
1 
 

 Title page 1 

 2 

Soil enzymes associated with carbon and nitrogen cycling in invaded and native secondary forests of 3 

northwestern Argentina 4 

 5 

Roxana Aragón
1*

, Jordi Sardans
2,3 

and Josep Peñuelas
2,3

.   6 

 7 
1
 Instituto de Ecología Regional, Universidad Nacional de Tucumán. CC 34 (4107) Tucumán, Argentina 8 

2
CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain. 9 

3
CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain. 10 

 11 

*Corresponding author: roxaragon@gmail.com.  Instituto de Ecología Regional (IER), Universidad Nacional 12 

de Tucumán. CC 34 (4107) Tucumán, Argentina. Tel/fax: +54381-4255174 13 

 14 

Email addresses of co-authors:  15 

Jordi Sardans: j.sardans@creaf.uab.cat; Josep Peñuelas: josep.penuelas@uab.cat 16 

 17 

18 

mailto:roxaragon@gmail.com
mailto:j.sardans@creaf.uab.es


2 
 

Abstract 19 
 20 

Background and Aims Alien success has frequently been associated with changes in the concentrations of soil 21 

nutrients. We aim to investigate the effects of plant invasion on soil nutrients, potential enzyme activity and 22 

litter elemental composition and stoichiometry. 23 

Methods We compared stands of secondary forest invaded by Ligustrum lucidum and those dominated by 24 

natives, and performed litter and soil chemical analyses on 3 native and 2 exotic tree species.  25 

Results  Soils of invaded sites had 20% and 30% increase in β-glucosidase and alkaline phosphatase activity, 26 

higher Olsen-phosphorus (P) and potassium (K) concentrations and lower nitrogen (N) concentration and N:P, 27 

N:K and ammonium:Olsen-P ratios. Invaded and non-invaded sites differed in their overall nutrient 28 

composition and enzyme activity. Natives and exotics differed in nine of the 16 litter elemental composition 29 

and stoichiometry variables analyzed.  30 

Conclusions The low N:P ratio in litter, the decrease in soil N in invaded stands and the low N concentration 31 

of exotics suggest that N is the limiting nutrient and that exotic success is related to higher N uptake and use 32 

efficiency. The higher investment in the acquisition of soil resources, higher nutrient uptake and use 33 

efficiency of limiting nutrients contribute to the success of exotics in this subtropical forest.     34 

  35 
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Introduction 39 

Litter decomposition in terrestrial ecosystems is largely the result of the activity of soil enzymes from 40 

communities of bacteria and fungi. This activity is in turn conditioned by physical factors (e.g. temperature, 41 

soil humidity and soil pH) and litter characteristics (Sinsabaugh et al. 1993; Kourtev et al. 2002, Tharayil et 42 

al. 2013). Vegetational cover modifies both environmental and litter characteristics and consequently the 43 

abundance, diversity and activity of microbial communities (van der Putten et al. 2007). Importantly, 44 

invasions by exotic species represent a rapid change in community composition and are thus likely to affect 45 

the control of litter decomposition and, in turn, the concentrations of soil nutrients and stoichiometric 46 

relationships (Ehrenfeld et al. 2001; Ehrenfeld 2003; Allison and Vitousek 2004;  Joanisse et al. 2007; Flory 47 

and Clay 2010).  48 

β-glucosidases, proteases, ureases and phosphatases are the most important soil enzymes involved in the 49 

carbon (C), nitrogen (N) and phosphorus (P) cycles in the soil (Sardans and Peñuelas 2005; Sardans et al. 50 

2008). β-glucosidases break down labile cellulose and related carbohydrates with 1-4 glucosidic bonds,  51 

degrading plant cell walls and thus contributing to the firsts phases of plant cell tissues decomposition, which 52 

then facilitate the activities of other enzymes such as proteases and phosphatases (Debosz et al. 1999; Sardans 53 

et al. 2008; Stege et al. 2010). Proteases are involved in the first phase of N mineralization by hydrolyzing the 54 

peptide bonds of amino acids. Ureases regulate the release of N-NH4 by urea hydrolysis, which is essential in 55 

the chain of hydrolysis of amino compounds. Phosphatases regulate the hydrolysis of O-P bonds, releasing 56 

orthophosphate from organic matter (Sardans and Peñuelas 2005).   57 

Water and resource limitation partly constrain the production and activities of soil enzymes (Criquet 58 

et al. 2004; Allison and Vitousek 2005; Sardans and Peñuelas 2010). Plant invasions generate changes in a 59 

forest’s capacity to take up and use soil resources (water and nutrients) by both introducing a new species and 60 

by modifying the capacities of native species, hence invasions can modify soil nutrient and water contents, 61 

that in turn may affect the activities of soil enzymes (Kolb et al. 2002; Ehrenfeld 2003; Allison and Vitousek 62 

2004; Joanisse et al. 2007). Several studies have described the effects of plant invasion on the concentrations 63 

of soil nutrients (Evans et al. 2001; Allison and Vitousek 2004) but little is known about its effects on soil 64 

stoichiometry and the mechanisms underlying these changes (Sardans and Peñuelas 2012). The objective of 65 

the present study was to discern the impacts of plant invasion on the activities of soil enzymes and on soil and 66 

litter nutrient concentrations and stoichiometry by studying forest stands in sites heavily invaded by 67 

