . In contrain-
ing the γ parameter, the galaxy auto correlations alone accounts for 40% of
FoMγ . Also including cross-correlations of galaxy-counts accounts for 80%
of FoMγ for FxB-All, compared to only 40% of FoMwγ for FxB-All. The
γ parameter is affecting the correlations of galaxy counts both through the
growth and redshift space distortions. Combining the auto-correlations and
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Figure 3.4: Cumulative contribution to the FoMs. The probes, FoMs and
points on the x-axis equals the ones in figure 3.3. Each of the lines, which
corresponds to a probe, are normalized to ΔZMax = 1.. Cumulative sums
displays better the relative contribution of the cross-correlations from dif-
ferent domains.
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Figure 3.5: Cumulative contribrution for different FoMs. The plot, as ex-
plained in the caption of 3.4, constraints normalized at ΔZMax = 1. All
lines use the probe FxB-All and the different lines corresponds to the FoMs
FoMγ , FoMDETF, FoMγ and FoMwγ .

cross-correlations, which depends differently on these contributions, provides
the larges contribution to measuring the growth history.

In FoMwγ plot of 3.4, the lines has larger dispersion. Including lensing is
more effective in constraining dark energy, which results in a larger separa-
tion of the lines which includes shear of not. Looking at the FxB-Counts line
and also figure 3.3, there is a signicant contribution of magnification. The
result is F+B-Counts gains relatively more from the galaxy clustering and
RSD, since FxB-Counts also includes magnification whe cross-correlating
the spectroscopic and photometric sample.

Figure 3.5 is a version of the previous plots, displaying the normalized
cumulative constraints for FxB-All for the four defined figures of merit in
subsection 3.2.5. The constrains on FoMγ depends strongest of the four
FoMs on correlations of galaxy counts. Interstingly, the next two lines from
above corresponding to FoMDETF and FoM. For FoMDETF then γ is fixed
and marginalized over in FoM. Unexpected FoM which marginalize over γ,
improves more from lensing than FoMDETF where γ is fixed. Also FoM which
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directly depens on γ benefit most from the gal-shear lensing. Including the
gal-shear lensing helps breaking the degeneracies when including correlations
between dark energy and the growth.

3.3.3 Limber approximation

Chapter 2.1 studyied the difference of the exact calculations and Limber
approximations, in particular when using narrow redshift bins. For narrow
redshift bins the Limber approximation overestimates the amplitude of the
galaxy counts auto-correlations with 2-3x. Further, the Limber approxi-
mation estimates the cross-correlations between nearby redshift bins to 0,
which is invalid for the bin width 0.01(1 + z) used for the bright sample.

The higher amplitude of the Limber approximation reduces the impact
of shot-noise in galaxy count auto-correlations. One can see how the FoMγ

line in figure 3.6 is lower for the Exact calculation than the Limber approx-
imation. For higher separation the lines first diverges, while converges in
the regime where gal-shear dominates. While the Limber approximation is
accurate for the gal-shear signal, the approximation affects the error esti-
mation through higher galaxy-counts correlations. As a result the gal-shear
correlations are less effective in the Limber approximation.

For FoMDETF in real space the exact calculations and Limber approci-
mation result crosses around Δz = 0.015. The width of the spectroscopic
redshift bins are 0.01(1 + z) and around the crossing the exact calculations
include correlations with nearby redshift bins. Also, similar to FoMγ , at
large ΔZMax, when gal-shear becomes important, the difference decreases
because of the larger error in Limber approximation.

Included in both plots is a line of the exact calculations with redshift
space distortions. The redshift space distortion signal in the correlation
is powerful especially in measuring γ. Comparing the three lines show how
cross-corrlations and redshift space distortions contribute to measuring dark
energy and the growth of structure. For γ including the cross-correlations
has little effect, while the redshift space distortions improve FoMγ for FxB-
All by a factor of 2. On the other hand, for FoMDETF the cross-correlations
of galaxy count in the radial direction is powerful, while the RSD signal
comtributes little. One can understand the main traits from the amplitudes
and shapes of the correlations. The γ parameter changes the amplitude,
while dark energy more directly affects the shape.



3.3. RESULTS 79

10
-2

10
-1

10
0

Δ z Max

F
o
M

 γ

Comparing the Exact correlations and the Limber approximation.

FxB-All,Exact

FxB-All,Exact, No RSD

FxB-All,Limber, No RSD

10
-2

10
-1

10
0

Δ z Max

10
2

F
o
M

 D
E
T
F

Comparing the Exact correlations and the Limber approximation.

FxB-All,Exact

FxB-All,Exact, No RSD

FxB-All,Limber, No RSD

Figure 3.6: Forecast for the Exact calculation and Limber approximation.
All of the lines are constrains on FxB-All for the FoMs FoMγ and FoMDETF.
Two lines use the exact calculations, including or not redshift space distor-
tions. The third line estimates the correlations using the Limber appoxima-
tion without RSD.
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Figure 3.7: The improvement in FoMwγ changing the number of redshift
bins used for the spectroscopic population. Throughout Athese papersthis
thesis, the fiducial bin width in the bright sample is 0.01(1 + z), which
corresponds to 72 redshift bins. In the plot the following probes: FxB-All,
F+B-All, FxB-Counts, F+B-Counts, B-All and B-Counts are included. The
y-axis require a logarithmic scaling since the constrains differs with an order
of magnitude.
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3.3.4 Resolution in redshift

One of the original questions which motivated implementing the exact cal-
culations was: ”How many bins are optimal for analyzing the bright popula-
tion?”. Using thinner redshift bins leads to more correlations, that also are
better located in redshift, both effects improving the parameter constains.
On the other hand, we expected when increasing the number of redshift bins
the additional covariance between observables would limit the growth of the
constrains. In the Limber approximation case these two effects did not bal-
ance and the constrains was seemingly growing without boundaries. This
situation is not really physical, since then a small survey would yield infinite
precision. One hope was the exact calculations would introduce additional
covariance and either result in an optimal number of bins or an asymptotic
value.

One should note the fiducial bias for the bright population is linear with
one parameter for each redshift bins. Increasing the number of bins therefore
both increase the number of correlations and nuissance parameters needed
to marginalize over. If the correlations for thinner did not add to the signal,
then the extra parameters would lead to a decline in the constraints.

The shot-noise entering the galaxy-counts increases for narrower redshift
bins , since less galaxies are observed in each redshift bin. In the Limber
the counts auto-correlation scale Cii ∝ 1/Δi, where Δi is the bin width of
redshift bin i. The number of galaxies in each bins is Ni ∝ Δin(zi), where
n(z) is the number count distribution and approximating the integral with
the mean value. Ignoring the correlations with neighbooring correlations
would leads to a signal-to-noise which is independent of the redshift bins
width. In the exact calculations, for a single redshift bin around z = 0.5 for
10 < l < 300, using 0.001 < Δz then S/Nis independent of Δz to a very
good approximation.

This example illustrate that one does not expect very narrow redshift
bins to become totally shot-noise dominated.

In the plot 3.7 showing the result changing with the number of bins,
there is no particular peak or asymptoric value. This result is compatible
with the result of . What is done here differs by including galaxy shear in
addition to the number counts, combining a photometric and spectroscopic
population and the parameterization of the bias. Not shown here, the result
holds at least to 150 redshift bins, and we have not tested further due to
memory constraints 2. The explanation for the for the monotonic increase of
information, is that we are adding more (non-linear) small scale information
in the cross-correlations between narrow redshift bins as we reduce Δz. This
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is inconsistent with the kmax limit in Eq. (3.9).

Analyzing data in narrow correlations require limiting the redshift bin
width, otherwise the 2D-correlations would probe information one normally
exclude in a 3D-analysis. We need to limit Δz to be smaller than (π/kmax)H(z)/c
and lmax < kmax ∗ r(z) to have consistent constraints in the radial and an-
gular directions. For z0̃.5 and kmax0̃.15 these correspond to lmax < 300 and
Δz < 0.009, close to our fiducial values.

The ratio between constraints on FoMwγ for FxB-All and F+B-All is
remarkably constant for different number of redshift bins. For the FoM,
FoMγ and FoMDETF, which is not included here, the lines show similar
trends. Subsection 3.3.7 study overlapping (FxB) versus non-overlapping
surveys. The constant shift means the conclusions are largely independent
of the number of redshift bins.

3.3.5 Redshift space distortions

The redshift space distortions affects the overdensities of galaxies in redshift
space. An overdensity of matter attracts galaxies, changing their velocit
which introduce at change in redshift. At linear level, the change in the
overdensities of galaxies counts is the Kaiser effect. The real space power
spectrum P (k) is related through P̃Gal in redshift space through

P̃Gal(k, μ) = (b+ μ2f)
2
P (k) (3.25)

where b is the galaxy bias, μ is the cosine of line of sight angle and f ≡
Ωm(z)γ . What are using in the forecast is the effect of redshift space distor-
tions in 2D, which we have studied in chapter 2.1. Region close to overdense
regions attract galaxy, moving them across the redshift bin boundaries, and
often increase the 2D angular clustering signal.

The redshift space distortions is powerful effect for measuring γ. Top
panel of figure 3.8 shows how including RSD in the correlations improves
FoMγ by a factor between 2 and a few. We first focus on the results for
counts. Observing galaxy counts over seperate skies, F+B-Counts, is the
combination which benefits most from RSD. For only B-Counts, which is
not included, the RSD improves for the fiducial binning the constraints

2The forecast in this thesis include all Nz(Nz+1)/2 correlations between the Nz redshifts
in the bright sample. Ignoring magnification, which is less important in the bright sample,
one can analyze the bright sample including only NRadial of the nearest bins. In the fiducial
binning, using NRadial = 4− 5 should be more than sufficient. Only including the nearest
correlations reduces the number of correlations with x7 and the number of elements in the
covariance with x50.



3.3. RESULTS 83

30 40 50 60 70 80 90 100

Number of Bright redshift bins

0

2

4

6

8

10
F
o
M

 γ
 -

 R
a
ti

o

The ratio of RSD enhancement for increasing number of bins.

FxB-All

F+B-All

FxB-Counts

F+B-Counts

30 40 50 60 70 80 90 100

Number of Bright redshift bins

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

F
o
M

 D
E
T
F
 -

 R
a
ti

o

The ratio of RSD enhancement for increasing number of bins.

FxB-All

F+B-All

FxB-Counts

F+B-Counts

Figure 3.8: Ratio of including RSD against a real space forecast. The ratio
divides the FoMs in the fiducial forecast to one forecast not including RSD.
Varying on the x-axis is the number of redshift bins in the spectroscopic
sample. In the two plots corresponding to FoMγ and FoMDETF the four
lines are the probes FxB-All, F+B-All , FxB-Counts and F+B-Counts.
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with a factor of 25. In the bright sample alone, the added RSD component
is independent of bias, reducing the degeneracies between γ and the bias. In
FxB-Counts, the surveys are overlapping and can be cross-correlated. Cross-
correlating the surveys leads to another measurement of bias, therefore RSD
is tless important for FxB-Counts.

One should note, comparing models with and without RSD in the an-
gular correlations can be somewhat misleading. The forecast in redshift
space or real space includes the same correlations, only including the RSD
component in the correlations. One can therefore not assume RSD always
improves the parameter constraint, the benefit depends largely on the re-
sulting correlations between the parameters. As seen in last paragraph, the
measurement of γ improves greatly from RSD. On the other hand, in the
theoretical real space angular correlations, there is radial information in the
cross-correlations between redshift bins. Including RSD will, as we will see,
reduce the benefit of cross-correlations between adjecent bins.

Including galaxy shear, the lines FxB-All and F+B-All, additionally de-
crease the importance of RSD. Even if the numbers are lower, the factor
of 2 is still a good improvement. These probes also include the shear-shear
signal, which is unaffected by the RSD. Since F+B-Counts benifit more than
FxB-Counts from RSD, one would expect a larger separation between F+B-
All and FxB-All. One can understang this from looking at the counts-shear
observables. The variance of correlation foreground galaxy overdensity gi
which κ at higher redshift is, see equation (3.16)

V ar(Cgiκ) = N(l)−1[CgigiCκκ + C2
giκ] (3.26)

where N(l) is the number of modes. The Cgiκ signal and second term in
the varaiance is approximentally independent of redshift space distortions.
On the other hand, the Cgigi increases strongly from RSD. Since the error
increases, including RSD in the forecast reduce the importance of gal-shear.

The bottom panel of Figure 3.8 shows how FoMDETF is less sensitive to
RSD than FoM. The relative effect in FoMDETF is only around 10% com-
pared to a factor of 2 − 8 in FoMγ . In configurations with many narrow
redshift bins, the dark energy constrains decreases. Measuring the dark en-
ergy EoS depends stronger on the power spectrum shape than the amplitude.
Opposite to what happens with the auto-correlations, the cross-correlations
between nearby redshift bins are suppressed by RSD (see chapter 2.1, sec-
tion 4). Since the cross-correlations with adjectent bins is important for the
FoMDETF constraints, this leads to a lower FoM when including RSD. This
effect is naturally stronger for higher number of redshift bins, where the
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nearby correlations have a higher signal-to-noise. The FxB-Counts forecast
changes less with RSD, because the Faint population is analyzed in broad
redshift bins, which leads to a smaller effect of RSD in the Bright-Faint and
Faint-Faint galaxy counts correlations.

For weak lensing, including RSD increased the errors on the counts-shear
correlations. In addition the covariance matrix in the regime of narrow bins
is affected. Let gi and gj be the galaxy counts overdensities in redshift bin i
and j respectively, with κ denoting the galaxy shear in bin at higher redshift.
The covariance between the counts-shear correlations of bin i and j with κ
is

Cov(Cgiκ, Cgjκ) = N(l)−1[CgigjCκκ + CgiκCgjκ]. (3.27)

Second part of the covariance only includes gal-shear and the shear-shear
term is approximentally unaffected by RSD. First part includes, in addi-
tion to shear-shear, the cross-correlation Cgigj of galaxy counts at different
redshift. As mentioned above, RSD suppresses the correlations of nearby
redshift, leading to a decreas of the correlations between counts-shear ob-
servables. This explains the change of tendency of FxB-All for large number
of bins in the bottom panel of Fig.3.8.

Top panel of figure 3.9 shows how including RSD affects the forecasts.
Instead of studying the FoMs as a function of number of redshift bins, we
use the fiducial binning and instead vary ΔZMax, which is the maximum
discance between the redshift bins in the cross-correlations. The study in
section 3.3.2 examplified how ΔZMax distinguish between auto-correlations,
cross-correlation with nearby redshift and the weak lensing contribution.

The largest effect of RSD on FoM is for F+B-Counts, increasing FoMγ

by a factor of 100 with respect to the case without RSD. Be aware the
absolute numbers for ΔZMax is quite low, limiting the absolute gain. This
result is expected, since for the auto-correlations in real space the bias is fully
degenerate with the growth. As noted previous in the section, including RSD
reduce the degeneracy between bias and γ. Also here, as we show before, the
inclusion of cross-correlation with different populations helps measuring bias
and leads to less impact of RSD on FxB-Counts. Including correlation with
larger separations means including weak lensing through the magnification
signal (see chapter 2.1, section 2). Magnification provides an additional
measure of bias, decreasing the impact of redshift space distortions.

Last, the FoMDETF includes interesting trends. The effect of including
RSD is increasing FoMDETF with 10% for FxB-All and F+B-All and 40%
for FxB-Counts and F+B-Counts.
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Figure 3.9: Ratio of including RSD against a real space forecast. The ra-
tio divides the FoMs in the fiducial forecast to one forecast not including
RSD. Varying on the x-axis is the largest separation of redshifts in cross-
correlations. In the two plots corresponding to FoMγ and FoMDETF the four
lines are the probes FxB-All, F+B-All , FxB-Counts and F+B-Counts.
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For auto-correlations RSD is beneficial in constraining dark energy, while
around 0.01 < ΔZMax < 0.02 the FoMDETF ratio suddenly drops below 1.0.
This is because, as note previously, RSD suppress the cross-correlations
with nearby redshifts, affecting the S/Nmeasurement of the shape. The
magnification signal benefits RSD through the reduced covariance. Since
FxB-Counts depends stronger on magnification, the FxB-Counts and F+B-
Counts becomes different at higher separations.

3.3.6 Baryon Accustic Oscillation (BAO)

The Baryon Accustic Oscillation result from a characteristic scale of 108
Mpc h−1 for pair separation of galaxies of dark matter. Observing the
galaxy distribution, the characteristic scale of BAO enters in both the radial
and transverse direction. Since BAO is largely independent of astrophysical
assumptions , the galaxy bias and modeling at non-linear scales the mea-
surement of the BAO scale is considered a main method for probing cosmic
acceleration.

For combining the spectroscopic and photometic survey, we choose to
include and analyze all the information in 2D correlations. In chapter 2.1,
section 4 investigated the impact of BAO for 2D correlations in narrow
redshift bins. Spectroscopic surveys has excellent redshift determination
and often analyze BAO in the 3D power spectrum. Photometric surveys
has larger densities, less accurate redshift determination and often analyzed
in angular correlations. This subsection study the effect of BAO on a forecast
in 2D including galaxy clustering, redshift space distortion, galaxy shear and
cosmic magnification.