Ligustrum lucidum (Oleaceae) and in sites dominated by native species in a montane forest of northwestern 68 

Argentina.  69 

L. lucidum is an evergreen, shade-tolerant tree with high resprouting capacity, survival and growth 70 

rates (Easdale et al. 2007). Invasion by Ligustrum modifies soil moisture, light availability, litter depth and 71 

plant diversity (Lichstein et al. 2004; Aragón et al. 2014; Ayup et al. 2014). The litter of this invasive species 72 

has a significantly higher decomposition rate than those of three of the most common native species in the 73 

area (Aragón et al. 2014). Here we analyzed, for the first time to the best of our knowledge, the effects of 74 

plant invasion on the elemental composition and stoichiometry of both soil and litter and on the activities of 75 

soil enzymes. Given Ligustrum high growth rate, we hypothesize a potentially high demand of resources. In 76 
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addition to Ligustrum demands, the environmental conditions (i.e., lower soil moisture and light availability) 77 

present in invaded stands, could lead to increases in soil-enzyme concentration in order to compensate for the 78 

unfavorable conditions.  All these in turn, could result in increases in soil and litter nutrient concentrations 79 

and in changes in soil and litter stoichiometries.  80 

 81 

Methods  82 

Study Site 83 

The study was conducted in the lower montane forest of Sierra de San Javier, Tucumán, Argentina (26º 70’ S, 84 

65º 35’ W) at approximately 800 m a.s.l. The area represents the southern-most limit of the subtropical 85 

Andean montane forest (also known as Yungas), which extends from Bolivia to the province of Catamarca in 86 

Argentina (Cabrera and Willink 1980; Grau and Brown 1995). Average annual precipitation ranges from 1300 87 

to 1500 mm distributed in a monsoonal regime with dry winters and wet summers (Bianchi and Yañez, 1992). 88 

The mean annual temperature is 18 ºC, with frosts occurring from June to August. Most of the Sierra de San 89 

Javier piedmont was cleared for crop production and grazing during the early twentieth century (Grau and 90 

Brown 1995; Brown et al. 2001), but many cleared areas were abandoned in the last two decades and 91 

currently have forests at different stages of regeneration (Grau and Aide 2007; Grau et al. 2008). Many of 92 

these secondary forest stands are colonized by several exotic species (Grau and Aragón 2000), but L. lucidum 93 

is by far the most abundant exotic species and the only one that forms monodominant forest stands in this 94 

area.  95 

 96 

Studied species 97 

We included five tree species in this study: two exotics (L. lucidum and Morus sp.) and three natives 98 

(Cinnamomum porphyrium, Cupania vernalis and Myrsine laetevirens). L. lucidum is an Asian tree that 99 

colonizes areas of varying land-use histories and ages. It is more abundant in secondary forest stands but also 100 

grows in openings in old-growth forests (Aragón and Morales 2003). L. lucidum is evergreen, shade tolerant 101 

and has a high growth rate (Easdale et al. 2007). Importantly, its distribution is expected to expand in the near 102 

future (Grau et al. 2008). Morus sp. is also of Asian origin, but unlike Ligustrum, it is deciduous and shade 103 

intolerant (Grau et al. 1997; Easdale et al. 2007). Morus sp. is a fast-growing species as well and is most 104 

abundant on the edges of young secondary forest stands that were reclaimed from citrus orchards.  105 

The native species in this study are all late successional and bird dispersed, with relatively high growth 106 

rates compared to the other native species in this area (these species are among the 10 fastest-growing species 107 

among a set of 29 species studied by Easdale et al. (2007)). They are also among the most abundant in the 108 

canopy or subcanopy strata (Grau et al. 1997; Easdale et al. 2007). C. porphyrium is a semi-deciduous, tall, 109 

shade-tolerant tree abundant in the canopies of secondary and old-growth forests (Grau et al. 1997; Easdale et 110 

al. 2007). C. vernalis has similar life-history characteristics, but it integrates into the subcanopy stratum. Its 111 

saplings account for approximately 70% of the saplings in native and invaded forest understories (Grau et al. 112 

1997; Lichstein et al. 2004). M. laetevirens is an evergreen tree, of intermediate height (it sometimes 113 

integrates into the canopy) and has the highest growth rate among the three native species studied (Easdale et 114 
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al. 2007). Unlike the other species, Myrsine bears fruit during the winter, partially coinciding with L. lucidum 115 

fructification. The morphological and demographic characteristics of Myrsine are also more similar to those 116 

of Ligustrum (e.g. maximum growth rate, growth in well-lit conditions and density in secondary forests) 117 

(Easdale et al. 2007).  118 

 119 

Experimental design and sampling 120 

To evaluate the activities of soil enzymes in native and invaded forests, we used a paired design with five 121 

invaded-native stand pairs .We considered as invaded those stands which had L. lucidum as the dominant 122 

species in the canopy and occurring at densities higher than 500 ind./ha. Native stands were dominated by C. 123 

porphyrium, Blepharocalix salicifolius and C. vernalis among others, and even though some individuals of L. 124 

lucidum were present, especially as saplings, they could be considered rare. Even though Morus sp is 125 

abundant in many secondary patches, it does not form mono-dominant stands. For this reason, we only 126 

considered two forest types: stands invaded by Ligustrum, and stands dominated by native species. 127 

Importantly, native and exotic species co-occur in the different stands but at very dis-similar abundance. For 128 

more details about species composition and stands characteristics see Grau et al. 1997; Aragón and Morales 129 

2003 and Easdale et al. 2007.  Within each pair, the stands were similar in age (between 30 and 50 years of 130 

succession), altitude (between 550 and 700 m), slope and soil type (typically hapludoll with loam sandy 131 

texture with 50-30-20 % of loam, sand and clay respectively) and were larger than 2 ha. Pairs were selected 132 

based on the greatest similarity in age and the smallest geographic separation (from 200 and 500 m between 133 

the members of each pair). For more details about the location of the stands in the field see Aragón et al. 134 

(2014). We established a 3 x 3 m plot in each stand, avoiding edges and gaps in the canopy. 135 

Three soil cores (diameter 6 cm) from the top 10 cm of the soil profile were collected from each plot of 136 

the five invaded/native pairs in April 2012. Each soil sample was kept at approximately 5 ºC until analyzed. 137 

In the laboratory, we first sieved the soil through a 2-mm mesh and then analyzed the two fractions for soil-138 

enzyme activity and concentrations of C and N and the main nutrients Ca, Fe, Mg, Mn, and Na. For the soil 139 

analyses (i.e., enzymes and nutrients) five pairs of stands (invaded and non-invaded forests in each pair) in 5 140 

different sites were considered to account for the potential site to site variability. Each pair was taken as a 141 

block (5 repetitions), and forest types (two levels) as treatment (fixed factor).  142 

The litterfall of 3-8 individuals of each of the five studied species was collected in invaded and native sites 143 

between May and September 2011 into plastic bags suspended underneath each plant. Leaves were air-dried 144 

for 3-5 days and stored in open paper bags until further analysis.  145 

 146 

Chemical analyses 147 

Activities of soil enzymes 148 

To determine β-glucosidase activity, we incubated 5 g of soil for 3 h at 37 ºC with acetate buffer (2 M, pH 149 

6.2 diluted in 1000 ml of distilled water) and with salicin (β-glucosido-saligenin) as a substrate (Tabatabai 150 

1994). The solutions were filtered (Millipore 0.45-μm HA nitrocellulose filter) and the saligenin released 151 

from the substrate was determined colorimetrically after coloring with 2,6-dibromomchinon-4-chloroimide in 152 
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a borate buffer (0.2 M, pH 10). At pHs above 9, saligenin forms a blue indophenol dye with 2,6-153 

dibromchinon-4-chloroimide, which was then measured at 578 nm with a Helios α spectrophotometer 154 

(Thermo Scientific, Waltham, MA, USA) against the reagent blank. We calculated the saligenin content by 155 

referring to a calibration curve obtained with standards containing 0, 10, 20, 50 and 100 µg of saligenin per 156 

ml. β-glucosidase activity was expressed as µg of saligenin released per gram of soil per hour. For the 157 

analyses of all enzymes we first dried the soil samples by freezing in order to prevent protein damage by heat.  158 

To determine protease activity, we used the method of Ladd et al. (1976) using casein as substrate. 159 

Briefly, 5 mL of substrate solution (casein 2%, w/w) was added to 1 g of soil sample. We added 5 mL of Tris 160 

(Tris-hydroxymethyl-aminomethane) buffer (0.05 M, pH 8.1) and then incubated for 2 h at 50 ºC. After 161 

incubation, the remaining substrate was precipitated with trichloroacetic acid. Thereafter, samples and 162 

controls were filtered immediately. For photometric analysis, 5 mL of the filtrate was added to 7.5 mL of 163 

alkali reagent in a test tube, mixed well, 5 mL of Folin-Ciocalteu’s phenol reagent were added, and mixed 164 

again. Alkali reagent is a mix of three solutions: a) 50 g of sodium carbonate, 60 mL of 0.1 M NaOH in 600 165 

mL of distilled water (1000 mL); b) 5g of copper sulfate pentahydrate in 1000 mL of distilled water (20 mL); 166 

and c) 10 g of sodium potassium tartate in 1000 mL of distilled water (20 mL). Before colorimetric 167 

measurement, the samples, controls and standards were filtered (Millipore 0.45-μm HA nitrocellulose filter) 168 

to prevent interference from the precipitates formed by the casein reaction products. The solutions were then 169 

allowed to stand at room temperature for exactly 90 min for color development. We measured the extinction 170 

at 700 nm with the spectrophotometer against the reagent blank and calculated the tyrosine content by 171 

referring to a calibration curve obtained with standards containing 0, 100, 250, 1000 and 1500 µg of tyrosine 172 

per ml. Protease activity was expressed as µg tyrosine per gram of soil per hour. 173 

We used the Kandeler and Gerber (1988) method for determining urease activity. An aqueous (controls) or 174 

a buffered urea solution (samples) was added to 5 g of soil sample and incubated for 2 h at 37 °C. Released 175 

ammonium (NH4
+
) was extracted with 2 mol L

-1
 KCl and quantified by a modified Berthelot reaction 176 

(Schinner et al. 1996). The solutions were shaken for 30 min and filtered (Millipore 0.45-μm HA 177 

nitrocellulose filter) to prevent interference from possible precipitates. The determination was based on the 178 

reaction of sodium salicylate with NH3 in the presence of sodium dichloroisocyanurate, which forms a green 179 

complex under alkaline pH conditions. The extinction was measured at 690 nm against the reagent blank. 180 