Accurately predicting the power spectrum involves solving the Boltz-
mann equation and includes the BAO effect. The Eisenstein-Hu analytical
power spectrum formula is less accurate, but allows us to include or not
the effect of BAO wiggles. In this subsection we compare the forcasts when
including or not the BAO feature. Similar to previous subsection, the re-
sults is presented for FoMγ and FoMDETF and investigates the impact of bin
width and which observable is included.

Figure 3.10 displays the ratio of including BAO (over the case without
BAO) as a function of number of spectroscopic redshift bins. For the upper
panel, FoMγ improves for the fiducial binning with maximum 3%, while
FoMDETF results in 35-50% improvement depending on the probe. The
situation is the opposite to RSD, which added strongly to constrains on γ in
FoMγ , but only minor changes to the dark energy in FoMDETF. Measuring
γ depends on measuring the amplitude, while the dark energy depends more
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Figure 3.10: Ratio of including BAO Wiggles. The ratio divides the fidu-
cial forecast on one removing the BAO wiggles in the Eisenstein-Hu power
spectrum. Varying on the x-axis is the number of redshift bins in the spec-
troscopic sample. In the two plots corresponding to FoMγ and FoMDETF the
four lines are the probes FxB-All, F+B-All , FxB-Counts and F+B-Counts.
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on the shape. Redshift space distortions breaks degeneracies between the
galaxy bias and growth parameter γ. The BAO introduce a distance scale
which is more suitable for measuring the expansion.

The FoMγ ratio in Figure 3.10 is divided into two groups, for overlapping
and non-overlapping surveys. In non-overlapping surveys, the impact of
BAO increases with the number of spectroscopic redshift bins, while being
close to none for overlapping surveys. Decreasing the redshift bins allows for
better resolving the accustic peak. The peak can in configuration space be
modelled by a 30 Mpc h−1 Gaussian. In the spectroscopic fiducial redshift
binning, corresponding to 72 bins, the bin around z = 0.5 is 35 Mpc h−1

wide. This explains why the FoM constrains improves for N¿60, for all cases.
In the overlaping surveys the gain is relatively smaller, because gamma is
already quite well measure thanks to RSD.

For FoMDETF one see the constrains are overall higher and with non-
overlapping surveys benefiting the most from including BAO. Overlapping
populations includes cross-correlations between populations of galaxy counts
and for spectroscopic galaxies with the background shear. Including these
observables result in less dependens on BAO, one trend also visible in FoMγ .
The probes, FxB-All and F+G-All, has lower dependence of BAO for a low
number of bins since they include shear-shear for the Faint population. More
spectroscopic bins allow for higher precision measurement of the accustic
scale, which the lensing benefits from.

Similar to the subsection on RSD, Figure 3.11 included the plots with
ΔZMax on the x-axis. They illustrate how the auto-correlations, cross-
correlations with close redshift bins and lensing constribute to the combined
constraints. For the auto-correlations, ΔZMax = 0, the FoMγ is larger when
for FxB-All. The measurement of γ from shear-shear correlation is highy
degenerate with other parameters and benefits more from a standard ruler.

Cross-correlations of galaxy clustering between close redshift enters for
separations 0.01 < ΔZMax < 0.1. Chapter 2.1 demonstrated the effect of
BAO is stronger for cross-correlations with nearby redshif bins. Two redshift
bins separated in redshift includes galaxies with higher radial separation in
redshift, which enhance the contribution from larger scales. Also subsection
(XX) discussed the signal-to-noise of cross-correlations of galaxy counts with
nearby redshift bins. One can in Figure 3.11 see how FoMγ increases when
including cross-correlations with close redshift bins.

The counts-shear and magnification of galaxy counts, enters for large
ΔZMax. For FoMγ lensing reduce for all the proves the importance of BAO.
Particulary the drop is strong considering overlapping surveys. Including
lensing in addition to galaxy clusterting, the ratio Cgiκ/Cgigi is allows for
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Figure 3.11: Ratio of including BAO Wiggles. The ratio divides the fidu-
cial forecast on one removing the BAO wiggles in the Eisenstein-Hu power
spectrum. Varying on the x-axis is the largest separation of redshifts in
cross-correlations. In the two plots corresponding to FoMγ and FoMDETF

the four lines are the probes FxB-All, F+B-All , FxB-Counts and F+B-
Counts.
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additional measurements of galaxy bias. In narrow bins and Limber ap-
proximation, the ratio is independent of the BAO. Overlapping populations
reduces more because of including the lensing cross-correlations and result-
ing ratios between the populations.

In Figure 3.11, the FoMDETF BAO ratio for FxB-Counts and F+B-
Counts drops sharply for ΔZMax = 0.01 where correlations becomes included
in the Bright sample. Absolute forecast of FoMDETF are low when only in-
cluding the auto-correlations, because of problems breaking degeneracies
between cosmology and the galaxy bias. For increasing ΔZMax the forecast
includes cross-correlations between radial bins in the spectroscopic sample,
which provides an additional measure of bias and the ratio drops. For in-
termediate ΔZMax values, when counts-shear and magnification contribute,
the BAO accounts for 50-60% of the dark energy constraints in FoMDETF.
Even in FxB-All, which includes the full power spectrum, the BAO peak
contribute significantly and increase FoMwγ similar to 28% increase in area.

In Figure 3.11, for ΔZMax = 0.01 where correlations becomes included
in the Bright sample, the FoMDETF BAO ratio drop sharply for the FxB-
Counts and F+B-Counts probes. In absolute numbers the FoMDETF is quite
low for only the auto-correlations. Here one bias parameter is used for each
redshift bin and the result is overly sensitive to including BAO to break
degeneracies. Including nearby correlations allows to measure a given bias
parameters for one l-value from more than one correlation. Except the
drop, similar to FoMγ the cross-correlations between close redshift bins has
a higher benefit from including the BAO. Without counts-shear or mag-
nification, the BAO accounts for 50-60% of the dark energy constraints
in FoMDETF. Even the FxB-All probe, the cross-correlations between all
galaxy counts and shear has the highest absolute FoM and increase 35%
higher when including BAO. Even if including the full power spectrum, the
BAO wiggles contributes strongly to the overall results.

3.3.7 Comparing overlapping and non-overlapping surveys

Previous subsections studied in detail the benefit of Redshift Space Distor-
tions, Baryon Accustic Oscillations and radial information. This subsection
will build on those and study the gain of overlapping photometric and spec-
troscopic surveys. In particular, we discuss which counts-shear cross- corre-
lations contribute most and the effect of cross- correlation galaxy counts in
two populations. The results are to discuss the importance of galaxy bias
presented for both free and fixed bias parameters.

The main results are presented in four tabulars, corresponding to FoMwγ ,
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FoM γw Fiducial xBias No Magn No Lens No RSD No BAO No Lens-xBias No RSD-xBias No BAO-xBias

FxB-All 31500 189000 31100 5860 14700 21700 52100 138000 177000
F+B-All 20800 157000 20600 4690 9220 13300 54200 122000 143000
Improvement 1.5 1.2 1.5 1.2 1.6 1.6 0.96 1.1 1.2

FxB-Counts 6890 54300 5860 5860 2720 4410 52100 44000 40400
F+B-Counts 4740 53900 4620 4620 714 2760 53500 46600 37500
Improvement 1.4 1.0 1.3 1.3 3.8 1.6 0.97 0.94 1.1

F-All 2550 38400 2530 31 2130 1950 2360 38000 37800
B-All 6710 44100 6510 4140 2460 4270 38700 36100 35600
F-Counts 50 2490 31 31 17 35 2360 2510 1950
B-Counts 4260 39800 4250 4250 215 2320 39800 33500 26600

All-CFgFκ 28800 179000 28700 5860 13300 19900 52100 131000 168000
All-CBgFκ 29500 175000 28200 5690 13300 20100 50800 129000 170000
All-Cgκ 14100 84300 13400 5690 6080 8930 50800 64400 76300
Counts-CBgFg 5230 49900 4650 4650 1450 3160 48600 41600 36100

FxB-GS Vol 25600 162000 25400 4650 11500 16700 48600 117000 155000
Improvement 1.2 1.0 1.2 0.99 1.2 1.3 0.90 0.96 1.1

FoM γ Fiducial xBias No Magn No Lens No RSD No BAO No Lens-xBias No RSD-xBias No BAO-xBias

FxB-All 77 152 77 38 43 77 150 105 151
F+B-All 67 154 67 34 36 65 153 110 153
Improvement 1.1 0.98 1.1 1.1 1.2 1.2 0.98 0.96 0.98

FxB-Counts 43 150 38 38 15 43 150 102 143
F+B-Counts 35 152 34 34 4.3 34 152 106 142
Improvement 1.2 0.99 1.1 1.1 3.4 1.3 0.99 0.97 1.0

F-All 36 59 36 5.2 35 36 52 56 59
B-All 44 141 44 33 14 43 141 96 138
F-Counts 6.4 52 5.2 5.2 4.0 6.2 52 50 53
B-Counts 34 142 34 34 1.3 32 142 96 129

All-CFgFκ 76 151 76 38 41 76 150 105 150
All-CBgFκ 76 151 75 38 42 76 150 104 150
All-Cgκ 64 150 63 38 29 62 150 103 149
Counts-CBgFg 38 148 34 34 8.7 38 148 101 139

FxB-GS Vol 72 149 72 34 40 72 148 103 149
Improvement 1.1 0.96 1.1 1.00 1.1 1.1 0.97 0.94 0.97

Table 3.1: Table to compare combinations of observables and included effects. The two tabulars corresponds
to FoMwγ and FoMγ indicated in the upper left corner. The label column indicate the populations (B-
Bright/Spectroscopic, F-Faint/Photometric) and using overlapping(x) or separate(-) skies and if shear is included.
Counts include only overdensities of number counts, while All also include galaxy shear. The rows are divided
through dashed lines in five sections. First two study overlapping versus non-overlapping surveys, where the last
line is the fraction gained using overlapping surveys. Third section of rows present the single populations alone.
The fourth section looks at special cases, defined in subsection 3.2.7, designed to understand which correlations
contributes most. Fifth section is the forecast for overlapping surveys without the cross-correlations and the ratio to
non-overlapping surveys. The column ”Fiducial” includes the fiducial forecast, while ”xBias” fixes the galaxy bias.
In the next columns are forecasts corresponding to removing Magnification (No magn), Weak Lensing (No lens),
Redshift Space Distortions (No RSD) and Baryonic Accustic Oscillations (No BAO). The last columns includes the
corresponding fixed bias cases, except for ”No Magn” since magnification is the weakest effect.
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FoM w Fiducial xBias No Magn No Lens No RSD No BAO No Lens-xBias No RSD-xBias No BAO-xBias

FxB-All 409 1240 405 153 343 281 346 1310 1180
F+B-All 310 1020 307 137 257 204 354 1120 937
Improvement 1.3 1.2 1.3 1.1 1.3 1.4 0.98 1.2 1.3

FxB-Counts 160 361 153 153 186 102 346 430 283
F+B-Counts 136 354 136 136 167 82 351 442 263
Improvement 1.2 1.0 1.1 1.1 1.1 1.2 0.99 0.97 1.1

F-All 70 649 70 6.0 61 53 45 680 635
B-All 153 313 149 124 171 100 275 377 258
F-Counts 7.9 48 6.0 6.0 4.3 5.7 45 50 37
B-Counts 127 281 127 127 162 73 281 347 207

All-CFgFκ 379 1180 379 153 324 263 346 1250 1120
All-CBgFκ 387 1160 374 149 318 264 339 1240 1130
All-Cgκ 220 562 211 149 209 145 339 625 510
Counts-CBgFg 139 337 136 136 167 84 329 413 259

FxB-GS Vol 354 1090 351 136 288 233 329 1140 1050
Improvement 1.1 1.1 1.1 0.99 1.1 1.1 0.93 1.0 1.1

FoM DETF Fiducial xBias No Magn No Lens No RSD No BAO No Lens-xBias No RSD-xBias No BAO-xBias

FxB-All 469 1590 465 172 489 341 854 1610 1490
F+B-All 357 1390 355 153 365 246 913 1440 1270
Improvement 1.3 1.1 1.3 1.1 1.3 1.4 0.94 1.1 1.2

FxB-Counts 187 865 172 172 191 133 854 853 758
F+B-Counts 154 910 153 153 170 103 906 900 787
Improvement 1.2 0.95 1.1 1.1 1.1 1.3 0.94 0.95 0.96

F-All 170 708 169 6.7 168 154 224 737 692
B-All 181 710 178 141 187 125 682 707 634
F-Counts 8.5 227 6.7 6.7 6.2 6.3 224 230 216
B-Counts 143 695 142 142 162 90 695 686 592

All-CFgFκ 438 1540 437 172 458 319 854 1570 1440
All-CBgFκ 446 1500 432 170 456 321 840 1530 1440
All-Cgκ 278 974 270 170 275 186 840 986 896
Counts-CBgFg 161 833 152 152 175 110 825 826 722

FxB-GS Vol 416 1410 413 152 442 293 825 1410 1340
Improvement 1.2 1.0 1.2 0.99 1.2 1.2 0.90 0.98 1.1

Table 3.2: Table to compare combinations of observables and included effects. The two tabulars corresponds
to FoM and FoMDETF indicated in the upper left corner. The label column indicate the populations (B-
Bright/Spectroscopic, F-Faint/Photometric) and using overlapping(x) or separate(-) skies and if shear is included.
Counts include only overdensities of number counts, while All also include galaxy shear. The rows are divided
through dashed lines in five sections. First two study overlapping versus non-overlapping surveys, where the last
line is the fraction gained using overlapping surveys. Third section of rows present the single populations alone.
The fourth section looks at special cases, defined in subsection 3.2.7, designed to understand which correlations
contributes most. Fifth section is the forecast for overlapping surveys without the cross-correlations and the ratio to
non-overlapping surveys. The column ”Fiducial” includes the fiducial forecast, while ”xBias” fixes the galaxy bias.
In the next columns are forecasts corresponding to removing Magnification (No magn), Weak Lensing (No lens),
Redshift Space Distortions (No RSD) and Baryonic Accustic Oscillations (No BAO). The last columns includes the
corresponding fixed bias cases, except for ”No Magn” since magnification is the weakest effect.
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FoMγ , FoMDETF and FoM. For layout reasons, the two first are included in
Table 3.1, while the last two are shown in Table 3.2. Each row corresponds
to a different probe, and the rows are divided by dashed lines in four sec-
tions. First two illustrates the of overlapping photometric and spectroscopic
surveys. Third sections looks at the constrains from a single population,
while the fourth presents special cases (see Subsection 3.2.7) to discuss the
counts-shear cross-correlations and the sampling variance cancellation. On
the columns are the forecast presented removing different effects and also
fixing the galaxy bias.

In the first three row of Table 3.1 is the forecast for FxB-All, F+B-All
and the gain of overlapping surveys. For FoMwγ we find a 50% gain, cor-
responding to 30% increase in area. In the dark energy FoMs FoM and
FoMDETF the benefit is similar, while FoMγ increases with the ratio 1.1 cor-
responding to 20% larger area. While there are differences in the details,
when including galaxy shear or only using galaxy counts, we see similar ben-
efits from overlapping photometric and spectroscopic surveys. The columns
are illustrating which observables or effects which are contributing and the
imporance of galaxy bias. In general, the absolute numbers in the forecast
presented depends strongly on the parameterization of the galaxy bias. For
example, exact knowledge of bias would increase FxB-All and F+B-All with
6x and 7.5x respectively.

On the columns is the importance of the effects, while the third line is
the improvement of overlapping photometric and spectroscopic surveys. For
all four FoMs, overlapping surveys are more important for free than fixed
galaxy bias. In particular for the fiducial case, the FxB-All/F+B-All ratio
for FoMwγ decreases from 1.5 to 1.1 when fixing the galaxy bias. One see
further a lower gain from overlapping surveys when including Redshift Space
Distortions and BAO. Those effects breaking degeneracies between galaxy
bias and the cosmology, therefore reduces the importance of overlapping
surveys. As expected, for the fixed bias case the difference is smaller. The
ratio is lower without lensing, which can be attributed to overlapping surveys
include the additional cross-correlation of galaxy counts in the spectroscopic
survey with galaxy shear of the photometric sample.

Second section of rows is the forecast and ”overlapping skies ratio” only
using galaxy counts. The constraints without galaxy shear is lower, with
FxB-All/F+B-All being 1.2, 1.1, 1.1 and 1.1 for FoMwγ , FoMγ , FoM and
FoMDETF respectably. Fixing the bias of the fiducial case (xBias), one
see the ”Improvement” ratio becomes 1., meaning all the benefit of cross-
correlating the galaxy counts comes from measuring the galaxy bias. In
contrast for All the FoMs FoMwγ and FoM, which depends on both DE
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parameters and γ, improves also when fixing the bias. One can understand
the difference from FxB-All including the counts-shear cross-correlations be-
tween the samples, which contributes with more than measuring the galaxy
bias. For the ”No RSD” case, the same-sky improvements are over twice
higher for Counts than All. Not having RSD reduces the galaxy bias mea-
surements, specially when there is no shear. This is compensated by having
an overlap between the surveys which links the F and B galaxy bias through
the cross-correlations (which are sampling variance free).