Sodium nitroprusside was used as a catalyst to increase the sensitivity of the method approximately 10-fold. 181 

We calculated the NH4
+
 content by referring to a calibration curve obtained with standards containing 0, 1, 182 

1.5, 2, and 2.5 mg NH4
+
 L

-1
. Urease activity was expressed as µg NH4

+
 released per gram of soil per hour. 183 

Phosphatase activity was determined by adding 4 mL of THAM solution (Tris-hydroxymethyl-184 

aminomethane with citric, maleic and boric acids), buffer (tris hydroxymethil aminomethane, maleic acid, 185 

citric acid monohydrate and boric acid in 500 mL of 1 M NaOH, at pH 6.5 for acid phosphatase assays or pH 186 

11 for alkaline phosphatase assays) and 1 mL of p-nitrophenyl phosphate solution (as a substrate) prepared in 187 

the same buffer to 1 g of soil in a flask. We then swirled the flask for a few seconds to mix the contents. The 188 

stoppered flask was incubated at 37 ºC for 1 h, and then1 mL of 0.5 M CaCl2 and 4 mL of 0.5 M NaOH were 189 
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added. The flask was again swirled for a few seconds to stop the reaction. The solution was filtered as above 190 

to prevent the appearance of possible precipitates. The fading of the intensity of the yellow color in the 191 

calibration standards, samples and controls was measured at 398 nm against the reagent blank. We calculated 192 

the p-nitrophenol content by referring to a calibration curve obtained with standards containing 0, 10, 20, 30, 193 

40 and 50 ppm of p-nitrophenol. Phosphatase activity was expressed as µg p-nitrophenol per gram of soil per 194 

hour. 195 

 196 

Chemical analyses of litter and soil 197 

For chemical analyses of foliar tissue, leaves were dried in an oven at 60 ºC to a constant weight and then 198 

ground in a CYCLOTEC 1093 (Foss Tecator, Hoganas, Sweden) and stored in desiccators until analysis. C 199 

and N contents were determined from 0.7 mg of pulverized dried sample by combustion coupled to gas 200 

chromatography in an Elemental Analyzer CHNS Eurovector 3011 Thermo Electron Gas Chromatograph 201 

model NA 2100 (C.E. Instruments-Thermo Electron, Milan, Italy). For the other nutrients (Ca, Fe, Mg, Mn, S, 202 

P, K and Na), 0.25 g of pulverized dried sample was diluted with the acid mixture HNO3 (60%) and H2O2 203 

(30% w/w) and digested in a MARSXpress microwave system (CEM, Matthews, NC, USA). The digested 204 

solutions were brought to a final volume of 50 mL with ultra pure water and at 1% HNO3. Blank solutions (5 205 

mL of HNO3 with 2 mL H2O2 without any sample biomass) were regularly analyzed. After digestion, the 206 

concentrations of Ca, Fe, Mg, Mn, S, P, K and Na were analyzed with an Optima 4300DV ICP-OES (Optical 207 

Emission Spectrometer for Inductively Coupled Plasma, Perkin-Elmer, Waltham, MA, USA). To assess the 208 

accuracy of the biomass digestion and analytical procedures, we used certified biomass NIST 1573a (tomato 209 

leaf) standards. To analyze the soil samples, we followed the same protocols used for the foliar tissues, but we 210 

filtered the samples with a 0.45 μm microfilter. 211 

In addition to C, N and the other nutrients, we also determined immediately available P (Olsen P) and 212 

ammonium. The P available to plants in the soil was determined by Olsen’s method (Olsen et al. 1954). This 213 

method measures the relative availability of orthophosphate (PO4-P) extracted in 0.5 M NaHCO3 adjusted to 214 

pH 8.5. Phosphorus content in 1 g of soil was determined spectrophotometrically at 882 nm in an acidic 215 

medium of 0.24 M H2SO4 by reacting with ammonium molybdate using ascorbic acid as a reductant in the 216 

presence of antimony potassium tartrate. Phosphorus concentration was determined using a calibration curve 217 

built with seven solutions containing 0.0, 0.25, 0.50, 0.75, 1, 2 and 3 mg L
-1

 PO4-P.  218 

To determine the ammonium concentration in the soil, we used a procedure similar to that described for 219 

urea. Released ammonium (NH4
+
) was extracted with a 2 mol L

-1
 KCl solution added to 1 g of dried soil. The 220 

determination was based on the reaction of sodium salicylate with NH3 in the presence of sodium 221 

dichloroisocyanurate and using sodium nitroprusside as a catalyst. The measurement was performed at 690 222 

nm using a calibration curve similar to that described for urea.  223 

Statistical Analyses  224 

We analyzed soil-enzyme activities, ammonium and Olsen-P concentrations and ammonium:Olsen-P 225 

ratios in the soil with two-way ANOVAs, with forest types as treatments (invaded and native) and the five 226 
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pairs of sites as blocks (repetitions). In the case of leaf litter, we first considered two sources of variation: 227 

forest types (litter collected from individuals occurring in invaded or in native stands: two levels) and species 228 

(five levels).  Secondly, we explored the differences only among species, and lastly we grouped species in 229 

native (three species) and exotics (two species) (i.e., two levels).  230 

We performed principal component analyses (PCA) using correlation matrices with 20 variables for the 231 

soil (five enzymes, 12 nutrients including ammonium and Olsen P and three ratios) and 13 variables for the 232 

litter (10 nutrients and three ratios). The differences among treatments (invaded and native for the soil and 233 

five species for the litter) in the variable distribution in the multidimensional space defined by the PCA were 234 

tested using an ANOVA for the scores of sites (n=10) or individuals (10 of each species). In addition, to 235 

specifically evaluate if the invasion of L. lucidum changed over all studied soil variables, nutrient 236 

compositions and potential enzyme activities in the soil and nutrient composition in the litter, we used a 237 

multi-response permutation procedure (MRPP) based on Euclidean distance (Biondini et al. 1985). MRPP is a 238 

non-parametric procedure for testing the null hypothesis of differences between groups or entities. It provides 239 

a statistic, δ, that is the weighted mean of within-group distances and is associated with a p-value that 240 

indicates the likelihood of δ being equal to or smaller than that observed by chance (McCune and Mefford 241 

1999). For the soils, we used a block-MRPP considering the five pairs of invaded/native sites, and for the 242 

litter, we grouped data from all species and considered forest type as the only source of variation. All the 243 

multivariate analyses were performed with the PC-ORD 5 program (McCune and Mefford 1999). In addition, 244 

for the litter, we performed univariate ANOVAs with 16 variables (10 nutrients and six ratios) and with 245 

species status (native or exotic) as the classification factor. We also made multiple comparisons among 246 

species (five levels).  247 

 248 

Results  249 

Enzymes and nutrients in the soil 250 

Invaded sites had an approximately 20% increase in β-glucosidase activity and a 30% increase in alkaline 251 

phosphatase activity. The soil of invaded sites had a lower N concentration (both as NH4
+
 and total N), higher 252 

Olsen-P concentration (40%) and lower ammonium:Olsen-P ratio (67%) (Table 1). Invaded stands also had a 253 

higher K concentration (13%) and lower N:P and N:K ratios (25% and 39%, respectively) (Table 2). The first 254 

two axes of the PCA ordination that considered 20 variables explained 66% of the total variance (Figure 1). 255 

The first axis (explaining 42.8% of the total variance) was related to the variability among blocks, and the 256 

second axis (explaining 23.4% of the total variance) separated invaded from native stands (ANOVA with 257 

PCA scores: Axis I: F for blocks = 7.1, p = 0.04; Axis II: F for forest type = 17.27, p = 0.01). Invaded sites 258 

were associated with higher enzyme activities and Olsen-P and K concentrations, while the 259 

ammonium:Olsen-P ratio and Mg and Fe concentrations were higher in the native sites (Figure 1). This 260 

pattern was reinforced by the MRPP results. Overall, the distances within invaded and native stands were 261 

smaller than expected by chance (chance-corrected within group agreement = 0.19, p = 0.03), so we can 262 
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conclude that the invaded and native sites significantly differed in their nutrient compositions and enzyme 263 

activities.  264 

Chemical analyses of leaf litter 265 

The litter of the different species had similar elemental compositions in the highly invaded stands and the 266 

native stands (Table A1, appendix). This pattern was evident from both the univariate and the MRPP analyses 267 

(chance-corrected within group agreement = 0.01, p = 0.15). In contrast, the litter of the different species had 268 

several differences in elemental composition and stoichiometry. The native and exotic species as groups 269 

differed in nine of the 16 studied variables (Table 3). Exotics had higher concentrations of Ca and K and 270 

lower concentrations of Mn, P, C and N. Differences among species were also evident through the PCA 271 

ordination, especially between the natives Cinnamomum and Cupania and the other studied species, whereas 272 

the two exotics and the native Myrsine all shared some characteristics (Figure 2a). The first three axes of the 273 

PCA ordination explained 63% of the total variability. Two groups could be distinguished along the first axis 274 

(29.7% of the variability) (Figure. 2a, letters on the top): exotics and Myrsine on the positive side and 275 

Cinnamomum and Cupania on the negative side. Exotics and Myrsine had higher concentrations of Ca and K 276 

and lower N:K and P:K ratios compared to the remaining two species (Figure 2b). The second axis (20.4% of 277 

the variability) separated three groups: Cupania with litter concentrations of Mg, Fe, S, Na, P and Mn higher 278 

than those for Cinnamomum and exotics and Myrsine with intermediate characteristics (Fig. 2a letters on the 279 

right). The third axis (13.6% of the variability) separated, although to a minor degree, exotics (Ligustrum and 280 

Morus) from Myrsine (Figure 3a letters on the right), and overall, the invasive from the native species as 281 

groups (Fig 3 a, right arrows) Exotics had lower N concentrations and higher Ca concentrations (Figure 3b) 282 

(Table 3).  283 

 284 

Discussion 285 

Effects of invasion on soil and litter elemental composition and stoichiometry  286 