Third section includes the single population constraints, with F-All and
B-All being the optimal constraints for the Faint and Bright population. Un-
der are the cases F-Counts and B-Counts for only inlcuing galaxy counts,
and exclude shear measurements. The bright populations alone is for All
more powerfull than the Faint, in all the figures of merits. The main contri-
bution to All, is for Faint the lensing while galaxy clustering and RSD in the
bright sample. One can see this by comparing the All and Counts cases. The
ratio F-All/F-Counts and B-All/B-Counts are 50.5x and 1.6x respectively
for FoMwγ . In our forecast clustering with the Faint population which has
large photo-z is analyzed in broad bins, leading to less effect of RSD and
practically no radial correlations. The F-Counts is therefore dominated by
the uncertainties in bias, improving 49x for FoMwγ when fixing the bias.
From the ratio B-All/B-Counts, one see a shear contribution. Galaxy shear
in the Bright population is not measured for a spectroscopic survey, but is
present for overlapping or photometric narrow band survey.

Fourth section begin with three row corresponding to counts-shear spe-
cial. Here ”All” correpond to FxB-All and second part which counts-shear
cross-correlation which is removed. In All-CFgFκ the removed correlations
are the counts-shear within the Faint population, while in All-CBgFκ the
cross-correlation of galaxy counts is removed. Last in the third line All-Cgκ

no count-shear cross-correlations are included.
The counts-shear cross-correlations is an important contribution to the

overall constraints. Studying the ratio FxB-All to All-Cgκ, for both fixed
and free bias the counts-shear theover double (2.2x free bias) FoMwγ and
while greatly improve FoM and FoMDETF. In the FoMγ the effect is 20%
and 1% for the free and fixed bias case. Which populations are used to
measure count-shear is less important. Either cross-correlating the spectro-
scopic (All-CFgFκ) or photometric (All-CBgFκ) galaxy counts with the Faint
population shear gives comparable constraint. For fixed bias the Bright pop-
ulation result in marginally better results, while for free bias the roles are
reversed. We attribute the Bright sample in total having a higher signal-to-
noise (error section in chapter 2.1) and presice redshift resolution, while the
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uncertainties on the Faint bias is larger (chapter 4.1). Not including count-
shear cross-correlations result in a drastic drop in the constraint. We there-
fore conclude counts-shear correlations are important, but includes partly
redundant information when using multiple populations.

The row Counts-CBgFg in Table 3.1 and 3.2 is FxB-Counts, then re-
moving the cross-correlations observables between the Bright and the Faint
sample. The difference to F+B is the covarance between the populations.
For F+B-Counts the Fisher matrices are calculated separately for F and B,
and then added independent information. In Counts-CBgFg one assumes the
populations are over the same part of the sky and include the covariance
between the populations.

Overlapping surveys benfit through additional cross-correlations and sam-
ple variance cancellations and section five in in Table 3.1 and 3.2 study which
effect contribute stronges. To disentangle the two improvements, we have
introduced All-Cross, which is FxB-All without the cross-correlations be-
tween the galaxy populations. The last ”Improvement” line show the ratio
between All-Cross and F+B-All. These only differs from an addition co-
variance introduced through the overlapping volumes, since the two galaxy
populations trace the same underlying matter field. Higher covariance leads
to improved constraints if the observable has sufficiently different deriva-
tive with respect to the parameters. Comparing to the improvement line
(FxB-All / F+B-All) in the first section, we see large parts of the same-
sky benefit comes directly from sample variance cancellations of overlapping
volumes. For a fixed galaxy bias the sample variance effect vanishes, while
the additional cross-correlations still contribute.

Marginalizing over bias, the FxB-Counts / F+B-Counts ratio is 17-28%
for the different FoMs. For fixed bias FoMγ and FoMDETF slighly less than
1., illustrating overlapping surveys introduce additional correlations which
can reduce the constraints. In all free bias configuration and most fixed bias
cases we find higher FoMs when combining over the same sky. Comparing
FxB-Counts, F+B-Counts and Counts-CBgFg , the Counts-CBgFg is for free
bias in between FxB and F+B, but the lowest for fixed bias. The effect
of higher covarice between observables also depends on the derivative with
respect to parameters. Two correlated observables responding different to
a change in parameters can gain from additional covariance. Physically, the
situation correspond to having two tracers with different bias sampling the
same underlying matter fluctuations.

The Figure 3.12 is the 1-σ contours for w0, wa and γ. First plot are
the contours for All and the combination FxB, F+B, F and B. One can see
some trends also present in the tables. The combination F+B-All, combin-
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Figure 3.12: Contour plot of w0, wa and γ. The three subplots show the
Fisher matrix 1-σ contours, marginalizing over the DETF parameters and
galaxy bias. In the upper plot, the probes FxB-All, F+B-All, B-All and
F-All all include both Galaxy shear and counts. The bottom plot use com-
bination which only measure galaxy counts. For all plots Planck priors are
included.
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ing shear and galaxy counts from separate surveys, is more powerfull than
analyzing the survey separately. The factor of 1.5 improvement of FxB-All
over F+B-All corresponds to the difference between the two inner ellipses.
On the bottom is a similar plot for the galaxy counts. Using equal scales
allows to directly compare the constraints and is done on the expense of F-
Counts being plotted beyond the borders. For the galaxy counts, the Bright
population completely dominates, even if including more bias parameters.
A detailed discussion of the bias is left to chapter 4.1.

Last figure 3.13 of the subsection looks at the effect of removing Weak
Lensing and RSD. The equivalent Magnification and BAO plots are not
included since those effect are less important, resulting in less difference
between the ellipses. First plot the tri-contour plot for FxB-All and F+B-
All with and without (No Lens) included. The Weak Lensing improve the
constraints on all three parameters included in the contour plots. Comparing
the FoMs in Table 3.1 and 3.1, one see same-sky benefit of FxB-All is actually
higher when including lensing.

In the lower panel 3.13 is similar plot, instead with two contours cal-
culated with correlations not including RSD (real space). While the RSD
impact the parameter constraints different, the margins are exactly equal
so one can visually compare the effects. The RSD is contributing strongly
to measuring γ and less to w0 and wa. One also see the same trend in
the Tables 3.1 and 3.1. There the RSD improve FoMwγ , FoMγ and FoM
which depends on γ, while not FoMDETF where γ is fixed. The difference
between the contours in tells if RSD increases or decreases the importance
of overlapping surveys. Including RSD, looking at the numerical values in
the table, slightly reduce the benefit of overlapping galaxy surveys. Chapter
4.1 in the series discussed the impact of the galaxy bias amplitude, which
determines the relative strength of intrinsic galaxy clustering and redshift
space distortions.

3.3.8 Magnification

Table 3.1 and 3.1 remove in column three the effect of magnication effect to
zero. The magnification of background galaxies increases the flux, therefore
changing the number count in a magnitude limited sample, while magnifying
the area result in a decreased area. When calculating the ”No Magn” col-
umn both effect are not included. The magnification effect has for FxB-All
1% improvement on FoMwγ , while the other FoMs improves with < 0.1%.
For only having galaxy counts, the situation is different. For FxB-Counts
magnification contributes with 17,12,7 and 8% to FoMwγ , FoMγ , FoM and
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Figure 3.13: Contour plot of w0, wa and γ. The three subplots showthe
Fisher matrix 1-σ contours, marginalizing over the DETF parameters and
galaxy bias. In the upper plot, two ellipses are the fiducial FxB-All and
F+B-All, while two remove Weak Lensing observables. The bottom plot
similary present the fiducial FxB-All and F+B-All, and then two contours
in real space.
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FoMDETF respectively. The counts-counts magnification and counts-shear
cross-correlations are in the Limber approximation equal, except the α pa-
rameter encoding the galaxy slope and reduction in area. Looking at All-
CBgFκ , the effect of magnification is 4.5x higher compared to FxB-All, con-
firming these observables has very similar information.

3.4 Discussion

Overlapping photometric and spectroscopic surveys potentially yield stronger
constraints on cosmological parameters. The combination and benefits of lo-
cating two surveys over the same are has been investigated in the literature
[13, 51, 18, 68, 40, 30]. Conclusions reaches between effectively no im-
provement, to large benefits. This section focus on comparing our result to
existing forecasts.

The paper [13] forecast using a bias-modulation method of McDonald&
Seljak. From adding priors on the bias, mimicking a lensing survey, the
authors conclude overlapping surveys are beneficial for measuring γ. In [51]
the RSD and WL are implemented, reporting an improvement of a combined
γ,w0, wa figure of merit corresponding to 5x the area (see fig 13) for over-
lapping survey. Following the article [18] do very similar calculations, for
reasonable depths find a gain in overlapping surveys, however substantially
less than [51].

Recently several papers [68, 40, 30] discussing the statistical gain of
overlapping surveys has appeared. In the paper [68] large gains are found
on dark energy and modified gravity constraints. However the articles [40]
and [30] see approximentally no gain. They also argue why one should not
expect overlapping surveys to improve the parameter constraints.

The synergy of weak lensing and redshift space distortions is important
to highlight. One should note, while disagreeing on overlapping surveys,
several of these articles stresses the improved errors from combining WL
and RSD in separate volumes. In addition to CMB and SN constraints,
including RSD data in lensing analysis or vice versa can substantially tighten
the constraints.

This thesis follow up the paper [51]. The largest difference is imple-
menting the exact calculations and using 2D angular correlations to include
effects of galaxy clustering, RSD and weak lensing. In the previous paper we
combined the 2D clustering and lensing Fisher matrix with a 3D P(k) anal-
ysis. For the last paper, the FxB combination included RSD constraints
from the Faint sample, while F+B did not. Properly accounting for the
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interaction between photo-z and mode removal of RSD in the photomet-
ric sample lead to overly high constraints. The 2D analysis presented here
are not dependent on accounting for modes and does not suffer from those
issues.

Which correlations are included is a central topic when discussing the
relative gain of overlapping versus non-overlapping surveys. Including more
information in the surveys alone, leads to less importance of the overlap.
The difference can arise from which correlations are included. In the article
[68], the reported benefits of overlapping surveys are higher. There galaxy
counts is only used for the spectroscopic sample, while galaxy shapes for the
photometric sample. As they point out, the photometric sample also include
galaxy counts. The counts-shear cross-correlations within the Faint sample
is, as also they pointed out, an important source of constraints. As discussed
in last section, the counts-shear cross-correlations between the surveys are
less important when including counts-shear correlations in the photometric
sample. Similar concerns was also reported in [40].

Additional priors, parameters and probes also affects the conclusions.
Another difference to [68] is their fiducial forecast do not include Planck pri-
ors, while marginalize over a redshift uncertainty parameter. They include
results showing separately how those effects lowers the benefit of overlap-
ping surveys. On the other hand, the BAO signal is accurate beyond the
limitation in scales used when including the full power spectrum. We could
therefore consider adding an additional BAO component, which would re-
duce the impact of overlapping surveys. Testing adding DETF BAO priors,
we have found including more BAO information does not remove the gain
of overlapping surveys.

One argument against the benefit of overlapping surveys is based on
counting the modes. In [40] a figure and discussion in the appendix discuss
the overlap of the photometric and spectroscopic survey in Fourier space,
while [30] refers to the figure and expands numerically on the argument. For
not seeing an improvement of 5x, the counting argument might be valid.
However, each mode is measuring different information and counting the
modes does not reflect the full story. Galaxy clustering measure the galaxy
bias b and growth rate factor f, while the counts-shear cross-correlations are
linearly dependent on b. Each mode contribute with different information
leading to breaking of f-b degeneracies and can explain moderate gains.

Overlapping surveys benefits directly from overlapping volumes, in ad-
dition to the additional cross-correlations. The multiple galaxy populations
is seeing the same underlying tracers, allowing for cancellation of sampling
variance. Seen from the forecast perspective, the overlapping surveys are
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introducing additional covariance between observable. Higher correlations
often leads to less information, except the observable has sufficiently differ-
ent derivatives with respect to parameters. When marginalizing over bias,
we showed in the last section overlapping surveys benefits from the volume
alone. The articles [40] and [30] do not include the covariance between the
3D and 2D observable, which might explain the difference. Studying the
covariance between 2D and 3D observable are left to a separate article .

Non-overlapping redshift bins are intrinsically correlated if being close
and narrow. First chapter discussed the cross-correlations between nearby
redshift bins and their signal-to-noise. In this chapter we demonstrated that
they significantly contribute to the constraints. The paper [68] mistakingly
state ”If the kernels are non-overlapping in z then their product, and hence
our observable, will be zero”. For two different redshift, the Bessel function
contribute to different scales and the integration over scales in the Cls can
still be non-zero. The redshift binning of 40 for 0 < z < 1.7 or Δz ≈ 0.042
is however likely too large for capturing the radial information.

The impact of magnification has been studied in the previous work of
the authors [51] and recently [34] confirmed those findings. One source
of confusion was the notation ”MAGN”, denoting magnification combined
with galaxy clustering. While stating the galaxy clustering was the main
source for the constraints, the misleading labels and partly unclear text lead
to believe magnification had a more central role. In this chapter forecasts
over density of galaxy counts is simply labeled ”Counts” and include galaxy
clustering, RSD and magnification. Magnification contribute corresponding
to 10% increase in area for FoMwγ for FxB-Counts. Unlike the previous
article, we discuss the effect of magnification also when including shear.
The counts-shear cross-correlations are highly correlated with magnification,
resulting in magnification not contributing significantly. Correlations, as we
have seen for galaxy counts, are beneficial when the observable respond
differently to change in the parameters. If systematic effects are included,
the covariance could potentially increase the constraints. A detailed study
of constraining lensing systematics when combining with magnification is
left for future work.

3.5 Conclusion

In this thesis we have studied the forecast for upcoming surveys. For the
next 5-10 year, large new surveys will come. We are by now seeing DES is
taking data. Further, the surveys can either be considered photometric or



3.5. CONCLUSION 103

spectroscopic. Having those involve different probes. The spectroscopic and
photometric surveys are benefitting from the combined information.

We have focused on large galaxy surveys which will become available. In
particular, we have studied what will happen when having two overlapping
galaxy surveys. Then one is having cross-correlations between the surveys.
It is normally done with 3D P(k) for the spectroscopic, while using 2D
angular correlations for the WL survey. We have studied doing the forecast
using angular cross-correlations in narrow redshift bins.

First chaper gives a short introduction. It does not describe fundamental
physics, which some thesis do, but put the work into context. It tries to
motivate why we were studying the topic. Not everything is going in a
straight line. Lots of the parts which are included has become included not
because we needed to understand something better. The studied on their
own lead to a part of the thesis.

In the firt paper we have looked at the algorithms used for calculating
the correlations. Described how many of the operations can be described
through linear algebra. This has certain benefits when doing the impleme-
nation. For example, parts of the calculations can be reused for different
cross-correlations. We have looked at that. And then described how to
move parts outside of the for-loops. Further, specific tricks used for doing
the calculations. And that is quite good to see we can do.

Later in chaper one, we are looking at different effects which are in-
cluded. Part of analyzing the angular cross-correlations in narrow redshift
bins required us to look at the different effects. Some of those are surpris-
ing. We have found that the BAO signal in the cross-correlations are higher.
Can be thought of as the redshift bins are providing a filter. The distance
between the bins is imprinted on the signal. The pairs would on average
have a larger separation. That leads to more peaks around the BAO scale
to become included. Further, the BAO peak can also be found in the RSD
peak. Depends on the bin width. Not present for broad bins, but enters for
narrow ones. That is features previously reported on in the litterature.

signal to noise chaper we signal-to-noise. Look at the different correla-
tions which are entering into the forecast. Previous work we had only looked
at this briefly, presenting order of magnitude arguments. Here we in detail
compare them. Also, we are looking in particular on the cross-correlations
between nearby redshift bins. An important point is the error-bars for the
nearby cross-correlations. The cross-correlations is falling off fast with dis-
tance, while the error is driven by the auto-correlation. We see for the
default binning the nearest one or two cross-correlations will contribute,
but ideally we should use a narrower redshift binning.
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Second part is looking at the forecast for future surveys. We are using
some really large surveys. Quite some interesting surveys are coming. Trying
to combine the information from a spectroscopic and photometric survey.
And we are questioning if combining them over the same part of the sky
can give better constrains on cosmology. Different from earlier, we only find
moderate gains when overlapping surveys. This is more along the lines with
what other groups are finding.

We have seen that which cross-correlations one includes makes a big
difference. For example, one could choose to only cross-correlate the bright
foreground galaxies with the background shear. Also including the counts-
shear cross-correlations of the photometric information is important. They
include some of the same information. If one exclude those correlations, the
conclusious would be bias agains overlapping surveys.

We see similar to our previous paper and other recent work that an-
alyzing a spec and photoz survey together has great benefits. Even when
analyzing them over different parts of the sky, their combination helps. That
is something we want to look deeper into. Should be stressed for convential
galaxy surveys. Papers trying to do constraints, should not only present
their results alone, but combine with other galaxy surveys.