The soils of invaded stands had lower N concentrations (both as NH4
+
 and total N), higher extractable K 287 

concentrations, higher plant-available P concentrations and a general trend toward higher soil-enzyme 288 

activities. All these data suggest higher rates of nutrient cycling, mainly of N, in the invaded stands. These 289 

results are in agreement with several studies reporting significant impacts of alien plants on the availability of 290 

soil nutrients, decomposition of organic matter, nutrient cycling and soil stoichiometry (Sardans and Peñuelas 291 

2012, Tharayil et al. 2013). In a recent review of the effect of invasive plants on N and P availability, C:N:P 292 

ratios of soils and rates of soil decomposition, mineralization and nutrient cycling from 65 studies conducted 293 

in environments with unclear limitations of nutrients (except some conducted mainly in arid and semiarid 294 

areas of the USA), 48 studies reported increases in the availability of soil nutrients, 14 reported decreases and 295 

three were inconclusive (Sardans and Peñuelas 2012). Most of the 14 studies reporting decreases in soil 296 

nutrients were studies with Bromus tectorum, an invasive grass of semiarid areas of the USA (but see Castro-297 

Díez et al. 2013), indicating that most invasions in nutrient-rich ecosystems tend to increase the availability of 298 
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soil nutrients and hence to increase nutrient cycling. In forests invaded by Ligustrum, however, we found a 299 

decrease in nutrients, particularly N. Importantly, less is known of the effect of plant invasions on nutrient 300 

imbalances. By investigating litter and soil stoichiometry and soil-enzyme activity in Argentine subtropical 301 

forests, we have shown that the success of invasive plants is associated with an overall change in soil nutrient 302 

composition and function, mainly by a decrease in the most limiting nutrient, here N, increasing the 303 

imbalances with other nutrients such as P, which tends to increase its availability in the soil (i.e. decreasing 304 

N:P ratio). This result sheds light on the role of N:P ratios in plant invasions, which has remained 305 

inconclusive (Sardans and Peñuelas 2012). 306 

Even though we cannot effectively discriminate plant available N with our data, there are several 307 

indications that N appears to be the most limiting element in this area. The global litter N:P ratio is 46:1 308 

(±3:1) (McGroddy et al. 2004) but was 7.4:1 (± 1:1) in our study. Moreover, the lower soil water content in 309 

invaded stands was associated with lower total N concentrations, suggesting that invasive success is related to 310 

higher N uptake. In contrast, P in these soils did not appear to be limiting for plant growth. Invaded stands had 311 

higher Olsen-P concentrations related to higher soil-enzyme activity and generally faster cycling of water and 312 

elements. This area receives an annual precipitation above 1000 mm, so water is not likely an important 313 

limiting factor. All these data thus strongly suggest that N is the limiting nutrient and that invasive plant 314 

success depends on a large capacity of N uptake, reduced soil N availability and a higher limitation of N. The 315 

current literature suggests that alien invasion in nutrient-rich environments frequently favors plant species 316 

with high rates of photosynthesis and growth (Baruch and Goldstein 1999; Leishman et al. 2007; Mozdzer 317 

and Zieman 2010; Feng et al. 2011), low costs of foliar construction (Nagel and Griffin 2001; Feng et al. 318 

2007; González et al. 2010), large investments of N in photosynthetic production (Ehrenfeld 2003; Xu et al. 319 

2007; Feng 2008; Shen et al. 2011), higher capacities of nutrient uptake (Zabinsky et al. 2002; Harrington et 320 

al. 2004; Blank and Sforza 2007; Feng 2008; Blank 2010; Hewins and Hyatt 2010; Leffler et al. 2011; Peng et 321 

al. 2011) and high levels of plasticity in the acquisition of resources as a function of pulses in nutrient 322 

availability (Leffler et al. 2011). These factors indicate that higher efficiency in nutrient uptake and foliar 323 

traits enabling rapid rates of growth (Leishman et al. 2007; Zabinsky et al. 2002) will help invading species to 324 

succeed when resources are not limited (Bray et al. 2003; Funk and Vitousek 2007;  Shah et al. 2009).  325 

Similar to our findings, Lichstein et al. (2004) reported that the percentage of soil organic matter was 326 

negatively correlated with Ligustrum basal area. That study hypothesized that this pattern could be associated 327 

with litter quality or with the rapid growth rate in Ligustrum and presumably with rapid nutrient uptake. Our 328 

results support this hypothesis, because Ligustrum has rather low concentrations of N and C in its leaf litter.  329 

Higher soil concentrations of extractable K were associated with higher K concentrations in the leaf litter 330 

of invasive species and of Myrsine. Previous studies have demonstrated that invaded stands have less soil 331 

moisture (Aragón et al. 2014), suggesting a higher water uptake with the increasing abundance of invasive 332 

species (Gerlach 2000; Levine et al. 2003; Holmes et al. 2005; van Wilgen et al. 2008) that in turn decreases 333 

runoff (Dye and Jarmain 2004; Gorgens and van Wilgen et al. 2004; Holmes et al. 2005; van Wilgen et al. 334 