The magnification is contributing. However less than we expected. There
is strong degeneracy between counts-shear and the magnification signal.
When not having galaxy shear, the magnification is nicely contributing.
While with shear included it is for the setup and effects considered here
unimportant. We stress this is not the full part of the story. Since the
magnification and count-shear is stongly correlated, it could be the perfect
tool for studying systematics.

The third paper is studying the bias. We have introduced the formulas
for one bias for each redshift bins. Require some calculations because the
photo-z also convolve the result and we are interested in the derivative of
the underlying bias. Introducing the priors are giving better constraints.
We are comparing the results when adding those constraints. Particulary,
we are studying how distance priors are adding. Those are assuming the
bias is evolving with a certain distance. We are in this chapter both looking
at the error on bias and the impact on the figures of merit. One key result
we find is that lensing does help constraining the bias. A key question is
the marginalizing over the other parameters. With a known cosmology the
auto-correlations would naturally be totally dominant. When not knowing
the cosmology having counts-shear lensing certainly helps.

Last chapter is looking that the dependence of different survey config-
urations. The part here is not very innovative. We do however stress that
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none of the other papers are actually doing the same, so doing this is needed.
The numbers can be useful for survey strategy for upcoming surveys. We
find that for the current analyzis, the photo-z precision is higher impacting
the forecast. While having a spectroscopic survey is good, one can recover
more information using a PAU photo-z. The results are a bit dependent
on the bin with. Selecting more narrow redshift bins would result in the
photo-z having a different effect. We see how the priors are entering in the
scaling. When having small areas, then the priors are an important part.
This chaper also includes the errors for all the parameters and how much
each parameter is improving for overlapping surveys of not.
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Chapter 4

Galaxy bias and stochastisity

4.1 Introduction

The late time expansion of the Universe can be measure through various
probes, including abundance of galaxy clusters, super novas, the cosmic mi-
crowave background (CMB), weak lensing shear and galaxy clustering. Each
probe has strength and weaknesses with respect to statistical power, exper-
imental difficulties and astrophysical assumptions. The weak lensing shear
will potentially in the next decade yield the strongest cosmology constraints,
if controlling the systematics.

While being a strong probe, the weak gravitational lensing depends on
the projected foreground mass, reducing the ability of e.g. measuring the
expansion history. The galaxy clustering is assumed and measured to di-
rectly trace the underlying dark matter distribution. Through measuring
galaxy overdensities for a fixed redshift, one can determine the growth with-
out projection over redshifts. While the galaxy and dark matter distribution
is related, the exact relation depends on galaxy formation [102], galaxy evo-
lution and selection effects. For constraining cosmology with galaxy distri-
butions, one need to model galaxy bias and marginalize over uncertainties
in modeling. Alternatively to reduce requirements on modeling bias, one
can constrain cosmology from the excess of galaxy pairs with 150 Mpc sep-
aration.

In this thesis, constraints from galaxy clustering and galaxy-shear cross-
correlations use the full correlation function [116], which require modeling
the galaxy bias. The forecasts depends on the details in the galaxy bias.
Previous in this thesis, the constrains was calculated with the fiducial bias,
except for a fixed galaxy bias. This chapter explore in detail the sensitiv-
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ity to galaxy bias. Previous results in chapter 3.1 on the same-sky benefit,
depended partly on stronger constraints from overlapping galaxy surveys.
The second section directly study the expected bias errors, focusing in par-
ticular on benefit of sample variance cancellations and benefits from cross-
correlations foreground bright galaxies with the background shear.

Overlapping galaxy surveys allows directly cross-correlation the galaxy
samples. An additional effects is the reduction of sampling variance through
both galaxy populations tracing the same underlying fluctuations. chapter
3.1 showed both effects contributes, stressing the importance of including the
covariance between the spectroscopic and photometric sample. This chapter
then looks directly on the galaxy bias, investigating which sample benefits
both from the additional cross-correlations and the sampling variance can-
cellation. In particular, we study the previous results where counts-shear
cross-correlations contribution, but is independent of using one or two fore-
ground galaxy populations.

For the forecast, the fiducial galaxy populations are flux limited samples
with 18 < iAB < 22.5 and 22.5 < iAB < 22.5 for respectively the spectro-
scopic and photometric sample. Selecting galaxies by e.g. applying colour
cuts, changed limiting magnitudes, photo-z quality cuts or template fitting
would result in samples with different properties. The galaxy bias would,
in addition to depth, photo-z and density, change. How would this change
the forecast? Section three study the changes in forecast when varying the
galaxy bias amplitude. The bias amplitude is particularly important for the
spectroscopic survey where redshift space distortion dominate the forecast.
A spectroscopic BAO survey normally target highly biased galaxies, but the
optimal population can differ when also including RSD constrains and the
cross-correlation with a background shear catalog.

Galaxies form in high density environment where gas can contract. The
HOD model [109, 133, 24] predict the galaxy bias from physical assump-
tions on how galaxies occupy dense regions, which can be implemented in
simulations and tested against real data. The fiducial bias is motivated by
a simple HOD model [51] that show a scale-independent and linear bias at
large scales. While the bias evolution in a linear model can be parameterized
with a few parameters, the fiducial parameterization use one parameter for
each redshift bin. The fourth section compare the forecast for two parame-
terizations of bias, one using a linear interpolation between four pivot points
and another with one parameter in each redshift bin.

Measuring e.g. the 3pt function [53, 52, 111, 45] would give additional
measurements of bias, which increase cosmological constrains. Understand-
ing the potential gains and required level of accuracy is important for decid-
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ing if the additional bias constraints justify the effort. To test the impact,
we add priors uncorrelated between redshift bias with a fixed absolute value.
The effect changes depending the strength of the priors, the probe and the
survey type. In particular non-overlapping and overlapping surveys differs
slightly in behaviour due to the cross-correlations.

The galaxy bias evolve slowly with redshift [46, 127]. Fitting the galaxy
bias with a wrong parametric form or too few free parameters can lead
to biased cosmological parameters. Including too many parameters would
unnecessary reduce the statistical precision. For the one-bias-per-bin param-
eterization each parameter is independent, meaning there is no assumptions
on bias evolution. To include the bias evolution, one can choose to reduce the
number of parameters, with the explained dangers from using a parametric
form. Alternatively one can estimate the errors using one-bias-per-bin and
include priors on the bias through the distance priors introduced in the the-
oretical section. The distance priors increase constraints through reducing
bias freedom, without fitting to a specific functional form.

The fiducial bias model, δg = b(z, k)δm, linearly and deterministic re-
late the galaxy (δg) and matter (δm) overdensities. In reality, the relation
at small scales include at stochastic component [112]. The stochastic com-
ponent change the auto-correlation of galaxy counts, while canceling out
in the counts-shear cross-correlations. While forecast scales considered are
choose to avoid stochasticity, we study the effect using a model introduced
in section (ref theory section). In addition to reducing the signal-to-noise,
one need to model and marginalize over the uncertainty in modeling the
bias stochasticity. Overlapping surveys provide potential additional means
of constraining the uncertainties in bias stochasticity.

4.2 Theory

The theory consist of three subsections. First subsection introduce the bias
derivative formula used throughout the chapter and the linear interpola-
tion parameterization we compare against in subsection 4.5.1. The second
subsection includes a formalism for adding priors on galaxy bias redshift
evolution, which is applied to the bias errors and forecast respectively in
subsection 4.3.7 4.5.3. Last subsection present the assumptions and formula
for testing the impact of stochasticity in subsection 4.5.4.
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4.2.1 Derivative of the galaxy bias

The default parameterization uses one parameter per redshift bin. In this
subsection we present the formula the derivative respect to bias, including
two populations and the effects of RSD and Magnification. Last we explain
the details of a bias parameterization linearly interpolating through four
interpolation points.

Uncertainties in the photo-z determination leads to overdensities origin
in one redshift to be observed at another. The overdensities observed in
one redshift is a linear combination of fluctuations at different redshifts.
Galaxy bias evolve with redshift and the observed overdensity is convolve
the redshift selection function and the galaxy bias. For the derivative of
bias, one can either use the true underlying bias or an effective bias after
including the photo-z effect. In this thesis we use the true underlying bias
as the nuisance variables.

Photo-z effects in theory predication can be approximated using transi-
tion matrices. If the predictions without photo-z is a matrix C, then the
correlations C̃ including photo-z effects can be written

C̃ij =
∑
mn

rimrjnCmn (4.1)

where r is a transition matrix [51]. The matrix element rij is the fraction
of a fluctuation in bin i which originates from bin j. Including the photo-z
effects with a the transition matrix is effectively a low resolution integral
of the selection function. In eq. 4.1 the first transition matrix correspond
to the lens redshift, while the second corresponds to the source redshift.
Generalizing the expressions to several populations and observables, these
should differ. The transition matrices for the Bright and Faint populations
are considered different, while for each population being equal for galaxy
counts and weak lensing shear.

The transition matrix leads naturally to expressions for the derivative
of the underlying bias. Let C̃AB

ij be the observed correlation in redshift bin
i and j of respectively the observables A and B. Further bxy is the bias in
redshift bin i of the observable X. The derivative of the observed correlation
with respect to the bias is then

∂C̃AB
ij

∂bXy
=

∑
m,n

[
rXiyr

B
jnC

MatB
yn + rAimrXjyC

AMat
my

]
(4.2)
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where CMatX is the cross-correlation of dark matter and one type of observ-
able X. Here X only differs for the galaxy counts of the two populations,
but can more generally denote e.g. intrinsic alignments or clustering of sizes
or magnitudes.

In eq. (4.2) the approximation CAB ≈ bACMatB is inaccurate. Galaxy
clustering, redshift space distortions and cosmic magnification together with
other minor effects cause the galaxy counts overdensities. These effects have
different dependence on bias. Most importantly the RSD contribution de-
pends on the velocity introduced by the underlying matter fluctuations and
is independent of the galaxy bias. In this thesis and underlying idea is
measuring RSD in 2D correlation functions by using narrow redshift bins.
The expression (4.2) includes the cross-correlation between matter and ob-
servables to only consider the part which is directly caused by the galaxy
clustering. Estimating these correlations does not require the full calcula-
tion. Instead one can reuse terms from the correlation function calculation
using the Cl estimation algorithm outlined in chapter 2.1.

The interpolation bias specifies the bias for pivot points and interpolate
in between. Following the article [51] the pivot points are z = 0.25, 0.43, 0.66, 1.0
for both galaxy populations and the fiducial bias values is independent of
the parameterization. In subsection 4.5.1 we compare the constraints using
either the one parameter per redshift bin or the linear interpolation param-
eterization.

4.2.2 Distance priors in bias

The universe is modeled with wCDM with 6 basic parameters, the red-
shift evolution of the dark energy EoS is parameterized through w0,wa and
optionally we treat the growth parameter γ as free to allow for modified
gravity effects. How many parameters are needed to describe the galaxy
bias? The galaxy bias relates overdensities in galaxy counts to overdensities
in the underlying matter fields (δGal = bδMat). Modeling the bias depends on
understanding galaxy formation, galaxy evolution and the sample selection.
A parameterization need enough freedom to not bias the final result, while
introducing too many parameters leads to overly low constraints. Unfortu-
nately to parameterize the galaxy bias can require more nuisance parameters
than the cosmological model.

In this thesis, the fiducial parameterization of galaxy bias is one free
parameter for each redshift bin. For the Bright and Faint populations,
this results in respectively 72 and 12 parameters (and redshift bins). The
galaxy bias evolve slowly, changing on the time scale of 1Gyr . One can
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either reduce the number of parameters or alternatively add priors. The
model we have adopted for priors on bias, assumes nearby correlations are
fully correlated (1.) and the correlation coefficient linearly decline until
reaching zero when the redshift are separated by the characteristic length
ΔR. Expresses mathematically, the Pearson correlation coefficients between
two bias measurements are

r(Δz) =

{
1.−Δz/ΔR, |Δz| <= ΔR

0, ΔR < |Δz|
(4.3)

where Δz is the redshift separation and ΔR the characteristic length where
the correlation reaches zero. In addition we set the diagonal terms in the
covariance of bias priors to 1./σ2

i . Normally the diagonal elements are from
real external priors or theoretical bounds from simulations. In this chapter
only weak priors of σi = 0.2 is applied to clearer see how the error on bias
(subsection 4.3.7) and forecast (subsection 4.5.3) changes when assuming a
correlation length of the galaxy bias.

Adding priors instead of reducing the number of parameters have several
advantages. When using the reduced number of bins, there is a more implicit
knowledge of bias included in the analysis. Alternatively the covariance
matrix of bias can be obtained from observation of e.g. the 3pt function, or
using theoretical priors from the simulations. Also, instead of calculating
the correlation for each bias parameter, one use the approach described in
last subsection for determining the bias derivative and later add the bias.
In this manner using priors are computationally quite effective.

4.2.3 Stochasticity of bias

The relation between dark matter and galaxies is on large scale arguably
close to deterministic [51]. In this thesis the fiducial bias for both galaxy
populations are deterministic and on the form

δg = bδm (4.4)

where b is the galaxy bias and δg and δm are respectively the galaxy and
matter overdensities. The relation between matter and galaxies including a
stochastic component can be written

δg = bδm + ε (4.5)

where ε is the random component. Any linear matter dependency in ε would
only lead to a redefined bias. More generally both the bias and stochasticity
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could depend on higher order of the matter fluctuation. These models are
beyond the scope of this article.

A stochastic component uncorrelated with the matter field (eq. 4.5)
leads to the power spectra P̃ including stochasticy is

P̃ (z, k) = P (z, k) +A(z, k) (4.6)

where A(z, k) is an additional contribution to the power spectrum P . In
general the contribution can depend on galaxy population, redshift and scale.
Calibrating against simulation one could measure the expected errors, scale
and redshift dependence of A(z, k). One should note such a calibration
require several simulations to test the impact of cosmology. Instead we
focus on the direct effect on the auto-correlation

Cii = b2 〈δm, δm〉+ 〈ε, ε〉 (4.7)

in which the stochasticity introduce an additional term 〈ε, ε〉. For different
redshift bins we assume uncorrelated stochasticity, leading to unchanged
cross-correlations. The stochasticity in the correlations can be modeled by

C̃XY = CXY + δXY S (4.8)

where X,Y are the galaxy populations and S the additional component. En-
vironmental effects can introduce correlations of the stochasticity of galaxy
populations, but they are for simplicity considered independent. In sub-
section 4.5.4 the stochasticity is introduced directly into the correlations,
assuming the term S in eq. (4.8) is scale independent. The fiducial red-
shift dependence is constant with a free parameter for each redshift bin and
galaxy populations. More details follow in subsection 4.5.4.

The standard stochasticity function r is the ratio

r2 ≡ c2gm
cggcmm

(4.9)

where cgm, cgg and cmm are respectively the counts-matter, counts-counts
and matter-matter correlations. The introduced contributions S (4.8) is
related to r (4.9) through

r2 =
cgm

(cgg + S)cmm
=

(
1 +

S

Cgg

)−1
(4.10)

or alternatively the relation can be written be reversed and written



114 CHAPTER 4. GALAXY BIAS AND STOCHASTISITY

S = Cgg(1− r−2). (4.11)

One see from (4.10) and (4.11) the values of S is typically less, but com-
parable to the auto-correlations if being significant and additionally the no
stochasticity limit r = 1 leads to S = 0.

Introducing the parameter S simplifies the addition of stochasticity. It
also creates for our assumptions a term with similar characteristics as the
shot-noise and the results on stochasticity therefore also extend to uncer-
tainties on the galaxy count shot-noise. The effect of stochasticity on the
forecasts is presented in subsection 4.5.4.

4.3 Error on bias

Expected errors on galaxy bias differs when changing the surveys used, over-
lapping/separate skies, which cross-correlations are included, if measuring
shear, if fixing cosmology and several others. The fiducial configuration
is FxB-All, being all cross-correlations of shear and galaxy counts for a
photometric and spectroscopic sample. In particular we study the gain of
overlapping surveys. Cross-correlating overlapping surveys allows for ad-
ditional bias measurement and the benefit is photo-z dependent. Several
plots show the relation between uncertainties in cosmology and measuring
the galaxy bias. In cases increasing the Bright photo-z result not through
cross-correlation, but degeneracies with cosmology, to a higher error on the
Faint bias.

4.3.1 Fiducial errors.

At low redshift the error on bias diverges and only the redshift range 0.2 < z
is included. While both galaxy populations are analyzed from z = 0.1, the
first bins have little constraining power. In addition to the lmax criteria,
correlations is not included when entering into non-linear scales (defined
in the second article). For both the exact calculations and the Limber
approximation, the main contribution to an auto-correlation is the scale
k = (l + 0.1)/χ(z), where χ(z) is the radial distance to the mean redshift.
Lower redshift bins are therefore entering into non-linear scales for lower
l-values. Also, the errors plotted are for the underlying bias (see subsection
4.2.1). While the low redshift bins often are removed, their bias is measured
in nearby bins because of photo-z transitions.
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Figure 4.1: Absolute error on the galaxy bias. The four lines corresponds
to overlapping (x) and non-overlapping surveys (+) for the two populations,
Faint and Bright. Points corresponds to errors measured using one bias
parameter for each bin. On the x-axis is the mean for each the corresponding
redshift bin. For the bright sample the binning is thinner and there are more
point. In the top panel measurement include cross-correlations of shear and
galaxy counts, while the lower only uses galaxy counts. A vertical line is
included at 10−2 to compare the errors in the two plots. The two solid lines
is the bias (upper - Bright, lower - Faint). In the top and bottom panel the
bias lines are respectively multiplied with 5 ∗ 10−3 and 10−2.
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The graphs display the absolute error on bias. Instead of plotting the
relative error, the two solid lines displays the redshift dependence of bias.
An multiplicative normalization is introduced for fitting the bias in the plot
and the upper line corresponds to the Bright population. Comparing the
error on bias to the measurements, one see the relative error on bias. For
redshift above z = 0.5 the relative errors is increasing for both populations,
overlapping and separate volumes and if galaxy shear is included or not. The
exception is low redshift measurements of the Bright galaxy bias. There the
relative errors increases because correlations entering into non-linear scales
as discussed in the last paragraph.