2008). Invasive plants can thus prevent the loss of K by increasing water uptake, decreasing runoff and taking 335 

up more K. Higher K uptake should be correlated with higher concentrations of K in the litter and, in general, 336 
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with faster plant-soil-plant K cycling. We have observed a marginally significant higher K concentration in 337 

the litter of invaded stands, especially in L. lucidum litter, coinciding with the lower soil moisture observed in 338 

these stands (Aragón et al. 2014). Importantly, ecosystem-level impacts of an invasive species depend on the 339 

combination of traits that determine its per capita effect, together with its abundance (Drenovsky et al. 2012). 340 

Ligustrum dominance must be taken into account when assessing its potential impacts at community scale 341 

(Aragon et al. 2014).  342 

 343 

 344 

Effect of invasion on potential soil enzyme activity 345 

The observed increases in phosphatase and β-glucosidase activities reinforce the general results of soil and 346 

litter composition, suggesting that plant invasion accelerates nutrient uptake and nutrient-cycling rates. The 347 

success of invasive plants in this semi-wet, sub-tropical ecosystem is thus associated with faster water and 348 

nutrient cycles, higher soil-enzyme activities, lower concentrations of some nutrients in the soil and with 349 

higher levels of nutrients in stand biomasses and faster growth. These results also suggest cascade effects, 350 

because higher soil-enzyme activity and higher N uptake can be related to low ammonium:Olsen-P ratios in 351 

soils. Lower soil N:P ratios impact soil trophic webs, increasing the abundance of rapidly growing microbial 352 

groups (Elser et al. 2003; Fierer et al. 2007), and may be associated with the observed increase in the potential 353 

activity of some soil enzymes. Microbes adjust their extracellular release of soil enzymes to maximize the 354 

mobilization of substrates rich in their limiting element (Wallenstein and Weintraub 2008: Burns et al. 2013). 355 

The higher C:N ratio of the soil in invaded stands is related to the higher levels of potential soil β-glucosidase 356 

activity. This enzyme catalyzes the first steps of the hydrolysis of large C-chains and is critical for the further 357 

action of enzymes linked to N and P mineralization (Debosz et al. 1999; Stege et al. 2010).Moreover, since β-358 

glucosidase is involved in cellulose catabolism, more abundant and extended litter production in invaded 359 

stands (Ligustrum is a perennial species which has an extended period of litter fall) (Aragón 2000; Easdale 360 

2006) may also explain the higher activity of this enzyme in this type of forest.  361 

The maximum potential enzyme activity depends of the density of active enzymes present in soil. Our 362 

results thus show a higher density of soil enzymes, consistent with the idea that invaded stands have a higher 363 

investment in the production of soil enzymes. Our findings are thus an indication of enzyme concentration 364 

and capacity in the soil but not necessarily of their actual activity in the field. As stated above, soil moisture in 365 

stands dominated by Ligustrum is lower than in native stands (Lichstein et al. 2004; Aragón et al. 2014). 366 

Humidity directly affects enzyme activity by affecting hydrolysis and hence subsequently determines nutrient 367 

mineralization. Litter decomposition in four species (two natives and two exotics) tended to be lower in stands 368 

dominated by Ligustrum (Aragón et al. 2014), and the same was true for a standard substrate (leaves of 369 

Populus sp.) (Fernandez 2012). Consequently, invaded stands appear to invest more in the production of 370 

enzymes (that accumulate in the soil) to compensate for the unfavorable environmental conditions. This is 371 

particularly important given the higher growth rate of Ligustrum and hence its potentially higher demand for 372 

resources. 373 

 374 
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Species-specific effects   375 

We have observed clear differences between the native and invasive species and also some differences 376 

among the natives. Whereas the litter traits of Cinnamomum and Cupania clearly differed from those of the 377 

invasive species, Myrsine shared several characteristics with them. This observation supports previous 378 

studies that found some morphological and demographic similarities among Myrsine, Ligustrum and Morus 379 

(Easdale et al. 2007; Easdale and Healey 2009). Easdale et al. (2007) measured 19 demographic variables in 380 

29 montane tree species of northwestern Argentina, and Myrsine was closer in multidimensional space to 381 

Ligustrum and Morus than to Cinnamomum and Cupania. Myrsine and the two exotic species also shared 382 

ecomorphological features (structural, biochemical and morphological) such as seed mass, maximum growth 383 

rate and foliar P concentration (Easdale 2006). The similarities were especially evident with Ligustrum, which 384 

also has an overlapping fructification phenology. All these similarities indicate that the morphological and 385 

life-history characteristics of Myrsine resemble those of the exotics in this study. The invasion of Ligustrum 386 

in the study area has caused changes in species cover, dominance, diversity and sapling recruitment (Lichstein 387 

et al. 2004; Aragón and Morales 2003). Importantly, native species may be affected in different ways. Exotics 388 

may specially affect species that share attributes with them and hence potentially have similar requirements 389 

(Drenovsky et al. 2012), as perhaps happens with Myrsine, whose recruitment and growth is particularly 390 

reduced in stands dominated by Ligustrum (Bartolucci 2012). In a comparison of native and invaded stands of 391 

similar age, Myrsine showed a reduction in sapling recruitment of approximately 85% in Ligustrum stands, 392 

while Cinnamomum and Cupania were less affected (between 3.5 and 50%). The same trend was found for 393 

changes in basal area of adults (an average reduction of 80% in Myrsine) (Bartolucci 2012). Myrsine has more 394 

similar elemental composition and stoichiometry with invasive species than Cinnamonium and Cupania, 395 

which seem to explain the more negative impact over Myrsine. The native Myrsine would tend to use the 396 

resources in the same way than the invasive species and should compete stronger with it.  397 