In Figure 4.1 the horizontal line at 10−2 is included to compare the two
panels. The top panel displays errors when including all combinations of
galaxy shear and counts, while the lower panel only includes galaxy counts.
Comparing the two, one see how the galaxy shear also helps constraining the
bias. Including the shear both helps measuring the cosmology and allows for
counts-shear cross-correlations. These two effects are discussed respectively
in subsection 4.3.2 and 4.3.3.

For understanding the same-sky benefit, the Figure 4.2 includes the error
ratio between different and same-sky. The errors is plotted in Figure 4.1 and
the ratios are plotted separately in Fig. 4.2 to detailed study the same-sky
benefit on measuring galaxy bias. Only including galaxy counts the error is
30% higher is non-overlapping samples across a large redshift range. When
including lensing the same-sky benefit reduces. Even for one population
alone (not shown here), the additional gal-shear and shear-shear correlations
adds more information to the bias. The exception is the lower redshifts where
the cross-correlating Bright galaxy counts with the background shear adds
valuable information.

4.3.2 Dependence on cosmology.

Constraints on cosmology including galaxy clustering depends strongly on
the galaxy bias. The other way around also holds true, the expected er-
rors on bias is sensitive to the knowledge of cosmology. For quantifying
the benefits of overlapping surveys one need to keep the last effect in mind.
When studying the expected errors on the galaxy bias, one should marginal-
ize over the cosmology. A simplified approach fixing the cosmology, which
simplifies the code implementation, would lead to wrong conclusions. This
subsection looks briefly at the issue, comparing constrains on bias fixing or
marginalizing over uncertainties in the cosmology.

Figure 4.3 contains the ratio of errors marginalizing over cosmology over



4.3. ERROR ON BIAS 117

Figure 4.2: The same-sky benefit on measuring bias. Each line plots the
error in non-overlapping samples over overlapping samples. For values over
one overlapping samples are beneficial in measuring the bias. The first Two
lines (FxB) includes shear and galaxy counts, while the last two only include
galaxy counts. Two lines (-bright) plot the error on the Bright galaxy bias,
while two (-faint) show the error on the Faint galaxy bias.
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Figure 4.3: Effect of marginalizing over cosmological parameters. Each line
is a ratio of errors when marginalizing over cosmology to the errors for
fixing the cosmology. Values are expected to always be above 1. The plot
illustrates the improvement in measurement of bias if cosmology was known.
On the x-axis is the mean for each redshift bin. The top and lower panel
plots the ratio for the Bright and Faint bias respectively. Two lines (FxB-
All, F+B-All) plots the ratio including galaxy counts and shear, while other
two (FxB-Counts, F+B-Counts) only include galaxy counts.



4.3. ERROR ON BIAS 119

the error when fixing the cosmological parameters. The ratio is 2-6x at the
peak, depending on the probe and bias considered. The increase in FoM are
equivalent to an increase of a factor of 4- 36x in the survey area. The peak
around z = 0.7 is caused by a maximum in the galaxy density and a high
galaxy density removes the maximum. Constraining the error on bias only
using galaxy counts is more sensitive to the knowledge of cosmology. This
is expected since shear includes additional measurements both of cosmology
and the galaxy bias through cross-correlations.

The bias errors in non-overlapping surveys (F+B), shown in Fig. 4.3,
are more sensitive to cosmology than in overlapping surveys (FxB). For the
Faint bias the impact is largest and the difference is large including shear
or not. In the Bright sample the change is largest using only galaxy counts
and the expected errors including shear is quite similar. Therefore fixing
cosmology would in Fig. 4.2 hide part of the benefit of overlapping surveys.

The bias error ratio in Fig.4.5 dropped sharply for high redshifts. To
show the redshift dependence, the Fig. 4.4 include the error for FxB-All
when marginalizing over cosmology. The normalization used divide the error
including all cross-correlations to the error for the ΔZMax on the x-axis.
Hence the ratio is a fraction of the total constraints. First looking at the
constraints of the Bright bias, the auto-correlation contributes most to low
redshift bins. At the two highest redshift bins z = 0.65, 1.01 the nearby
cross-correlations becomes more important. The Faint bias for moderate
(z = 0.49) and high redshift improves from more cross-correlation between
nearby Bright redshift bins and the benefit is propagated to the Faint bias
when cross-correlating the galaxy populations.

In Figure 4.5 we look at which cross-correlations are most sensitive to
cosmology when measuring bias. In chapter 3.1 we introduces ΔZUpper as
the maximum redshift separation between the mean of the two redshift bins
in one correlations. Explained in the caption of Fig. 4.5 and in chapter 3.1,
the definition is useful to understand which cross-correlations contributes.

The auto and cross-correlations contribute differently to measuring the
galaxy bias. In Fig. 4.5 the bias error ratio for free versus fixed cosmology
is plotted as a function of ΔZMax. The ΔZMax variable is a maximum
separation for a given cross-correlation between the mean of the two redshift
bins. Cross-correlations which does not satisfy the requirement is left out
of the forecast. For ΔZMax = 0 only the auto-correlations are included.
Increasing to above ΔZMax ≈ 0.01 the ratio drops sharply, especially for the
high redshift bins. For a fixed cosmology cross-correlations close redshift
bins is contributing significantly to measuring the bias (plot not included),
leading to the ratio dropping. Separations of ΔZMax ≈ 0.1 includes cross-
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Figure 4.4: Redshift dependence of the bias constraints. The relative con-
tribution of the ratio in the bias error (to the case when cosmological
parameters are fixed) as a function of the maximum redshift separation
ΔZUpper allowed in the cross-corrrelation between different redshift bins.
On the x-axis is the maximum separation. All errors are calculated from
FxB-All, which is all cross-correlations of Bright and Faint for overlapping
surveys. The top panels displays the Bright bias ratios corresponding to
z = 0.22, 0.35, 0.65, 1.0, while the lower panel show the Faint bias ratios for
z = 0.30, 0.49, 0.71, 0.96, 1.24.
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Figure 4.5: Effect of marginalizing over cosmological parameters when limit-
ing the redshift separation in the cross-correlations. Each line is the ratio of
errors when marginalizing over cosmology to the errors with fixed cosmology
for FxB-All. On the x-axis the maximum distance between the mean of the
two redshift bins in a correlation. For ΔZUpper = 0 only the autocorre-
lations are included, intermediate values adds cross-correlations with close
redshift bins and high values also include lensing. The top panel displays
the ratio for the Bright bias in z = 0.22, 0.35, 0.65, 1.01 and the lower panel
plots the ration for the Faint bias in z = 0.30, 0.49, 0.71, 0.96, 1.24.
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correlations between the Faint and Bright population. The cross-correlations
leads to higher gains when knowing the cosmology. Hence the ratio of the
Faint, which benefits most from cross-correlating the samples are increasing.

4.3.3 Cross-correlations.

In chapter 3.1 we presented the forecast when including different counts-
shear cross-correlations. Overlapping surveys allows for cross-correlating
Bright galaxy counts with Faint galaxy shear. One can for a photometric
survey cross-correlate the galaxy counts and shear, both from the same
survey. These two type of counts-shear cross-correlations contribute about
equal to the constraint. For the forecast, removing either counts-shear cross-
correlations with the Bright and Faint galaxy counts is a minor effect. When
removing all counts-shear cross-correlations the constraints drop significant.

A contributing factor is the cross-correlations helps to measure the bias.
Two panels in Fig. 4.6 displays Bright and Faint error in bias. The lines
shows an error ratio when removing different correlations from FxB-All with
respect to FxB-All. For FxB-FgFk and FxB-BgFk respectively the Faint and
Bright galaxy counts cross-correlated with the Faint shear is not included.
For both F and B galaxies the change is small, typically less than 1%. On
the other hand, removing all counts-shear cross-correlations (FxB-gk) sig-
nificantly changes the bias error. For the Bright bias the effect is only 1%,
while the Faint bias error increases with 25% at low redshifts. As expected
the change is higher for the Faint bias since the Bright bias is better con-
straint from galaxy clustering. Cross-correlations of galaxy counts already
measures ratios of the bias. In addition correlating either populations with
shear is then sufficient for measuring the bias.

4.3.4 The effect of covariance

Overlapping surveys benefit from cross-correlations and sample variance
cancellation. The overlapping surveys have additional covariance between
the observable. Additional covariances improve the constraints when dif-
ferent observables respond sufficiently different to the same variable. Even
without cross-correlating the observables, two overlapping surveys are with
free galaxy bias benefit from overlapping skies. The improvement is not
present for a fixed bias.

Fig. 4.7 shows ratios of bias errors for non-overlapping (F+B-All) and
overlapping without cross-correlations (FxB-Cross) to the errors from over-
lapping and correlated surveys (FxB-All). In the top panel the Bright bias is
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Figure 4.6: The improvement in measuring bias from counts-shear cross-
correlations. Lines corresponds to the ratio in bias error for when removing
parts of the counts-shear cross-correlations to the FxB-All where all counts-
shear correlations are included. In FxB-FgFk all correlations are included,
except counts-shear cross-correlations within the Faint sample. Likewise
FxB-BgFk remove the cross-correlations of Bright galaxy counts with shear
from the Faint population. In FxB-gk all counts-shear cross-correlations are
removed. The top panel displays the error on the Bright bias, while the
lower show the error on the Faint bias.
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Figure 4.7: Effect of overlapping volumes. The plots displays ratios of the
Bright and Faint bias errors with respect to FxB-All. Two probes F+B-All
and FxB-Cross are included in the ratios. The F+B-All combine the popula-
tions over separate volumes, while FxB-Cross is overlapping surveys without
cross-correlating the observable. These definitions intend to discriminate be-
tween constraints from covariances and additional cross-correlations. On the
x-axis is the redshift. Top and bottom panel respectively marginalize and
fix cosmological parameters.
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slightly less constraint at hight redshift in FxB-Cross compared to F+B-All.
The Bright bias is good constrain and we expect less effect of overlapping
volumes. For the Faint galaxy bias, the effect of overlapping volume is larger
and redshift dependent. In the bottom panel the cosmology is fixed. There
the Faint bias F+B-All ratio is rather constant until z = 0.8 where the
galaxy density decreases, therefore the change over redshift is due to cos-
mology dependence. The higher ratio of the Faint bias for fix cosmology
means overlapping volumes are more effective when having small areas or
high priors on the cosmology.

4.3.5 Photo-z

The bias measurements are affected by uncertainties of the redshift. The
fiducial values for our two samples are: a photometric (Faint) and spectro-
scopic (Bright) with respectively Gaussian redshift uncertainty of 0.05(1+z)
and 0.001(1+z). For analyzing the Faint sample we use broad redshift bins.
Better Faint photo-z only substantially improve the forecast when binning
the Faint sample with narrow redshift bins (plots not included). Instead
we focus on the redshift uncertainty of the Bright sample, fixing the Faint
photo-z to the fiducial values.

Fig. 4.8 show the bias error ratio of FxB-All for spectroscopic and photo-
z given on the x-axis in the Bright sample. Different lines corresponds
to the ratio in distinct redshift bins. The vertical line at 0.0035 is the
forecasted error in the PAU narrow-band survey. For both population the
PAU photo-z recover over 90% of the error on bias. One should note this
conclusion depends strongly on the Bright population redshift bin width,
which fiducially is Δz = 0.01(1 + z). Increasing the photo-z to 0.01(1 + z)
doubles the error on the Bright bias, which illustrate the importance of
narrower photo-z dispersion than your typical redshift bin when using galaxy
clustering.

The Bright bias ratio in Fig. 4.8 approaches zero for typical photomet-
ric redshift. Analyzing the bright sample in 72 narrow bins and one bias
parameter is clearly not possible without accurate redshifts. In the bottom
panel are the Faint bias ratios. The Faint galaxy is affected through cross-
correlations and the uncertainty in cosmological parameters. These effects
are less directly affecting the measurement and the Faint bias error declines
slowly with increasing Bright photo-z. Finally, the asymptotic values are
0.4 − 0.6%. On can when increasing the Bright photo-z still measure the
Faint bias through the clustering and counts-shear cross-correlations.

The cross-correlations between the two galaxy populations is only pos-
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Figure 4.8: The impact of photo-z on measuring bias. Lines corresponds to
the ratio of the error in bias when using spectroscopic determined redshifts
(σ68 = 0.001(1 + z)) to the error when including uncertainty in the red-
shift. On the x-axis is the Gaussian photo-z (units of (1+z)) of the Bright
sample. The top panel include the ratio for the Bright sample in the bins
z = 0.22, z = 0.35, z = 0.65 and z = 1.01, while the lower panel displays
the ratio for z = 0.3, z = 0.49, z = 0.71, z = 0.96 and z = 1.24 in the Faint
sample.
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Figure 4.9: The same-sky benefit for measuring bias for varying photo-z.
Lines corresponds to ratios of the error of the Faint bias for non-overlapping
to overlapping surveys for different redshift bins. On the x-axis is the Gaus-
sian photo-z (units of (1+z)) of the Bright sample. Both panels displays the
ratios for z = 0.21, z = 0.15, z = 0.16 and z = 0.19. The upper panel is the
ratios including galaxy counts and shear, while the lower panel only include
galaxy counts.
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sible for overlapping surveys. Fig 4.9 show the same-sky ratio, which is
the ratio ratio of bias errors expected for non-overlapping to overlapping
surveys. It is the fractional improvement in bias error from overlapping
surveys. Top panel uses both shear and galaxy counts while bottom pael
only includes counts, since these two configurations are affected differently
by having the same sky location. For the Bright bias the same-sky ratios
are not included. An increasing Bright population photo-z sharply drop
the ability to measure the Bright galaxy bias. In overlapping samples the
Bright-Faint cross-correlations also helps constraining the bias. The ratio is
artificially high and therefore not included.

The absolute errors increase strongly for all configurations. An increas-
ing or decreasing ratio only results from errors growing faster for either
overlapping or non-overlapping surveys for larger photo-z. In Fig. 4.9 a
higher Bright photo-z lead to decreased Faint bias same-sky benefit, while
it increase for galaxy counts. Including lensing, the shear-shear observable
measure cosmological parameters and Faint clustering and counts-shear can
measure the Faint bias. With good Bright photo-z the cross-correlations
between Bright and Faint galaxy counts also contributes. In only observ-
ing the galaxy number counts, the situation is different. The clustering of
faint number counts alone only weakly constraints cosmology and the Faint
galaxy bias. For higher photo-z the cross-correlations becomes more impor-
tant to break degeneracies between cosmology and the Faint galaxy bias (see
also 4.10).

Last in the subsection is Fig. 4.10. It shows the ratio of bias error for
a fixed cosmology to marginalizing over the cosmology. The ratio is always
above unity since knowing cosmology improves measurements of bias. The
effect is opposite for the Bright and Faint sample. For the Bright and Faint
sample the ratio respectively drops and grows for increasing Bright photo-
z. The increasing Bright photo-z lead to a rapid growing error on bias.
Degeneracies of bias and cosmology decrease since the cosmology is relatively
better known. For the Faint bias, the absolute error is marginally affected
for a fixed cosmology, while the error increase with higher Bright photo-z
when marginalizing over cosmology. Hence the Faint bias ratio is increasing.
This again points to the Bright sample lowers the Faint bias errors through
measuring the cosmology.

4.3.6 Density

Galaxy density changes the forecast on cosmology and galaxy bias. This
subsection study the effect on galaxy bias. The Faint galaxy density is high
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Figure 4.10: Effect of photo-z and cosmology. The error ratios is for FxB-All
and between marginalizing and fixing cosmological parameters. On the x-
axis is the Gaussian photo-z in the Bright sample. The top panel shows the
Bright bias ratio for redshift bins with mean z = 0.22, 0.35, 0.65, 1.01. In the
bottom panel is the ratio for the Faint bias in z = 0.30, 0.49, 0.71, 0.96, 1.24.
A vertical line indicate a PAU photo-z of σz = 0.0035(1 + z).
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Figure 4.11: Impact on the galaxy density for measuring the bias. Each line
is the ratio when the spectroscopic sample has the fiducial density of 0.4
gal/sq.arcmin to a density indicated on the x-axis. All lines estimated the
error from FxB-All, which is all cross-correlations of shear and counts for two
overlapping photometric and spectroscopic surveys. The top panel displays
the ratio for bins with mean redshift of z = 0.22, z = 065, z = 1.01, z = 1.11
for the Bright bias. The lower panel includes the ratio for the Faint bias in
the bins z = 0.3, z = 0.49, z = 0.71, z = 0.96 and z = 1.24.
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and variations lead only to small changes in the error on bias, although it
impact cosmological constraint through e.g. the shear-shear measurement.
In Fig. 4.11 the bias error shown varying on the x-axis the Bright sample
density, normalized to unity for 0.4 gal/arcmin2, which is the fiducial density
of the Bright sample.

As expected the bias error decrease monotonically with galaxy density.
The galaxy sample is naturally less dense at high redshifts, leading to the
error on bias improving most for the highest redshift bins. For the Bright
bias we see only having 0.1 gal/arcmin2, or 25% of the fiducial value, the
Bright bias error is 20− 80% higher than the fiducial error. The Faint bias
benefits from cross-correlations between the samples and is therefore less
dependent on the Bright galaxy density. Increasing the density beyond the
fiducial density result in smaller improvements. .

4.3.7 Distance priors on bias

From theory, simulations and data the galaxy bias is shown to evolve slowly
with redshift. In forecasts and when fitting to data one parameterize the
galaxy bias and marginalize over the uncertainties in galaxy bias. Using
too few parameters lead to biased estimates, while too many overly reduce
the statistical power. Subsection 4.5.1 compare the cosmological constraints
when interpolating bias between pivot points of using one parameter for each
redshift bin. Alternatively to reducing the number of parameters, one can
use one parameter per bin and add priors for bias evolution. We introduced
in subsection 4.2.2 a prior on bias evolution. In this subsection we study
how distance priors affect bias measurements, while section 4.3.2 cover the
impact on cosmology.

Fig. 4.12 in two panels the absolute errors on the Bright and Faint bias
when increasing distance priors in the Bright sample. Bias distance priors
are only effective in the Bright sample. For the Faint sample the redshift bins
are 7 times thicker (see chapter 3.1). The distance priors contribute when
relating bias measurements in different bins. In the Bright sample the priors
contribute since ΔR often span several redshift bins. For the Faint sample
the bin are thick compared to the bias prior correlation length. Therefore
the priors contribute less and the plots are not included. The degeneracies
with cosmology affect bias errors. To discuss trends in Fig. 4.12, the Fig.
4.13 plot ratios of free to fixed cosmology to quantify the sensitivity.

When adding distance priors on the Bright galaxy bias, the Bright bias
errors decline steadily. For low (z = 0.22) and high (z = 1.22) redshifts the
errors are respectively 2 and 3 times lower. The top panel in Fig. 4.13 shows
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Figure 4.12: Effect of distance priors on the bias. The plot displays the
absolute error on the bias including distance priors. The diagonal entries
in the distance priors covariance are 0.22, while the introduced correlation
length Δz is plotted on the x-axis. All lines are for FxB-All, which is the
combination of shear and galaxy counts for overlapping photometric and
spectroscopic surveys. The top panel is showing the errors for the Bright
bias in the redshift bins z = 0.12, z = 0.15, z = 0.16 and z = 0.19, while
the bottom panel show the errors on the Faint bias in the bins z = 0.22,
z = 0.49, z = 0.60 and z = 0.83.
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Figure 4.13: Sensitivity to cosmology in bias error when applying distance
priors. The error ratios is between marginalizing and fixing the cosmology.
Varying on the x-axis is the bias prior distance ΔR (see definition of distance
priors). The top panel is showing the ratios for the Bright bias in the redshift
bins z = 0.12, z = 0.15, z = 0.16 and z = 0.19, while the bottom panel show
the ratios on the Faint bias in the bins z = 0.22, z = 0.49, z = 0.60 and
z = 0.83.
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the sensitivity to cosmology when measure the Bright galaxy bias. Adding
stronger distance priors first lower the difference between marginalizing and
fixing cosmology. For weak priors the constraints on cosmology improves
more than the bias, leading to the drop. For higher correlation length (ΔR)
the contribution is to measuring bias and the ratio again grows.

The bottom panel in Fig. 4.12 show absolute priors of the Faint bias
for increasing Bright distance priors. Priors are here applied one popula-
tion (Bright) and then indirectly affecting the other (Faint) through cross-
correlations and measuring of cosmology. One expect largest change in mea-
suring the Bright bias, since the Bright bias directly include the priors. The
top compared to the bottom panel has lower relative range on the y-axis.
Reading the number one find the Faint bias improve with 30%, while the
Bright bias error change with a factor of 2-3.

For 0.01 < ΔR0.04 the error on bias drops sharply, in contrast to the
Bright errors that decline steadily. What is causing the drop? In Fig. 4.13
is the sensitivity to cosmology. One can directly compare Fig. 4.12 and Fig.
4.13 since the probe, x-axis range and redshift bins are equal. The two plots
show similar decline in error and effect of marginalizing over cosmology. For
0 < ΔR < 0.04 the graphs drops linearly in the bins z = 0.49, 0.60, 0.83 and
then flattens. In the lower redshift bins at z = 0.22 both graphs are flat.
We therefore attribute lower errors on the Faint bias to improved cosmology
constraints from the Bright sample.

Distance priors on the galaxy bias is introduced here. To simplify the
comparison with the literature we have not included distance priors in the
fiducial forecasts. Including distance priors would not invalidate other con-
clusions, but actually increase the benefit of overlap as discussed in section
4.5.3 and appendix B.

4.4 Bias amplitude

The last section errors in bias, discussing the expected errors, dependence
on cosmology, importance of cross-correlations, effect of photo-z, galaxy
density and distance priors. All results in last section used the fiducial
bias and this section focus on varying the bias amplitude. The galaxy bias
relate galaxy clustering and matter fluctuations. A changed bias amplitude
affects e.g. the importance of redshift space distortions, which is caused
directly from matter fluctuations. The first subsection study the absolute
FoM amplitudes, while the next three focus on relative benefits of RSD,
BAO and Weak Lensing for varying bias amplitude. Focusing on trade-offs
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between effects is background for the next section and in general helps to
understand the benefits of combining photometric and spectroscopic surveys.

4.4.1 Absolute error

In this chapter the fiducial galaxy bias is linear, deterministic and scale
independent. The Faint and Bright bias have, as described in chapter 3.1,
respectively the redshift dependence bB(z) = 2+2(z−0.5) and bF (z) = 1.2+
0.4(z − 0.5). This section introduce an additional multiplicative amplitude
(relative bias amplitude), meaning unity is the fiducial bias. When cross-
correlating surveys a larger difference between bias amplitudes for samples
result in better constraints. Therefore for comparing effect with relative
biases one should remember the fiducial Bright and Faint differs greatly.

The bias relate real space galaxy and matter overdensities. Gravitational
infall of galaxies towards matter overdensities along the line of sight shifts
the redshift, which is the redshift space distortion. The additional observed
overdensity depends on the underlying matter and is independent of the
galaxy clustering and galaxy bias. The galaxy bias determine the relative
strength of the intrinsic clustering and the RSD signal. A low bias the RSD
dominate, while for a high bias the contribution comes from the clustering
signal

Increasing the galaxy bias reduces the impact of shot-noise. The mea-
sured galaxy counts is an integer quantity. Correlating a galaxy count with
itself (auto-correlation), creates an approximentally Poisson noise called the
shot-noise. The shot-noise is independent of bias and depends inversely on
the surface density of galaxies, leading to a higher noise term for the galaxy
clustering of the Bright (spectroscopic) sample. Since the auto-correlations
are proportional to b2 increasing the bias leads to a higher signal. Increas-
ing the bias therefore decreases the sensitivity to shot-noise. Because of the
scaling, doubling the bias corresponds to four times higher density.

Third, overlapping samples reduces sample variance. Galaxy populations
with large bias differences benefit most. At redshift zero the fiducial bias
for the Bright and Faint populations equals, while the Bright to Faint bias
ratio is respectively 1.7 and 2.1 for z = 0.5 and z = 1. For a varying bias
amplitude, the sample variance is an important effect and next to redshift
space distortions.

The bias amplitude affects the expansion and growth history constraints
differently. Therefore trends are in this subsection shown for FoM and FoMγ ,
unless specified otherwise. Fig. 4.14 show respectively FoM and FoMγ for
FxB-All, F+B-All, FxB-Counts and F+B-Counts in the top and bottom
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Figure 4.14: Effect of changing the amplitude of the Bright galaxy bias.
The panels displays the absolute FoM. On the x-axis is a multiplicative
amplitude for the Bright galaxy bias relative to the fiducial case (i.e. the
fiducial case is 1 on the x-axis). The four lines in each plot corresponds
to FxB-All, F+B-All, FxB-Counts and F+B-Counts. In the top panel the
impact is displayed for FoM and similar FoMγ is shown in the bottom panel.
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panel for varying Bright bias amplitude. One see in the figure two different
behaviors. The forecast for FoM increase, while FoMγ decrease for increasing
Bright galaxy bias.

The FoM the constraints comes from intrinsic clustering measuring the
shape and not redshift space distortions. Increasing the clustering reduces
the effect of shot-noise, especially for the Bright sample. Relative ampli-
tudes around unity or above leads sample variable cancellations because of
larger difference in bias. For large Bright bias amplitude the forecast is
significantly different for overlapping and non-overlapping surveys. Consis-
tent with forecast in chapter 3.1, the effect of overlapping surveys is higher
when only using number counts. Redshift space distortions dominates the
FoMγ constraints. A higher Bright bias means stronger intrinsic clustering,
which reduce the part of overdensities being caused by RSD and therefore
expected values of FoMγ . Also here overlapping surveys has sample variance
cancellation when having sufficiently different bias in the two populations.

Fig. 4.15 show FoM and FoMγ for varying the Faint bias amplitude.
Here the changes in the constraints are smaller compared to varying the
Bright Bias in Fig. 4.14. The Faint sample models a photometric survey
with σz = 0.05(1 + z), which is more suitable for weak lensing than galaxy
clustering. Inaccuracies in redshift determination above σz ≈ 0.005(1 + z)
erase radial information. Because the photo-z is broad, there is only minor
improvements using narrow bins for the Faint sample. The importance of
clustering and the impact of the galaxy bias are therefore lower. Also,
increasing the Faint bias makes the two biases more similar, reducing the
benefit of overlapping samples. Last, the counts-shear signal to noise reduce
with higher Faint bias, leading to FxB-All and F+B-All increasing for FoM.

4.4.2 Redshift Space Distortions

The last subsection studied the change with bias amplitude of fiducial con-
figuration, including the effects of RSD, BAO and Lensing. We now study
these effects separately, beginning with RSD in this subsection and con-
tinue in the next two subsection with BAO and Lensing. Fig. 4.16 show
ratios of redshift to real space forecasts. The top and bottom panel displays
respectively varying the Bright and Faint bias amplitude.

From the top panel of Fig. 4.16, the RSD completely dominates for
a low (1/10 of fiducial) Bright bias amplitude. Including redshift space
distortions boost the FoM with a factor of 10. This effect is anticipated since
for low galaxy amplitudes RSD is the main contributions to the correlations.
Naturally when only including number counts the change is higher, since the
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Figure 4.15: Effect of changing the amplitude of the Faint galaxy bias. The
panels displays the absolute FoM. On the x-axis is a multiplicative amplitude
for the Faint galaxy bias relative to the fiducial case (i.e. the fiducial case is
1 on the x-axis). The four lines in each plot corresponds to FxB-All, F+B-
All, FxB-Counts and F+B-Counts. In the top panel the impact is displayed
for FoM and similar FoMγ is shown in the bottom panel.
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Figure 4.16: The effect of RSD for varying bias amplitudes. Two panels are
showing the ratio of FoM in redshift to real space. For values below one
then RSD decrease FoM. On the x-axis the is bias amplitude relative to the
fiducial value. For the top and bottom panel respectively the Bright and
Faint bias amplitude are changed. The four lines corresponds to FxB-All,
F+B-All, FxB-Counts and F+B-Counts.
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counts-shear and shear-shear signal is only minimally affected by redshift
space distortions. One should note (see chapter 3.1) RSD suppress the cross-
correlations of number counts between redshift bins, therefore decreasing the
counts-shear error.

The RSD ratio decrease with increasing Bright bias amplitude and for
a bias slightly than the fiducial, the galaxy count ratio crosses unity and
redshift space distortion contribute negatively to the constraints. The lower
constrains comes from RSD suppressing the cross-correlations of number
counts between close redshift bins. Chapter 2.1 included plots showing the
effect of RSD for narrow redshift bins, while chapter 3.1 discuses the impact
on forecast through varying the number of redshift bins.

Another interesting trend is how overlapping (FxB-Counts) and non-
overlapping (F+B-Counts) galaxy counts are for low amplitudes similar, but
differs when the amplitude is higher than the fiducial. Fiducially the Bright
population has the largest amplitude. A higher Bright bias amplitude in-
crease the difference in bias, leading to higher sample variance cancellations.
The sample variance cancellation is only present for overlapping samples and
stronger in redshift space, leading to a higher positive RSD contribution to
FxB-Counts. While benefiting the auto-correlations, the RSD suppress the
cross-correlations signal, hence the overall FxB-Counts ratio is slightly neg-
ative.

Fig. 4.16 show in the bottom panel the RSD ratios for increasing Faint
bias amplitudes. The Faint population has large photo-z (σz = 0.05(1+ z)),
is analyzed in broad redshift bins (Δz = 0.1(1 + z)) and therefore the main
galaxy clustering constrains are from the Bright population. As expected,
the ratio changes slower for the Faint compared to the Bright bias amplitude.
The difference in RSD ratio between overlapping versus non-overlapping
surveys is highest for low Faint biases. Since the fiducial Faint bias is lower,
the bias difference is higher for a low Faint bias. The larger difference
increase sample variance cancellation. Similar to the top panel the RSD
sensitivity then increase.

Redshift space distortions are for the fiducial biases (see vertical lines)
more effective in constraining growth (FoMγ) than expansion (FoMwγ) his-
tory. In the top panel of Fig. 4.17 we see a sharp decrease of the redshift
space distortions ratio when increasing galaxy bias. Unlike FoM, which for
galaxy counts is crossing unity and making the forecast worse, the RSD con-
tribute positively to the forecast for all amplitudes. As expected, and for
FoM, largest impact comes when considering only the galaxy counts.

The bottom panel of Fig. 4.17 shows the ratio varying the Faint bias.
As explained earlier, these ratios change less since the number counts of the
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Figure 4.17: The effect of RSD for varying bias amplitudes. Two panels are
showing the ratio of FoMγ in redshift to real space. For values below one
then RSD decrease FoMγ . On the x-axis the is bias amplitude relative to
the fiducial value. For the top and bottom panel respectively the Bright and
Faint bias amplitude are changed. The four lines corresponds to FxB-All,
F+B-All, FxB-Counts and F+B-Counts.
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Faint population only gives weak constraints on cosmology. Also, the growth
function is better constrained with galaxies, leading to a higher ration for
FxB-Counts and F+B-Counts. Because of low real space predictions, At
high Faint bias amplitudes the F+B-Counts ratio increase steeply and is
only included to keep plots consistent.

4.4.3 BAO

The BAO scale of 150 Mpc is a characteristic scale with higher probability
of finding a galaxy pair. In the 2D and 3D configuration space correlation
function, the BAO is a significant peak, which is largely independent of
the galaxy bias . Instead of only using the peak, this thesis include BAO
through the 2pt correlation function. The advantage is measuring the full
power spectrum, while it does require modeling of the galaxy bias. For
estimating the impact of BAO, the Eisenstein-Hu (EH) model can predict
the dark matter power spectrum with and without BAO wiggles. To check
the impact on constraints, one can calculate the Fisher matrix with and
without BAO wiggles.

Fig. 4.18 shows the FoM ratio of a model with and without BAO, with
top and bottom panels respectively varying the Bright and Faint galaxy bias
amplitude. The BAO contributes significantly to dark energy constraints,
but only marginally improve growth constraints (chapter 3.1, main table).
In an equivalent plot for FoMγ , the BAO ratio only vary between 0.98 and
1.08 for both panels and is therefore not included.

In Fig. 4.18 the BAO ratios for both population all, with the exception
of FxB-Counts at high Bright amplitude, increase with the bias amplitude.
Both redshift space distortions and BAO break degeneracies between cos-
mological parameters and the bias. For a higher galaxy bias, the intrinsic
galaxy clustering becomes a larger fraction of the signal. The BAO ratio
the increase from a higher signal and less importance of redshift space dis-
tortions. Further, the FxB-Counts BAO ratio declines at high Bright bias
and low Faint amplitudes. The benefit of overlapping samples improves, as
previously discussed , for higher and lower bias amplitude for respectively
the Bright and Faint population. Hence the importance of BAO and the
BAO ratio declines.