These results agree with those expected under the biogeochemical niche hypothesis (Peñuelas et al. 2008; 398 

2010; Sardans and Peñuelas 2013), which claims that elemental composition (nutrient concentrations and 399 

their stoichiometric relationships) varies among plant species as a consequence of differential genotypic 400 

expression and functioning. This hypothesis predicts that different plant species growing in the same 401 

community would tend to have different elemental compositions to reduce the overlap in the use of soil 402 

resources and consequently would reduce direct competition. These results are consistent with the 403 

“competitive niche exclusion” a basic paradigm of the ecological niche theory (Bonsall et al. 2004; Phillips et 404 

al. 2004; Levine and HilleRisLammbers 2009; Alder et al. 2010). In this case the native species with more 405 

similar biogeochemical niche to the invasive species was the species first affected by the success of the 406 

invasive species. The biogeochemical niche thus appears as a useful tool to detect niche overlap intensity in 407 

the study of invasive species, frequently very difficult to be investigated in field conditions (Mooney and 408 

Cleland 2001; Davies et al. 2007). Moreover, it can provide clues of which native species would present the 409 

highest sensitivity to invasive species spread.  410 
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In addition, we would like to acknowledge that even though our design intended to control the potential 411 

inherent variability between invaded and native stands, we cannot unequivocally assigned the differences in 412 

soil enzyme or nutrients to the treatment effect. This is a common and recognized limitation in studies at 413 

landscape scale such as most of the studies related to invasive species ecology (van Kleunen et al. 2010). The 414 

comparative approach remains, so far, as one of the most commonly used in the field (e.g. , Leishman et al. 415 

2010; Tecco et al. 2010). However, these limitations have to be taken into account when interpreting the 416 

results.  417 

 418 

Final remarks and conclusions 419 

Even though several studies have highlighted the role of biological invasions at global scale, invasion 420 

ecology still lacks general influential hypotheses (Strayer 2012).  Several attempts that intended to identify 421 

traits associated with invasion impacts have yield mixed results mainly because successful invasions are 422 

closely linked to native community assembly and environmental filters (Drenovsky et al. 2012). In the context 423 

of invasion ecology, understanding the link between invasion and ecosystem functioning is crucial to fully 424 

evaluate the effect of invasive species. In this study, even though we focused on one particular exotic species, 425 

we intended to provide general understanding of the potential effect of this species on the functioning of the 426 

ecosystem.  427 

Our results indicated that invasion by Ligustrum increased the maximum potential of alkaline phosphatase 428 

and β-glucosidase activities, probably by compensating for the lower soil water content of the invaded soil, as 429 

compared to native forest soil. These observations are supported by previously documented increases in water 430 

and plant nutrient uptake in invaded stands (Ayup et al. 2014; Aragón et al. 2014). Plant invasion decreased 431 

the availability of soil N, likely the limiting nutrient (litter N:P ratio of 7.4, based on mass) in these soils, 432 

whereas it increased the availability of soil P. The lower soil water content and the higher growth capacity of 433 

alien plants, coinciding with higher plant nutrient uptake, the large investment in soil-enzyme activity and the 434 

lower N and P concentrations in litter, thus suggesting a link between the success of alien plants and a higher 435 

capacity to take up nutrients and retain them in the biomass and generally in the ecosystem. Our results 436 

showed that the species most sensitive to invasion, Myrsine, had a litter composition more similar to that of 437 

the invasive plants than to other native plants. This result strongly suggests that this native species and the 438 

exotics Ligustrum and Morus use resources very similarly, and thus Myrsine is most directly affected by 439 

competitive pressure from invasive species.   440 

 441 
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 654 

Fig. 1 Principal component analysis with three sets of variables: enzymes, nutrients and nutrient ratios (20 655 

variables) measured in invaded (red) and native (black) stands. The symbols indicate the corresponding score 656 

group means ± SE. and the arrows represent variable eigenvectors in the space plotted by the first two PCA 657 

axes. The projection of the lines along each axis indicates their relative importance 658 

 659 

Fig. 2 (a) Principal component analysis with 13 variables (nutrients and nutrient ratios) of the five species 660 

studied. C (Cinnamomum), Cu (Cupania) and My (Myrsine) are native species. L (Ligustrum) and M (Morus) 661 

are exotic species (axes 1 and 2). The symbols correspond to the score group means ± SE. Different letters 662 

indicate significant differences among species at each axis at p < 0.05. (b) Variable eigenvectors in the space 663 

plotted by the first two PCA axes. The projection of the lines along each axis indicates their relative 664 

importance 665 

 666 

Fig. 3 (a) Principal component analysis with 13 variables (nutrients and nutrient ratios) of the five species 667 

studied. Codes as in Figure 2a (axes 1 and 3). The symbols correspond to the score group means ± SE. 668 

Different letters indicate significant differences among species at each axis at p < 0.05. When big arrows are 669 

present they indicate significant differences between invasive and exotic species. (b) Variable eigenvectors in 670 

the space plotted by the first and third PCA axes. The projection of the lines along each axis indicates their 671 

relative importance 672 
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