4.4.4 Galaxy shear and Magnification.

Weak lensing also depends on bias. For the signal, the counts-shear cross-
correlations and magnification are close to proportional to foreground bias.
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Figure 4.18: The relative effect of BAO for different bias amplitudes. Ratios
in the two plots are between FoMwγ including BAO wiggles in the Eisenstein-
Hu power spectrum to a forecast without BAO. In the top panel the x-axis is
the overall bias in the Bright sample with respect to the fiducial value, while
the bottom plot varies the Faint bias amplitude. The four lines corresponds
to FxB-All, F+B-All, FxB-Counts and F+B-Counts.
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Magnification, which increase the observed number counts through lensing,
is included by default. The noise terms are independent of bias, while the
dominant error contribution also scale linear with bias. In this subsection,
we first study the effect of Weak Lensing for varying Bright and Faint bias
amplitude. Next we repeat the analysis, only looking at the effect of mag-
nification.

Fig. 4.19 and 4.20 show the ratio of including to not including Weak
Lensing and the top and bottom panel respectively vary the Bright and
Faint bias amplitude. The FxB-Counts and F+B-Counts, which for FoM
are close to zero, are the improvements from magnification. These are plot-
ted to to visualize the relative strength of galaxy shear and magnification.
For the combined system, cross-correlating shear and number counts, the
contribution of magnification is minor. However, as we will see later, mag-
nification is a significant effect when not including galaxy shear.

The ratios depend strongest on the Faint bias amplitudes, with quite flat
ratios for changing Bright bias. At high Bright bias amplitudes, the FxB-
All ratio drops. As explained previously, overlapping samples reduce sample
variance. Higher bright bias amplitudes lead to higher bias differences, en-
hancing the effectiveness of the overlap and reduce the benefit of lensing.
Previous subsections used a similar argument for the drop in absolute FoMs,
the RSD ratio and the BAO ratio.

At several points, the FxB-All and F+B-All ratios crosses or becomes
quite similar. Fixing galaxy bias removes these features, pointing towards
the difference being due to measuring galaxy bias. One should note this only
holds for FoM, since for a fixed bias, the redshift space distortions totally
dominates growth constraints. An interesting trend is the ratio growth for
increasing Faint bias amplitude. Increasing the amplitude reduce the noise,
resulting in higher constraints. Further, changing the Faint bias amplitude
affect FoMγ differently for FxB-All and F+B-All. Low bias amplitudes in-
crease sample variance cancellation , leading to better bias constraints, which
tightens cosmology constraints from the counts-shear cross-correlations.

Fig. 4.21 and 4.22 show respectively ratios of FoM and FoMγ when
including or not magnification. The foreground matter over and under den-
sities respectively magnify and demagnified background galaxy fluxes and
areas. Magnified fluxes entering into a magnitude limited sample when being
magnified over threshold. Here the forecast use the fiducial magnification
slopes specified in chapter 3.1.

Including galaxy shear leads for FoM and FoMγ , and for different bias
amplitudes, to a weak dependence of magnification. The magnification sig-
nal and counts-shear are proportional when ignoring shear intrinsic align-
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Figure 4.19: Relative importance of Weak lensing for different bias ampli-
tudes. The panels displays the ratio of FoM including Weak Lensing to
not including Weak lensing, i.e. no galaxy shear or magnification of galaxy
counts. In the top and bottom panel respectively the Bright and Faint
galaxy bias are changed, while the other bias use the fiducial value. The
four lines corresponds to the combinations FxB-All, F+B-All, FxB-Counts
and F+B-Counts.
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Figure 4.20: Relative importance of Weak lensing for different bias ampli-
tudes. The panels displays the ratio of FoMγ including Weak Lensing to
not including Weak lensing, i.e. no galaxy shear or magnification of galaxy
counts. In the top and bottom panel respectively the Bright and Faint
galaxy bias are changed, while the other bias use the fiducial value. The
four lines corresponds to the combinations FxB-All, F+B-All, FxB-Counts
and F+B-Counts.
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Figure 4.21: The importance of magnification when changing the bias ampli-
tudes. In the plots ratios of FoM are shown between including magnification
or setting the effect to zero. On the x-axis are the amplitude of bias for given
population with respect to the fiducial value. In the top and bottom panel
respectively the Bright and Faint bias changes. The four lines corresponds
to the combinations FxB-All, F+B-All, FxB-Counts and F+B-Counts.
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Figure 4.22: The importance of magnification when changing the bias ampli-
tudes. In the plots ratios of FoMγ are shown between including magnification
or setting the effect to zero. On the x-axis are the amplitude of bias for given
population with respect to the fiducial value. In the top and bottom panel
respectively the Bright and Faint bias changes. The four lines corresponds
to the combinations FxB-All, F+B-All, FxB-Counts and F+B-Counts.
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ment and observational noise. As explored in chapter 3.1, the additional
covariance reduce the value of including both signal. This argument only
holds if both observables respond similar to cosmological and nuisance pa-
rameters. For different systematics in the two signal, the covariance would
in theory reduce sample variance. In addition the shear reduce the relative
value of magnification by increasing the base line.

Overlapping samples has for overlapping samples a higher contribution
from magnification. Locating the two surveys over the same area, allows
for cross-correlating the Bright and Faint number counts. The foreground
sample is analyzed in narrow bins with higher precision and the background
sample is deep. Magnification cross-correlations between the Bright and
Faint sample, depend linear on the Bright bias. The cosmic variance term
approximentally has the same dependence, while the shot-noise is indepen-
dent of bias. Increasing the Bright bias therefore reduce the shot-noise term.
This is importance since when analyzing a spectroscopic survey in narrow
redshift bins. For low Bright bias (1./10) FoM only increase 1% from counts
magnification, while the fiducial result in 5% gain. At high Bright bias val-
ues sample cancellation becomes more effective, increasing the baseline and
therefore reducing the ratios.

Fig. 4.22 show magnification contribute stronger to growth (FoMγ) than
dark energy (FoM) constraints. While the lensing potential is a projection
over redshift, the foreground counts overdensity trace the matter fluctuation
at a given redshift, increasing the sensitivity to γ. For the fiducial ampli-
tudes, counts magnification increase FoM and FoMγ with respectively 5%
and 10%, equivalent to 5% and 20% larger in area.

Decreasing the Faint bias amplitude increase the forecast. One can un-
derstand this trend looking at the errors. The variance of the magnification
signal is (see covariance eq. in chapter 2.1or 3.1)

Δ2Cgigj = N−1(l)[CgigiCgjgj + C2
gigj ] (4.12)

≈ N−1(l)CgigiCgjgj (4.13)

where i and j are two redshift bins. For well separated bins in photo-z space
the auto-correlation in eq. 4.13, leading to the second line. Ignoring redshift
space distortions and shot-noise, the magnification signal-to-noise is

S/N ≈
∣∣∣∣αj

bj

∣∣∣∣√N(l)
Cmiκj√

CmimiCmjmj

(4.14)



150 CHAPTER 4. GALAXY BIAS AND STOCHASTISITY

where αj and bj are the magnification strength coefficient (chapter 3.1) and
the galaxy bias in bin j. The Cmimi and Cmimi terms are respectively
the matter auto-correlations in bin i and bin j. Further, we use Cgigj ≈
biαjCmimj by approximating the bias and magnification at the mean redshift
in the bin and ignoring magnification-magnification correlations. This is a
good approximation since the bias evolves slowly and the magnification-
magnification is insignificant. Note, in the low bias limit the expression is
invalid because the assumption in Eq. 4.13 no longer holds.

Eq. 4.14 show see two important criteria for magnification. Higher
magnification slope increase the signal, while lower bias of the background
population decrease the errors. Including shot-noise in eq. 4.14 introduce
a multiplicative correction term, which is lower for a high foreground Bias.
The foreground sample is preferable spectroscopic and then also used for
redshift space distortions. If targeting galaxy sample with higher bias, one
need to balance the increase in magnification with a decrease in redshift
space distortions.

4.5 Impact on forecast

The two last sections have looked at errors on bias and the effect of the
bias amplitude. This section study various aspects of the galaxy bias. The
fiducial bias is deterministic, parameterized using one parameter for each
bin and include no priors. In the first subsection we study the cosmological
constraints comparing two bias parameterization. The second and third
subsection looks respectively at adding absolute and distance priors at the
bias. Last subsection checks the impact of adding bias stochasticity, error on
the stochasticity and especially focus on the benefit of overlapping surveys.

4.5.1 Comparing bias parameterizations.

Galaxy bias evolve slowly with redshift [51]. This thesis parameterize bias
using one parameter in each bin, for each galaxy population. One could
instead specify bias and interpolate between a few pivot points in redshift.
The advantage is potentially increasing the forecast through using less pa-
rameters and therefore less freedom in specifying the bias. Alternatively,
galaxy bias can use one parameter in each bin and apply distance priors.
This subsection we compare the fiducial parameterization to a linear inter-
polation between z = 0.25, 0.43, 0.66, 1.0 for both populations. The fiducial
bias equals for both parameterization the default bias used throughout this
thesis (see chapter 3.1).
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Figure 4.23: Effect of fixing galaxy bias for varying number of Bright redshift
bins. The ratio is between fix and marginalized galaxy bias, with lines
corresponding to FxB-All, F+B-All, FxB-Counts and F+B-Counts. On the
x-axis is the number of redshift bins in the Bright sample, with the vertical
line denoting the fiducial number of bins. In the top and bottom panel the
ratio is respectively shown for FoM and FoMγ .
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To compare bias parameterization, one should know how fixing the bias
affects the forecast. For a highly constraint nuisance parameter, the parame-
terization is less important. Earlier, main tables of FoMwγ , FoMγ , FoM and
FoMDETF for FxB-All found respectively improvements of 6.0,2.0,3.0 and
3.4 when fixing the galaxy bias. Fig. 4.23 show the ratio of fix to marginal-
ized bias for varying number of redshift bins, with a vertical line denoting
the fiducial number of Bright redshift bins. The bias dependence for FoM
and FoMγ respectively decrease and is flat when increasing the number of
Bright redshift bins. Forecast of cosmological parameters are sensitive for
various probes and for a large range in the number of Bright redshift bins.

Fig. 4.24 show the ratio of one-bias-per-bin to a linear interpolated bias.
Only the population indicated in the title vary the bias parameterization,
while the other always use one-bias-per-bin. For seeing how high priors
the interpolated bias corresponds to, we add for the one-bias-per-bin bias
priors to the population where testing the parameterization. High absolute
priors (x-axis) corresponds to effectively no bias priors. The x-axis range to
simplify comparisons equal for the two panels.

For FoMwγ without any prior, the one-bias-per-bin in the Bright sam-
ple recover 98-100% of FoMwγ . Adding weak priors (order 1) to the one-
bias-per-bin yields higher constraints than the linear interpolated bias and
strong priors obviously then result in strongly improved forecast (see next
subsection). Unlike the Bright bias, for overlapping surveys (FxB-All, FxB-
Counts), the one-bias-per-bin yields higher FoMwγ than the linear interpo-
lated bias. When including photo-z, there is a subtle difference in the two
parameterizations. For a linear bias, one is parameterize the underlying bias
and convolving with photo-z. The bias parameter in the one-bias-per-bin
approach is defined without photo-z and then photo-z is included through
transition matrices. Since the Faint bin are wide, this underestimates the
effect of photo-z on bias measurements.

4.5.2 Absolute priors on bias.

This subsections study how forecast change when adding uncorrelated pri-
ors on bias. Measurement of bias in data (e.g. 3pt function) or studied in
simulations usually would lead to covariance between parameters. However,
adding a fixed and uncorrelated prior (flat prior) on each bias parameter
simplify specifying the requirement on external priors. Also, studying abso-
lute priors increase the understanding of which observable are contributing.
In the next subsection, we will study a model including covariance in the
priors.
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Figure 4.24: Comparison of two different parameterizations of the bright
galaxy bias. In the top panel is the FoMwγ ratio when using one parameter
for each bright redshift bin to a forecast parameterize the Bright bias by
linearly interpolating through the values in z = 0.25, z = 0.43, z = 0.66
and z = 1.0. In both numerator and denominator the fiducial bias is equal,
but the interpolated bias only vary the value in the four points. The Faint
bias is parameterized with one bias per bin. Lower panel displays the same
ratio switching the bias parameterization, i.e. testing the effect of linear
bias with the same pivot points for the Faint, while using one parameter
for each Bright redshift bin. The ratios are for both panels shown for FxB-
All, F+B-All, FxB-Counts, F+B-Counts. In addition B-All and F-All are
included for the top and bottom panel respectively.
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Figure 4.25: The effect of priors on the Bright bias. In the plots the fiducial
one parameter for each redshift bin is used for both the Faint and Bright
sample. On the x-axis is the prior (error) added independent to each bias
parameter for the Bright sample. Both panels displays the impact on the
combinations FxB-All, F+B-All, FxB-Counts and F+B-Counts. In the top
and bottom panel is the effect on FoMwγ and FoMγ respectively.
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Fig. 4.25 show the forecast when adding priors on the Bright bias. One
can from the graph see how large priors are needed and when the knowl-
edge on bias saturates. On the right side of the graph, the priors are weak.
For FxB-Counts and F+B-Counts, the FoMwγ and FoMγ forecast increase
already for very weak priors (100). The FxB-All and F+B-All which in-
cludes lensing does on the other hand require higher priors to have an effect.
Around absolute priors of 10−2 the constraints are flattening and beyond
this point increasing bias priors provide no additional constraints. From
Fig. 4.14, the saturation occurs for comparable errors from measurements
and the priors.

How does the increase in Bright priors affect overlapping versus non-
overlapping galaxy populations? Stronger priors on the Bright bias increase
FoMwγ with a few for all probes. However, the ratios FxB-All / F+B-All
and FxB-Counts / F+B-Counts are respectively close to constant and signif-
icantly decreasing. Therefore overlapping surveys including shear measure-
ment are equally powerful when knowing the Bright galaxy bias. The priors
for overlapping surveys directly improve counts-shear of Bright counts. Ad-
ditionally the priors lead to stronger constraint on the Faint bias through
counts-counts cross-correlations, which again benefits the cross-correlations
of Faint counts with shear. For FoMγ all probes, as shown in Fig. 4.25
bottom panel, approach the same asymptotic value. The growth constraints
are already without priors dominated by redshift space distortions in the
Bright sample. Naturally the Bright sample then dominate growth con-
straints when effectively fixing the Bright bias.

Fig. 4.26 for FoMwγ find similar same-sky benefit without or strong Faint
bias priors. This trend differs from 4.26, where strong priors Bright priors
for galaxy counts removed the benefit of overlapping surveys. The Bright
(spectroscopic) population has accurate redshift and dominated the forecasts
when only using galaxy counts. Directly increasing the Bright priors lead to
only the Bright domination, reducing the value of the overlap. The cross-
correlations between sample contribute for Faint bias priors through better
measurement on the Bright bias, which again increase constraints from the
Bright sample. For FoMγ the effect is even strong, which leads to FxB-All
and FxB-Counts reaching approximentally equal results for a fixed Faint
bias. Last, one should remember Fig. 4.25 and 4.26 only includes priors on
one population. Paper II (main table) showed fixing bias reduce the benefit
of overlapping surveys.
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Figure 4.26: The effect of priors on the Faint bias. In the plots the fiducial
one parameter for each redshift bin is used for both the Faint and Faint
sample. On the x-axis is the prior (error) added independent to each bias
parameter for the Faint sample. Both panels displays the impact on the
combinations FxB-All, F+B-All, FxB-Counts and F+B-Counts. In the top
and bottom panel is the effect on FoMwγ and FoMγ respectively.
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4.5.3 Bias distance priors

Distance priors encoding information on bias evolution and is defined through
a covariance between the bias measurements. One can instead of reducing
the number of bias parameters, e.g. using linear interpolation between pivot
points, add distance priors to the one-parameter-per-bin parameterization.
In subsection 4.5.3 we introduced a simple distance prior model. For close
redshift bias measurements are fully correlated and then decreasing linearly
with redshift separation. The correlation reaches zero for a redshift sep-
aration of ΔR, which is the characteristic prior length. This subsection
study how constraints changes when adding distance priors and increasing
the correlation length ΔR.

Fig. 4.27 show ratios of including distance priors to the fiducial forecast,
varying the correlation length ΔR on the x-axis and only adding priors to
the population indicated in the title. The top and bottom panel respectively
corresponds to including priors in the Bright and Faint population. Distance
priors are effective when correlating the bias values in nearby redshift bins.
For the Bright and Faint sample, the fiducial redshift bins are respectively
Δz = 0.01(1 + z) and Δz = 0.07(1 + z). The ratio increase for both panels
around ΔR ≈ 2Δz. After the correlation length equals a few bins, the
benefit for both the Bright and the Faint population saturates. The forecast
also improve for low correlation lengths (ΔR), since the distance priors
include an absolute prior of 0.2 in each redshift bin.

4.5.4 Bias stochasticity

The galaxy bias in the thesis is fiducially deterministic. In this subsection we
study the impact of introducing bias stochasticity (non-deterministic bias).
Subsection 4.2.3 introduced a simple redshift and scale independent model of
stochasticity, deviating from the commonly used function r. First we study
how an increasing stochasticity reduce the signal-to-noise, while second we
investigate how uncertainties in the stochasticity impacts the forecasts.

Fig 4.28 plot FoMwγ when increasing the galaxy bias stochasticity for
the Bright population. The stochasticity variable is fixed, in other words,
the stochasticity is assumed known. Since the stohasticity is purely noise,
it reduces the figure of merit. For the different probes and also FoMγ ,
FoMγ and FoMDETF, the FoMs decrease steadily. To reduce the impact
require a small stochastic component compared to the signal. The equivalent
Faint bias stochasticity plots (not included) show a weaker dependence of
Faint galaxy stochasticity. One can understand this from the Faint galaxy
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Figure 4.27: The effect of distance priors in the galaxy bias. Results are
ratios for FoM between including distance priors in Bright population and
the fiducial forecast, while varying the prior length ΔR on the x-axis. An
uncorrelated absolute prior of 0.2 is included in the distance prior. In both
panels, one population include distance priors, while the other population
has no priors on bias. The top and bottom panel adds respectively priors
to the Bright and Faint population. The lines correspond to the probes
FxB-All, F+B-All, FxB-Counts and F+B-Counts. In the top and bottom
panels the results are for FoM and FoMwγ respectively.
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Figure 4.28: Effect of increasing galaxy bias stochasticity. In the plot FoMwγ

is plotted with the x-axis being the Bright galaxy bias stochasticity param-
eter B. The fiducial value is S = 0 where the galaxy bias is deterministic.
In this plot no extra nuisance parameters are added to describe the stochas-
ticity. The four lines corresponds to FxB-All, F+B-All, FxB-Counts and
F+B-Counts.
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clustering contributing less to the overall constraints.

Stochasticity also reduce the measurements due to additional uncertainty
in the modeling. For the forecast the fiducial bias parameterization use one
parameter in each redshift bin, assuming no scale dependence. A natural
extention is parameterizating the bias stochasticity with one parameter in
each redshift bin. From knowledge of stochasticity from simulations or ob-
servations, one can later introduce priors on the stochasticity parameters.

Fig. 4.29 show ratios between free and fixed stochasticity. The ratio
is the fraction of the FoMs recovered from adding priors. For high priors,
on the left side of the grapg, the priors are strong enough to fix uncertain-
ties in galaxy bias and the ratio naturally approaches unity. For FoMwγ

in the top panel, there is a clear difference between overlapping and non-
overlapping surves. Without priors, the F+B-Counts reduces to 88% of the
value with known stochasticity. The difference is 96% of the origininal value
when considering FxB-Counts. Without priors, the FxB-All and F+B-All is
recovering almost equal parts of the overall constraints. Then when increas-
ing the priors, the overlapping surveys are better at using thise invormation
even for low priors. For FoMγ , the overlapping surveys have a harder time
recovering the constrains, especially when including galaxy shear. However
because the overall change is much smaller, with all errors on FoMγ better
recovered than FoMγ , we do not discuss these trends in general.

These redults show overlapping samples are less affected by galaxy stochatic-
ity. This is the opposite conclusions of [68]. We attribute the difference
to the observables included and the definition of overlapping surveys. In
this thesis the spectroscopic and photometric surveys are modeled through
respectively the Bright and Faint population with all cross-correlations be-
tween galaxy counts and shear. For [68] respectively only include the counts
overdensities and shear from the spectroscopic and photmetric surveys. This
artificially increase the cross-correlations of counts-shear between popula-
tions and therefore the impact of bias stochasticity.

4.6 Conclusion

In this thesis we have studied the forecast for upcoming surveys. For the
next 5-10 year, large new surveys will come. We are by now seeing DES is
taking data. Further, the surveys can either be considered photometric or
spectroscopic. Having those involve different probes. The spectroscopic and
photometric surveys are benefitting from the combined information.

We have focused on large galaxy surveys which will become available. In
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Figure 4.29: Improvements from priors on stochasticity. The plots displays
the ratio when allowing the stochasticity parameter B to vary in each bright
redshift bin to the case of fixed stochasticity. For both the Bright and
Faint bias use zero for the fiducial value and the parameters for the Faint
bias stochasticity is kept fixed. The four lines are the FxB-All, F+B-All,
FxB-Counts and FxB-Counts combinations. On the x-axis is prior (error)
added to all of the Bright redshift bins. In the top and bottom panel are
respectively the ratios for FoMwγ and FoMγ .
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particular, we have studied what will happen when having two overlapping
galaxy surveys. Then one is having cross-correlations between the surveys.
It is normally done with 3D P(k) for the spectroscopic, while using 2D
angular correlations for the WL survey. We have studied doing the forecast
using angular cross-correlations in narrow redshift bins.

First chaper gives a short introduction. It does not describe fundamental
physics, which some thesis do, but put the work into context. It tries to
motivate why we were studying the topic. Not everything is going in a
straight line. Lots of the parts which are included has become included not
because we needed to understand something better. The studied on their
own lead to a part of the thesis.

In the firt paper we have looked at the algorithms used for calculating
the correlations. Described how many of the operations can be described
through linear algebra. This has certain benefits when doing the impleme-
nation. For example, parts of the calculations can be reused for different
cross-correlations. We have looked at that. And then described how to
move parts outside of the for-loops. Further, specific tricks used for doing
the calculations. And that is quite good to see we can do.

Later in chaper one, we are looking at different effects which are in-
cluded. Part of analyzing the angular cross-correlations in narrow redshift
bins required us to look at the different effects. Some of those are surpris-
ing. We have found that the BAO signal in the cross-correlations are higher.
Can be thought of as the redshift bins are providing a filter. The distance
between the bins is imprinted on the signal. The pairs would on average
have a larger separation. That leads to more peaks around the BAO scale
to become included. Further, the BAO peak can also be found in the RSD
peak. Depends on the bin width. Not present for broad bins, but enters for
narrow ones. That is features previously reported on in the litterature.

signal to noise chaper we signal-to-noise. Look at the different correla-
tions which are entering into the forecast. Previous work we had only looked
at this briefly, presenting order of magnitude arguments. Here we in detail
compare them. Also, we are looking in particular on the cross-correlations
between nearby redshift bins. An important point is the error-bars for the
nearby cross-correlations. The cross-correlations is falling off fast with dis-
tance, while the error is driven by the auto-correlation. We see for the
default binning the nearest one or two cross-correlations will contribute,
but ideally we should use a narrower redshift binning.

Second part is looking at the forecast for future surveys. We are using
some really large surveys. Quite some interesting surveys are coming. Trying
to combine the information from a spectroscopic and photometric survey.
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And we are questioning if combining them over the same part of the sky
can give better constrains on cosmology. Different from earlier, we only find
moderate gains when overlapping surveys. This is more along the lines with
what other groups are finding.

We have seen that which cross-correlations one includes makes a big
difference. For example, one could choose to only cross-correlate the bright
foreground galaxies with the background shear. Also including the counts-
shear cross-correlations of the photometric information is important. They
include some of the same information. If one exclude those correlations, the
conclusious would be bias agains overlapping surveys.

We see similar to our previous paper and other recent work that an-
alyzing a spec and photoz survey together has great benefits. Even when
analyzing them over different parts of the sky, their combination helps. That
is something we want to look deeper into. Should be stressed for convential
galaxy surveys. Papers trying to do constraints, should not only present
their results alone, but combine with other galaxy surveys.

The magnification is contributing. However less than we expected. There
is strong degeneracy between counts-shear and the magnification signal.
When not having galaxy shear, the magnification is nicely contributing.
While with shear included it is for the setup and effects considered here
unimportant. We stress this is not the full part of the story. Since the
magnification and count-shear is stongly correlated, it could be the perfect
tool for studying systematics.

The third paper is studying the bias. We have introduced the formulas
for one bias for each redshift bins. Require some calculations because the
photo-z also convolve the result and we are interested in the derivative of
the underlying bias. Introducing the priors are giving better constraints.
We are comparing the results when adding those constraints. Particulary,
we are studying how distance priors are adding. Those are assuming the
bias is evolving with a certain distance. We are in this chapter both looking
at the error on bias and the impact on the figures of merit. One key result
we find is that lensing does help constraining the bias. A key question is
the marginalizing over the other parameters. With a known cosmology the
auto-correlations would naturally be totally dominant. When not knowing
the cosmology having counts-shear lensing certainly helps.

Last chapter is looking that the dependence of different survey config-
urations. The part here is not very innovative. We do however stress that
none of the other papers are actually doing the same, so doing this is needed.
The numbers can be useful for survey strategy for upcoming surveys. We
find that for the current analyzis, the photo-z precision is higher impacting
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the forecast. While having a spectroscopic survey is good, one can recover
more information using a PAU photo-z. The results are a bit dependent
on the bin with. Selecting more narrow redshift bins would result in the
photo-z having a different effect. We see how the priors are entering in the
scaling. When having small areas, then the priors are an important part.
This chaper also includes the errors for all the parameters and how much
each parameter is improving for overlapping surveys of not.



Chapter 5

Conclusion

This thesis has studied the constrains in the expansion and grow history
through combining spectroscopic and photometric galaxy surveys, using a
multi-tracer analysis in 2D angular correlations in narrow redshift bins. The
narrow bins allows capturing most of the available information, but is com-
putationally expensive for many redshift bins, including galaxy counts and
lensing for two population. The first part of the thesis is therefore devoted
to optimizing the algorithm. We suggest a novel approach optimized for nar-
row redshift bins, which is suitable for high-level languages (e.g. Python)
through extensive use of matrix operations.

Second part of first chapter study the effect of Limber approximation,
redshift space distortions (RSD), baryon accustic oscillations (BAO) and the
redshift bin width. Especially, the behaviour of auto and cross-correlations
depends strongly on the redshift bin width and affects the combined forecast.
The real space auto-correlates has in narrow redshift bins (Δz = 0.01) are
4-5 times higher compared to a thick redshift bin (Δz = 0.07), while the
RSD is 4 higher in the narrow bin. More imporantly, the exact calculations
include cross-correlations between redshift bins and the signal increase for
thinner redshift bins. These radial cross-correlations are studied in detail,
because they capture the radial information in the spectroscopic survey. In
particular, the BAO contribution is cross-correlations are large, since the
redshift separation provides a characteristic distance filter. We also study
the error bars and find cross-correlations of adjecent bins are detectable.

The second chapter provides forecast for a fiducial spectroscopic and pho-
tometric survey, each being 14000 sq deg. First we study the impact of which
observables are included, the redshift bin width, redshift space distortions
and baryon accustic oscillations. The radial information in cross-correlation
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provide a significant improvement in the combined analysis. Further, includ-
ing RSD as expected provide strong constraints on the growth, while reduc-
ing the dark energy constraints through suppressing the cross-correlations
between close redshift bins.

In particular, the second chapter focus on benefits of overlapping spec-
troscopic and photometric galaxy surveys. For the fiducial survey having
overlapping samples increase FoMwγ , FoMγ , FoM with 1.5, 1.1, 1.3 and
1.3. The overlap allows for additional cross-correlations and sample vari-
ance cancellations, and several special cases are used to quantify how the
benefit comes from both effects. We also discuss the discrepancy in exist-
ing litterature between groups finding none or high gains from overlapping
surveys, while this thesis find moderate gains. An important difference is
including two populations, which reduce the benefit of overlap. While the
covariance between the surveys are increasing the same-sky benefit.

The third chaper study the imporance of galaxy bias, the relation be-
tween dark matter and galaxy overdensities. Since the forecast use the full
correlations, we need to both model the bias and marginalize over uncer-
tainties in the modeling. Overlapping galaxy surveys helps constraining the
bias, therefore increasing contraints on cosmology. In the third chapter we
find the bias error decrease using overlapping surveys and the counts-shear
cross-correlations contributing, but only when the cosmology is unknown.
This is an important point to consider when discussing if overlapping sur-
veys decrease errors on bias. The last part looks at the effect of bias priors,
quantifying the impact of priors on bias. We futher study including priors
on bias redshift, finding a priors reaching a few bins to improve constraints.
Finally, we show overlapping surveys are less affected by bias stochasticity.



Appendix A

Clenshaw-Curtis integration

A.0.1 Overview

The Clenshaw-Curtis integration works well for oscillating integrals expand-
ing the integrand in Chebyshev polynomials. Integrating f in the interval
(−1, 1) can be written as

∫ 1

−1
f(x)dx ≈

N/2∑
n=0

Wnf(cos[nπ/N ]) + f(− cos[nπ/N ]) (A.1)

where N is the number of integration points. The coefficients Wn can be
expressed by

di =

⎧⎪⎪⎨
⎪⎪⎩
1 i = 0

1
1−N2 i = N/2− 1

1
1−(2i)2 Otherwise

(A.2)

Dij =
2

N
cos

(
2ijπ

N

)
(A.3)

W = DTd (A.4)

where the last equation uses matrix multiplication. The integration can be
transformed to different integration limits. Using the integration over scales
as an example, one have

∫ kmax

kmin

f(k)dk = kw

∫ 1

−1
f(k̄ + kwx)dx (A.5)
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where the integration variables are defined through k = k̄ + kwx and the
constants k̄ ≡ 1

2(kmin + kmax) and kw ≡ 1
2(kmax − kmin).

A.0.2 Change of integral domain for the tomographic inte-
gration.

In the Cl estimation one valuate integrands on the form f(x) ≡ Gi(x)Gj(x).
If only wanting to evaluate G once and integrating by multiplication, the
expansion (A.1) into two terms leads to an additional complication. Ex-
panding the terms, one find

∫ 1

−1
Gi(x)Gj(x)dx =

N/2∑
n=0

Gi(cos(nπ/N))Gj(cos(nπ/N))

+Gi(cos(−nπ/N))Gj (− cos(nπ/N)) .

(A.6)

Introducing the following definitions

y+in = Gi(cos(nπ/N)) (A.7)

y+jn = Gi(− cos(nπ/N)) (A.8)

the integration can be written

∫ 1

−1
Gi(x)Gj(x)dx =

∑
n

wn(y
+
iny

+
jn + y.iny

−
jn). (A.9)
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Distance priors
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FoM γw Fiducial No Magn No Lens No RSD No BAO

FxB-GS 1.8 1.8 2.6 2.2 2.4
F+B-GS 1.7 1.8 2.9 2.4 2.4
Improvement 1.5 1.5 1.1 1.5 1.6

FxB-Counts 2.3 2.6 2.6 3.3 2.5
F+B-Counts 2.9 3.0 3.0 11.4 3.3
Improvement 1.2 1.1 1.1 1.1 1.2

F-GS 1.0 1.0 1.0 1.0 1.0
B-GS 2.3 2.3 3.1 3.7 2.8
F-Counts 1.0 1.0 1.0 1.0 1.0
B-Counts 3.1 3.1 3.1 36.5 3.6

All-CFgFκ 1.8 1.8 2.6 2.2 2.3
All-CBgFκ 1.8 1.8 2.6 2.3 2.4
All-Cgκ 1.8 1.8 2.6 2.4 2.4
Counts-CBgFg 2.7 3.0 3.0 5.7 3.0
FxB-GS Vol 1.8 1.8 3.0 2.4 2.5

FoM γ Fiducial No Magn No Lens No RSD No BAO

FxB-GS 1.2 1.2 2.1 1.2 1.1
F+B-GS 1.2 1.2 2.3 1.4 1.3
Improvement 1.1 1.1 1.0 1.1 1.1

FxB-Counts 1.9 2.1 2.1 2.7 1.8
F+B-Counts 2.2 2.3 2.3 9.0 2.2
Improvement 1.0 1.0 1.0 1.0 1.0

F-GS 1.0 1.0 1.0 1.0 1.0
B-GS 1.8 1.8 2.3 2.8 1.8
F-Counts 1.0 1.0 1.0 1.0 1.0
B-Counts 2.3 2.3 2.3 28.9 2.3

All-CFgFκ 1.2 1.2 2.1 1.2 1.2
All-CBgFκ 1.2 1.2 2.1 1.2 1.2
All-Cgκ 1.3 1.3 2.1 1.6 1.3
Counts-CBgFg 2.1 2.3 2.3 4.4 2.0
FxB-GS Vol 1.2 1.2 2.3 1.2 1.2

Table B.1: Effect of Bright distance prior. The tables show ratios for con-
straints including distance priors of ΔR = 0.4 to the fiducial forecast. The
two tabulars corresponds to FoMwγ and FoMγ indicated in the upper left
corner. The label column indicate the populations (B-Bright/Spectroscopic,
F-Faint/Photometric) and using overlapping(x) or separate(-) skies and if
shear is included. Counts include only overdensities of number counts, while
All also include galaxy shear. The rows are divided through dashed lines in
four section. First two study overlapping versus non-overlapping surveys,
where the last line is the fraction gained using overlapping surveys. Third
section of rows present the single populations alone. The fourth section looks
at special cases, define before the forecasts to understand which correlations
contributes most. The column ”Fiducial” includes the fiducial forecast. In
the next columns are forecasts corresponding to removing Magnification (No
magn), Weak Lensing (No lens), Redshift Space Distortions (No RSD) and
Baryonic Accustic Oscillations (No BAO).
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[52] E. Gaztañaga, P. Norberg, et al. “Statistical analysis of galaxy sur-
veys - II. The three-point galaxy correlation function measured from
the 2dFGRS”. In: MNRAS 364 (Dec. 2005), pp. 620–634. doi: 10.
1111/j.1365-2966.2005.09583.x. eprint: astro-ph/0506249.
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